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Abstract

We apply tiling groups and height functions to
tilings of regions in the plane by Wang tiles,
which are squares with colored boundaries where
the colors of shared edges must match. We define
a set of tiles as unambiguous if it contains all tiles
equivalent to the identity in its tiling group. For
all but one set of unambiguous tiles with two col-
ors, we give efficient algorithms that tell whether
a given region with colored boundary is tileable,
show how to sample random tilings, and how to
calculate the number of local moves or “flips” re-
quired to transform one tiling into another. We
also analyze the lattice structure of the set of
tilings, and study several examples with three
and four colors as well.

1 Introduction

Tilings of the plane with Wang tiles [1, 8] have
been studied in computer science since the fa-
mous result of Berger [4] that the problem of
whether we can tile the infinite plane using a
given set of Wang tiles is undecidable. This pa-
per focuses on tilings of a given finite region
with colored boundary. This is a well-known
NP-complete problem [15, 10] and we intend
to tackle the subproblem in which the number
of colors is fixed. Our approach is algebraic:
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we use the tiling groups of Conway and La-
garias [7], and height functions, introduced by
Thurston [26] and independently in the statisti-
cal physics literature (see [6] for a review). These
ideas were used and generalized by Kenyon and
Kenyon [13], Rémila [23, 25], Propp [21], and
others, for the problem of tiling planar regions
with different types of polyominoes or simple
polygons. Our work is, to our knowledge, the
first time Wang tiles have been addressed with
these techniques.

We define a set of tiles as unambiguous if
a certain algebraic condition is both necessary
and sufficient for single tiles. For all but one
unambiguous set of two-color tiles, we give a
polynomial-time algorithm to tell whether a
given region with given colors on its boundary
is tileable. We also study the structure of the
set of tilings under local “flips” that change the
color of a few interior edges, and show that this
is either a distributive lattice or a hypercube. In
particular, this graph is connected, i.e. any tiling
can be turned into any other with a series of flips,
and we give a formula for the minimum num-
ber of flips necessary to do so. In several cases,
these tilings turn out to be equivalent to familiar
systems with height functions, such as domino
tilings and Eulerian orientations. We can then
apply the techniques of Luby, Randall and Sin-
clair [16] and Propp and Wilson [22] to sample
random tilings in polynomial time.

We finish by carefully studying a set of tiles
with three colors, and by noting that some sets of
three- and four-color tiles possess two- and three-
dimensional height functions. We also note that
several sets of tiles are isomorphic in the sense
that there is a natural bijection between pairs
of tilings and boundary conditions, even though
their tilings groups are not isomorphic.
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2 The tiling group

Let Λ be the square lattice of the Euclidean plane�
2 . A (finite) region P of Λ is a (finite) union

of closed square cells of Λ. A region P is said to
be a polygon if its interior and its complement�

2 \ P are both connected.

A Wang tile is a square of side one with colored
edges. An assignment of Wang tiles to the cells
of a polygon P corresponds to a tiling if tiles
on neighboring cells have the same color along
their common edge. Throughout the paper, the
“boundary conditions” of a tiling will include not
just the shape of the region, but the colors on its
boundary.

Let S be a set of Wang tiles constructed with
two colors, Blue and Red. Let P be a polygon
with colors B and R on the edges of its boundary.
We study the problem of finding a tiling of P
using the tiles of S in such a way that the colors
of the boundary condition are satisfied.

Let W = {w1, w2, w3, w4, w5, w6} be the set of
all Wang tiles with two colors. i.e.
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Note that we allow these tiles to be rotated. A
subset {wx1

, · · · , wxn
} ⊆ W will be denoted by

Wx1···xn
.

To solve the tiling problem for particular sub-
sets of W , we start by introducing an orientation
of the edges of Λ. First, we will assume that the
squares of Λ are colored black and white like a
checkerboard. We orient the edges of Λ so that
they go clockwise and counterclockwise around
black and white squares respectively, so that an
ant going along an edge will have a white square
on its left and a black square on its right.

Whenever we have a tiling T of a polygon
P with tiles in W , the colors of the edges of
P will be either B or R. Let us write a sym-
bol b whenever we move along a blue edge with
the orientation, and b−1 when we move against
it. Similarly, we write r and r−1 for moving
along a red edge. To every tiled polygon P with
colored edges we can associate a contour word
w ∈ {b, r, b−1, r−1}∗ starting from any external
vertex and following a path around the boundary
of P . Let S ⊆ W and let v be the set of contour
words of the tiles in S. Then the tiling group
GS = 〈b, r | v〉 is the free group modulo the rela-
tions w = e for each contour word w ∈ v. This
can also be written as a factor GS = 〈b, r〉 /NS

where NS is the normal subgroup generated by
the contour words in v and their conjugates.

Note that uv = e if and only if vu = e, and
that for square two-color tiles, every mirror im-
age is also a rotation. Thus it doesn’t matter
where we start on a tile, or in which direction
we go around it, to define its contour word; we
obtain the same tiling group GS . On the other
hand, for three or more colors, we would have to
explicitly allow reflections as well as rotations.

Now that we have defined the tiling group for
tiles with colored edges, we make several obser-
vations. First, any tiling T of a polygon P with
a set of tiles S corresponds to a tiling function
fT : V → GS , where V is the set of vertices in
P or on its boundary. We do this by first fixing
f on a particular vertex, say fT (x0) = e, where
x0 is the leftmost vertex of the bottom of P . We
then define f inductively as follows: If we have
already assigned an element x ∈ GS to a vertex
v and if the oriented edge (v, u) ∈ P is colored
with B (resp. R), then set fT (u) = xb (resp.
fT (u) = xr). Similarly, if (u, v) ∈ P is colored
B (resp. R) then set fT (u) = xb−1 (resp. xr−1).
Thus moving along the arrows, or against them,
changes the value of fT (v) by b, r, b−1, or r−1.

If r 6= b in GS then the map from tilings to
tiling functions is invertible, since we can get the
color of any edge in T by comparing fT at its
ends.

It is easy to prove by induction on the number
of cells that fT (v) is well-defined; it is single-
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valued since going around any single tile gives a
contour word which is equivalent to the identity
of GS . The same observation gives

Proposition 1 (Conway’s criterion) If a
polygon P with a colored boundary admits a
tiling with a set of tiles S, then its contour word
is equivalent to the identity in GS .

The converse of this proposition is obviously
false for some sets of tiles, even for regions con-
sisting of a single cell! This leads us to the notion
of an unambiguous set of tiles. A set S is unam-
biguous if the converse of Conway’s criterion is
true for single cells, i.e. a tile belongs to S if and
only if its contour word is e ∈ GS .

For instance, if S is unambiguous then it can-
not contain two tiles which differ only in the color
of a single edge unless S = W , since dividing the
contour word of one of these tiles by the other
gives r = b.

These and similar considerations easily show
that the unambiguous subsets of W are the sin-
gletons, W12, W13, W23, W16, W25, W34, W56,
W123, W124, W1234, and W . These are the sets
of tiles we will focus on next.

Proposition 2 Conway’s criterion is sufficient
for a set of tiles S if and only if (i) S is un-
ambiguous and (ii) For any three colors x, y, z,
there is at least one color w such that the tile with
edges x, y, z, w (going, say, counterclockwise) is
in S.

Proof. To prove the first direction, making Con-
way’s criterion sufficient for single squares is the
definition of unambiguity. Since the contour
word of the domino shown in the figure below
is xx−1y−1z−1zy = e, sufficiency implies that it
must be tileable, meaning that there must exist
a color w for the interior edge. To prove the con-
verse, note that if the second condition holds, we
can take any polygon, start at the boundary, and
repeatedly choose cells which can be removed
while keeping the region simply-connected as in
Muchnik and Pak [19]. Since each such cell has
at most three of its edges set by the boundary
conditions, condition (ii) allows us to place a tile

there and remove it from the region, until only
one cell remains. This cell is tileable if and only
if it is in S, which if S is unambiguous means if
and only if Conway’s criterion holds. �

X X

Y

ZZ

Y

It is easy to see that this rules out all sets ex-
cept W56, W1234, and W , for which the reader
can easily check both conditions. We discuss
these further below.

3 Unambiguous two-color tiles

3.1 Trivial cases

For W1, W2, W3, W4, W12, W13, W23 and W123, a
polygon has at most one tiling, and if it exists we
can find it in time proportional to the area. This
is because for all these sets the tile is determined
by the colors of two adjacent edges, so we can
start at a corner of P and scan, say, left to right
and top to bottom.

Trivially any polygon can be tiled if S = W ,
and Conway’s criterion is trivially sufficient with
GW = � 4. We note as well that the number
of such tilings is 2m where m is the number of
edges in the interior of P . If we define a lo-
cal flip as changing the color of an edge (and
the two tiles on either side of it), then the set
of tilings has the structure of an m-dimensional
hypercube. We will see below that similar struc-
tures can be found for other unambiguous sets
of tiles.

3.2 Finite tiling groups: W56 and W1234

Proposition 2 shows that Conway’s criterion is
sufficient as well as necessary for W56 and W1234.
This gives us a linear-time algorithm for tileabil-
ity: simply calculate P ’s contour word and com-
pare it to the identity.

The tiling group of W56 is
〈

b, r | b3r, r3b
〉

.
Since b3r = e, we have r = b−3, and since
b = r−3 = b9, the group is isomorphic to � 8 with
(say) b = 1 and r = −3. For W1234, on the other
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hand, since brbr = bbrr = e we have br = rb,
and since b4 = r4 = b2r2 = e, the tiling group is
isomorphic to � 4 ⊕ � 2 with (say) r = (1, 0) and
b = (1, 1).

Although their tiling groups are not isomor-
phic, there is a simple bijection between tilings
with the two sets. By flipping the colors of
the horizontal edges on the even-numbered rows
(say), we change one edge of each tile, trans-
forming tiles in W56 to tiles in W1234 and vice
versa. This may also change some of the colors
on the boundary, so this is actually a bijection
between pairs (P, T ) where P is a region with
colored boundary and T is a tiling of it.

There is also a simple bijection between these
and assignments of two colors, say yellow and
green, to the vertices of P . If we color an edge
red if its two vertices are the same color and
blue if they are different, we obtain tilings with
the set W1234. This also shows that, once the
colors on P ’s boundary are chosen, the number
of tilings is 2k where k is the number of vertices
in the interior of P . The local flip changes the
color of a vertex and thus the four edges and
the four tiles around it, and the graph of tilings
forms a k-dimensional hypercube. This gives a
trivial algorithm for sampling random tilings, by
flipping k independent coins.

3.3 Infinite tiling groups and height

functions

The use of height functions for tilings was in-
troduced by Thurston [26], and since then have
been applied to several sets of polyominoes and
polygons. They had been found independently
in statistical physics, and have been applied to
ice models, antiferromagnets, and Potts models
(see e.g. [3, 6]). We will see that they can be
applied to some sets of Wang tiles as well.

The idea is to transform the tiling function fT

to an integer height at each vertex, by composing
it with an appropriate function z : GS → � and
writing hT = z◦fT . Then we can define a partial
order on the set of tilings of a particular polygon
with colored boundary,

T � T ′ ⇐⇒ ∀v ∈ P : hT (v) ≤ hT ′(v)

The height function typically possesses the fol-
lowing properties, which will help us solve tiling
problems:

• Given the boundary conditions, there is
a one-to-one relation between tilings and
height functions.

• Local flips can be applied at local extrema of
hT in the interior of P , and can connect any
tiling to any other with the same boundary
conditions.

• With respect to �, the the set of tilings is a
distributive lattice. In particular, there are
minimal and maximal tilings ⊥ and >.

• ⊥ is convex, i.e. h⊥ has no local maxima in
the interior of P .

The distributive lattice structure will help us
in several ways. Since there exists a tiling iff
there exists a minimal tiling and the heights of
the vertices of the boundary are given by the
boundary conditions, this will give us a straight-
forward algorithm for tileability. We will also
have an algorithm to compute the shortest way
to pass from a tiling to another one by flips. Fi-
nally, the technique of coupling from the past will
allow us to sample random tilings in polynomial
time [16, 22].

3.3.1 W5 and dominoes

It is easy to see that if S is the singleton W5

we have domino tilings, where blue edges are the
boundaries of dominoes and red edges cross their
interiors. The tiling group

〈

b, r | b3r
〉

is isomor-
phic to � with b = 1 and r = −3. Thus we can
take the height function hT = fT where z is sim-
ply the identity. If the perimeter of P is blue,
Conway’s criterion simply checks that there are
an equal number of black and white squares in
P . We already know from Proposition 2 that
this criterion is not sufficient. To discuss the lat-
tice structure of the set of tilings we will follow
[24] and omit the proofs.

A local flip can be applied at a vertex v when
its two incoming edges have the same color,
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and its two outgoing edges have the same color.
Equivalently, a flip consists of exchanging two
horizontal dominoes for two vertical ones or vice
versa. It is easy to see that a flip is possible at v
if and only if v is a local extremum of the height
function. Since this flip changes the color of all
four edges around a vertex, it can only be ap-
plied at a vertex in the interior of P . We call a
flip upwards if it transforms a local minimum to
a local maximum and downwards if it does the
reverse. The reader can check that these flips
increase or decrease hT (v) by 4.

Recall that a lattice [5, 9] is a set equipped
with a partial order, where any two elements a
and b have a unique infimum a ∧ b and a unique
supremum a ∨ b. A lattice is distributive if a ∨
(b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) =
(a ∧ b) ∨ (a ∧ c). Viewing the set as a directed
acyclic graph, it follows that any pair of directed
paths between two points (which, if a path exists,
are comparable) have the same length.

Standard arguments then allow us to prove the
following properties of the partial order � de-
fined above:

Proposition 3 (Flips and order) For any
pair of tilings T and T ′ of the same polygon P
with the same colored boundary, T � T ′ if and
only if T ′ can be obtained from T by a sequence
of upwards flips.

Proposition 4 (Lattice structure) If a poly-
gon P is tileable then, with respect to the order
�, the graph of tilings is a distributive lattice. In
particular, there is a unique minimal tiling ⊥.

Proposition 5 (Convexity) Let P be a
tileable polygon and let ⊥ be its minimal tiling.
Then h⊥ has no local maximam in the interior
of P .

Proposition 6 (Flip formula) For any pair
of tilings T and T ′ with the same boundary con-
ditions, the minimal number of flips to pass from
T to T ′ is (1/4)

∑

v
|hT ′(v) − hT (v)|.

Combining Propositions 4 and 5 gives the fol-
lowing algorithm, which either constructs the

minimal tiling or confirms that the region is not
colorable:

• Calculate the heights of vertices on the
boundary. If Conway’s criterion is not sat-
isfied then the region is not tileable. Oth-
erwise repeat the following steps until the
region is completely tiled.

• Whenever all four corners of a cell have an
assigned height, place the appropriate tile
there and remove that cell from the region.
If no tile is consistent with these heights,
halt and conclude that the region is not
tileable.

• Find a vertex v with maximum height hmax

on the current boundary; it has a neighbor
w whose height has not yet been assigned.
Since h⊥ may not have local maxima in the
interior, set h⊥(w) smaller than hmax, either
to hmax − 1 or hmax − 3 depending on the
orientation of the edge from v to w.

If we remove cells at P ’s boundary whenever
one of their edges is red, tilings with W5 corre-
spond exactly to domino tilings of the remaining
region. We can then use the results of Propp and
Wilson [22] and Luby, Randall and Sinclair [16]
to sample perfectly random tilings in time poly-
nomial in the area of P .

3.3.2 W34, W124, and Eulerian orienta-
tions

The tiling group of W34 is
〈

b, r | brbr, b2r2
〉

,
which is isomorphic to � with b = +1 and
r = −1. Once again we can take hT = fT

as our height function. We have all the same
tools as in the previous example, except that now
for any pair of neighbors u, v we have |hT (u) −
hT (v)| = 1. This is recognizable as the height
function for Eulerian orientations of the dual lat-
tice, called the six-vertex ice model by physicists
[3]. This is also equivalent to the height func-
tion for three-colorings of the square lattice, and
to alternating-sign matrices [20]. The algorithm
for tileability is completely analogous to that for
the domino tiling W5, except that we always set
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the height of the neighboring vertex to hmax − 1.
The progress of the algorithm is shown in Fig-
ure 1; it either constructs the minimum tiling, or
arrives at a contradiction where two neighboring
vertices have heights differing by more than 1, vi-
olating the definition of the height function and
proving that the region is not tileable.

For W124, the tiling group
〈

b, r | b4, r4, b2r2
〉

is
more complex. However, by imposing the ad-
ditional relations b2 = r2 = e we can obtain a
simple quotient for it, the free group on two gen-
erators of order 2, which has the following Cayley
graph:

������������ ���	�	
�
��� ���������������� ������������ ������
r

r

b

b

b
r

r

e brrb
b

b

r

While this is not isomorphic to � it clearly has
the same “shape” as � . We can define a height
function hT = z ◦fT with the following z, taking
advantage of the fact that if r2 = b2 = e every
element can be written as a word w of alternating
r’s and b’s:

z(w) = |w| if w begins with b

z(w) = −|w| if w begins with r

Then the same results follow as for W34.

Just as for W56 and W1234, there is a simple bi-
jection between tilings with W34 and those with
W124 even though their tiling groups are not iso-
morphic. If we flip the colors of all the horizon-
tal edges (say), each tile in W34 becomes one in
W124 and vice versa. Composing this with the
bijections shown above gives a simple bijection
between W124 tilings and Eulerian orientations.

As in the previous case, the techniques of
[16, 22] can be used to sample random tilings
in polynomial time.

3.4 The curious case of W16

The set W16 (and its symmetry partner W25)
is the only unambiguous two-color set which re-
mains unsolved. Its tiling group

〈

b, r | b4, r3b
〉

is
isomorphic to � 12 with b = 3 and r = −1. Thus
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Figure 1: The progress of the tiling algorithm
for W34, or equivalently Eulerian orientations of
the grid, which constructs the minimal tiling or
shows that none exists.
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its tiling group is finite; however, Conway’s cri-
terion is not sufficient.

By lifting from � 12 to � we see that the num-
ber of w1 tiles on white squares minus the num-
ber of w1 tiles on black squares is an invariant,
since for a polygon P this is n/12 where n is the
integer corresponding to P ’s contour word. No-
tice that, for each vertex, the tiling function has
three possible values, since fT (v) is equivalent
mod 4 to the length of a path from the origin
vertex to v.

We leave as an open problem whether there
is a polynomial-time algorithm to tell whether
a given polygon can be tiled with W16. The
reader may enjoy showing that a region with
red boundary is tileable if and only if it can
be tiled by dominoes and X-pentominoes. It
seems likely that such tilings are NP-complete
for non-simply-connected regions using construc-
tions similar to Moore and Robson [18].

4 Examples with more colors

4.1 Height functions on Cayley trees

In this section we show that the notion of height
function can also be used for some Wang tiles
with three (or more) colors. While the height
function is more complex, it still gives us an effi-
cient algorithm to determine whether a region is
tileable. Our example is a generalization of W124,
where each tile has at most two colors, and where
every colored edge shares a vertex with another
edge with the same color. The set V is the fol-
lowing:
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Taking our colors to be Red, Green and Blue,
with the associated generators r, g and b, then
the tiling group is

〈

r, g, b | r2g2, g2b2, b2r2
〉

(note
that these relations imply r4 = g4 = b4 = e) and
this appears to be quite complex. Luckily, there

is a simple quotient which does not create any
ambiguity, namely G =

〈

r, g, b | r2, g2, b2
〉

. Its
Cayley graph Γ(G) has a tree structure (if oppo-
site arrows are identified) as shown in Figure 2,
and a height function can be constructed from
the following axioms:

• For every n ≥ 0, z((br)n) = −2n and
z((br)nb) = −2n − 1.

• For each element x of G, there exists a
unique neighbor pG(x) of x, called the G-
predecessor of x, such that z(pG(x)) =
z(x) − 1. For the other two neighbors y of
x, we have z(y) = z(x) + 1.

These imply, for instance, that if w is a word
in {r, g, b} where no two adjacent letters are the
same, then

z(w) = |w| if w begins with r or g

z(w) = |w| − 4n if w begins with (br)ng

z(w) = |w| − 4n − 2 if w begins with (br)nbg

To define a partial order on G, we say that
x ≤G y if there exists a finite sequence of ele-
ments of G, starting with x and finishing with
y, such that the predecessor in the sequence is
the G-predecessor as defined above. If we define
the index of any element x ∈ G as h(x) mod 2,
then the partial order ≤G induces an order ≤i

on each of the two index classes. Each element
v has a unique predecessor in its index class,
pi(x) = pG(pG(x)).

For each pair x, y of elements with the same
index i, we define inf i(x, y) as the infimum of x
and y with respect to ≤i. Notice that inf i(x, y)
is not always equal to the infimum infG(x, y)
with respect to ≤G, since the latter might be in
the other index class, in which case inf i(x, y) =
pG(infG(x, y)). Note also that hT (v) is equiva-
lent mod 2 to the length of any path from the
origin vertex to v, so fT (v) and fT ′(v) are in the
same index class for any two tilings T , T ′ of the
same region.

A local flip changes the colors around a fixed
interior vertex v. This can only happen if all the
edges linking v to its neighbors have the same
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Figure 2: The Cayley tree Γ(G) for the three-
color tiling, and the height function z.

color, which means that the height function has
a local extremum at v.

As before, we define a partial order on tilings
by T � T ′ if fT (v) ≤G fT ′(v) for all v (which
implies fT ≤i fT ′ and hT ≤ hT ′). We also
define a distance between elements of G: for
x, y ∈ G, let d(x, y) be the length of the short-
est path between them, using the generators
r, g and b. Then define the distance between
two tilings as d(T, T ′) =

∑

v
d(fT (v), fT ′(v)).

Note that if T and T ′ are comparable, we have
d(T, T ′) =

∑

v
|hT (v) − hT ′ |.

Proposition 7 (Flips and order) For any
pair of tilings T and T ′ with the same boundary
conditions, T � T ′ if and only if T can be
obtained from T ′ by a sequence of downwards
flips.

Proof. By induction on d(T, T ′). Take a ver-
tex v such that hT ′(v) > hT (v), where v is a
local maximum of hT ′ (note v is an interior ver-
tex). Then hT ′(u) = hT ′(v) − 1 and fT ′(u) =
pG(fT ′(v)) for all neighbors u of v. Thus T ′

can be flipped downwards at v, inducing a tiling
T ′′ such that fT ′′(v) = pi(fT (v)) where i is the
index of fT (v). We have T � T ′′ � T ′, and
d(T, T ′′) = d(T, T ′) − 2. This gives the result by
induction, until d(T, T ′′) = 0 and T = T ′′. �

Recall that an inferior semi-lattice is similar
to a lattice, but with only the infimum of two
elements a ∧ b guaranteed to be unique. Then:

Proposition 8 (Inferior semi-lattice structure)
If a polygon P is tileable then the graph of tilings
with respect to � is a inferior semi-lattice,
where the tiling function of T ′′ = T ∧ T ′ is given
by fT ′′ = inf i(fT , fT ′) at each vertex.

Proof. We have to prove that fT ′′ = infi(fT , fT ′)
is a valid tiling function. Note that if u, v are
neighbors (by which we mean that the edge con-
necting them is in P ) then their values of the
tiling function are neighbors in Γ(G), i.e. either
fT (u) = pG(fT (v)) or fT (v) = pG(fT (u)), and
similarly for T ′. Therefore, we need to show that
fT ′′(u) and fT ′′(v) are neighbors in Γ(G).

We have two cases up to symmetry. If fT (u) =
pG(fT (v)) and fT ′(u) = pG(fT ′(v)), then if
fT (v) and fT ′(v) are comparable, then fT ′′(u) =
pG(fT ′′(v). If fT (v) and fT ′(v) are incomparable,
then infG(fT (u), fT ′(u)) = infG(fT (v), fT ′(v)),
in which case either fT ′′(u) = pG(fT ′′(v)) or
fT ′′(v) = pG(fT ′′(u)) using the relationship be-
tween infG and inf i stated above. The other
case, in which fT (u) = pG(fT (v)) and fT ′(v) =
pG(fT ′(u)), can be analyzed similarly.

Thus the pointwise infimum of fT and fT ′ with
respect to ≤i is a tiling function, and the corre-
sponding tiling T ′′ is clearly the unique infimum
of T and T ′ with respect to �. �

This also implies that there is a unique min-
imal tiling ⊥, which has the same properties as
in the simpler cases above:

Proposition 9 (Convexity) Let P be a region
tileable with tiles in V and let ⊥ be its minimal
tiling. Then h⊥ has no local maxima in the in-
terior of P .
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Proof. Suppose that for ⊥ we have an internal
vertex v such that h⊥(v) is a local maximum.
Then flipping v downwards would give a new
tiling T ′ ≺ ⊥, a contradiction. �

This gives us an efficient algorithm for con-
structing the minimal tiling and confirming
tileability similar to that of Section 3.3.1, except
that we set f⊥(w) = pG(fmax). We also have:

Proposition 10 (Flip formula) For any pair
of tilings T and T ′ satisfying the same boundary
condition, the minimal number of flips to go from
T to T ′ is (1/2)d(T, T ′).

Proof. We use the method of [25]. Clearly,
(1/2)d(T, T ′) is a lower bound for the number
of necessary flips since flipping at v changes
d(T, T ′) by zero or ±2. Now take an inte-
rior vertex v such that fT ′(v) 6= fT (v) and
sup(hT (v), hT ′(v)) is locally maximal. We as-
sume w.l.o.g. that sup(hT (v), hT ′(v)) = hT (v),
in which case fT (u) = pG(fT (v)) for each neigh-
bor u of v. Then T can be flipped at v, moving
fT (v) towards fT ′(v) in Γ(G) and giving a tiling
T ′′ such that d(T ′′, T ′) = d(T, T ′)−2 (notice that
this flip either reduces the height of v or keeps it
the same, changing fT (v) but not hT (v)). This
gives the result by induction. �

Note that we have actually defined one height
function in an uncountably infinite family of
them, where the height decreases along one path
(in this case (br)∗) and increases along all others.
Each of these induces a different partial order,
and for each computable one we have an algo-
rithm similar to that above to find the minimal
tiling with respect to it.

4.2 Higher-dimensional height func-

tions

As another example, consider the set V of four-
color Wang tiles where a tile is in V if and
only if each color appears once on its bound-
ary. The tiling group � 4/{1, 1, 1, 1} is Abelian
and infinite, and is isomorphic to the body-
centered cubic lattice with the four generators

(+1,+1,+1), (+1,−1,−1), (−1,+1,−1), and
(−1,−1,+1). This corresponds to a three-
dimensional height function. Similarly, three-
color triangular tiles have a two-dimensional
height function � 3/{1, 1, 1} isomorphic to the
triangular lattice, and six-color hexagonal tiles
have a five-dimensional height function.

All these tilings are equivalent to edge k-
colorings of the dual lattice (the square, hexag-
onal, and triangular lattices respectively) where
k is equal to the dual lattice’s degree. Edge 3-
colorings of the hexagonal lattice are also equiva-
lent to vertex 4-colorings of the triangular lattice,
and were studied by Baxter [2], Huse and Ruten-
berg [12], and Moore and Newman [17]. Edge
4-colorings of the square lattice were studied by
Kondev and Henley [14]. None of these tilings
are connected under local moves, but they are
connected under “loop moves” where we choose
two colors, find a loop consisting of edges with
those two colors, and switch the colors along the
loop. Little is known about the mixing time of
the resulting Markov chain; the techniques of
[16, 22] appear not to apply, since these non-
local moves make it hard to define a monotonic
coupling. We suggest this as an area for future
research.

References

[1] C. Allauzen and B. Durand, “Tiling problems.”
In E. Borger, E. Gradel, Y. Gurevich, The clas-
sical decision problem. Springer-Verlag, 1997.

[2] R.J. Baxter, “Colorings of a hexagonal lattice.”
J. Math. Phys. 11 (1970) 784–789.

[3] H. van Beijeren, “Exactly solvable model for
the roughening transition of a crystal surface.”
Phys. Rev. Lett. 38 (1977) 993–996.

[4] R. Berger, “The undecidability of the domino
problem.” Memoirs of the American Mathemat-
ical Society 66 (1996)

[5] G. Birkhoff, Lattice theory. American Mathe-
matical Society, 1967.

[6] J.K. Burton Jr. and C.L. Henley, “A constrained
Potts antiferromagnet model with an interface

9



representation.” J. Phys. A 30 (1997) 8385-
8413.

[7] J. H. Conway, J. C. Lagarias, “Tiling with
Polyominoes and Combinatorial Group The-
ory.” Journal of Combinatorial Theory Series A
53 (1990) 183–208.

[8] K. Culik and J. Kari, “On Aperiodic Sets of
Wang Tiles.” Lecture Notes in Computer Sci-
ence 1337 (1997) 153–162.

[9] B.A. Davey and H.A. Priestley, Introduction to
lattices and orders. Cambridge university press,
1990

[10] P. van Emde Boas, “Dominoes are forever.”
Proc. 1st GTI Workshop, Rheie Theoretische In-
formatik, UGH Paderborn (1983) 75–95.

[11] R. Hassim, “Maximum flows in (s, t) planar
networks.” Information Processing Letters 13
(1981) 107–.

[12] D.A. Huse and A.D. Rutenberg, “Classical an-
tiferromagnets on the Kagomé lattice.” Phys.
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