
CS 261 HW7

Prof. Jared Saia, University of New Mexico

Due April 16th

1. Imagine that Mergesort is changed so that it partitions the input list
into 3 sub-lists instead of just 2, that it recursively calls Mergesort on
each of these three lists and that it then calls a Merge subroutine on
the 3 sorted lists to merge them into a single sorted list. Assume that
this Merge subroutine works in O(n) time where n is the total number
of elements in all 3 lists. Write and solve (using recursion trees) a
recurrence relation for the run time of this new version of Mergesort.

2. Consider the recurrence T (n) = 5T (n/2) + n. Use the recursion tree
method to solve this recurrence to within tight big-O notation.

3. Consider the following function:

int f (int n){
if (n==0) return 3;
else if (n==1) return 5;
else{

int val = 2*f (n-1);
val = val - f (n-2);
return val;

}
}

(a) Write a recurrence relation for the value returned by f . Solve the
recurrence exactly. (Don’t forget to check it)

(b) Write a recurrence relation for the running time of f . Get a tight
upperbound (i.e. big-O) on the solution to this recurrence.

4. A person deposits 1 dollar in an account that yields 8% interest an-
nually. Set up a recurrence relation for the amount in the account at

1



the end of n years. Now find an explicit formula for the amount in the
account after n years.

5. Exercise 7.1.20

6. Write a recurrence relation for the number of ways to climb n stairs if
the person climbing the stairs can take either 1 stair or 3 stairs at a
time. What are the initial conditions? How many ways can the person
climb 8 stairs?

7. Challenge: Exercise 7.2.46

2


