CS 362, Lecture 4

Jared Saia
University of New Mexico

Today's Outline

- Annihilators for recurrences with non-homogeneous terms
- Transformations

Annihilator Method

- Write down the annihilator for the recurrence
- Factor the annihilator
- Look up the factored annihilator in the "Lookup Table" to get general solution
- Solve for constants of the general solution by using initial conditions

$$
\left(\mathbf{L}-a_{0}\right)^{b_{0}}\left(\mathbf{L}-a_{1}\right)^{b_{1}} \ldots\left(\mathbf{L}-a_{k}\right)^{b_{k}}
$$

annihilates only sequences of the form:

$$
\left\langle p_{1}(n) a_{0}^{n}+p_{2}(n) a_{1}^{n}+\ldots p_{k}(n) a_{k}^{n}\right\rangle
$$

where $p_{i}(n)$ is a polynomial of degree $b_{i}-1$ (and $a_{i} \neq a_{j}$, when $i \neq j$)

Examples

- Q: What does $(\mathbf{L}-\mathbf{3})(\mathbf{L}-2)(\mathbf{L}-1)$ annihilate?
- A: $c_{0} 1^{n}+c_{1} 2^{n}+c_{2} 3^{n}$
- Q: What does $(\mathbf{L}-3)^{2}(\mathbf{L}-2)(\mathbf{L}-1)$ annihilate?
- A: $c_{0} 1^{n}+c_{1} 2^{n}+\left(c_{2} n+c_{3}\right) 3^{n}$
- Q: What does $(\mathbf{L}-1)^{4}$ annihilate?
- A: $\left(c_{0} n^{3}+c_{1} n^{2}+c_{2} n+c_{3}\right) 1^{n}$
- Q: What does $(\mathbf{L}-1)^{3}(\mathbf{L}-2)^{2}$ annihilate?
- A: $\left(c_{0} n^{2}+c_{1} n+c_{2}\right) 1^{n}+\left(c_{3} n+c_{4}\right) 2^{n}$

Example

Consider the recurrence $T(n)=7 T(n-1)-16 T(n-2)+12 T(n-$ 3), $T(0)=1, T(1)=5, T(2)=17$

- Write down the annihilator: From the definition of the sequence, we can see that $\mathbf{L}^{3} T-7 \mathbf{L}^{2} T+16 \mathbf{L} T-12 T=0$, so the annihilator is $\mathbf{L}^{3}-7 \mathbf{L}^{2}+16 \mathbf{L}-12$
- Factor the annihilator: We can factor by hand or using a computer program to get $\mathbf{L}^{3}-7 \mathbf{L}^{2}+16 \mathbf{L}-12=(\mathbf{L}-2)^{2}(\mathbf{L}-3)$
- Look up to get general solution: The annihilator (\mathbf{L} -$2)^{2}(\mathbf{L}-3)$ annihilates sequences of the form $\left\langle\left(c_{0} n+c_{1}\right) 2^{n}+\right.$ $\left.c_{2} 3^{n}\right\rangle$
- Solve for constants: $T(0)=1=c_{1}+c_{2}, T(1)=5=$ $2 c_{0}+2 c_{1}+3 c_{2}, T(2)=17=8 c_{0}+4 c_{1}+9 c_{2}$. We've got three equations and three unknowns. Solving by hand, we get that $c_{0}=1, c_{1}=0, c_{2}=1$. Thus: $T(n)=n 2^{n}+3^{n}$

Consider the recurrence $T(n)=2 T(n-1)-T(n-2), T(0)=0$, $T(1)=1$

- Write down the annihilator: From the definition of the sequence, we can see that $\mathbf{L}^{2} T-2 \mathbf{L} T+T=0$, so the annihilator is $\mathbf{L}^{2}-2 \mathbf{L}+1$
- Factor the annihilator: We can factor by hand or using the quadratic formula to get $\mathbf{L}^{2}-2 \mathbf{L}+1=(\mathbf{L}-1)^{2}$
- Look up to get general solution: The annihilator $(\mathbf{L}-1)^{2}$ annihilates sequences of the form $\left(c_{0} n+c_{1}\right) 1^{n}$
- Solve for constants: $T(0)=0=c_{1}, T(1)=1=c_{0}+c_{1}$, We've got two equations and two unknowns. Solving by hand, we get that $c_{0}=0, c_{1}=1$. Thus: $T(n)=n$

At Home Exercise

Consider the recurrence $T(n)=6 T(n-1)-9 T(n-2), T(0)=1$, $T(1)=6$

- Q1: What is the annihilator of this sequence?
- Q2: What is the factored version of the annihilator?
- Q3: What is the general solution for the recurrence?
- Q4: What are the constants in this general solution?
(Note: You can check that your general solution works for $T(2)$)

Non-homogeneous terms

- Consider a recurrence of the form $T(n)=T(n-1)+T(n-$ 2) $+k$ where k is some constant
- The terms in the equation involving T (i.e. $T(n-1)$ and $T(n-2)$) are called the homogeneous terms
- The other terms (i.e.k) are called the non-homogeneous terms

Example

- In a height-balanced tree, the height of two subtrees of any node differ by at most one
- Let $T(n)$ be the smallest number of nodes needed to obtain a height balanced binary tree of height n
- Q: What is a recurrence for $T(n)$?
- A: Divide this into smaller subproblems
- To get a height-balanced tree of height n with the smallest number of nodes, need one subtree of height $n-1$, and one of height $n-2$, plus a root node
- Thus $T(n)=T(n-1)+T(n-2)+1$

Example

- Let's solve this recurrence: $T(n)=T(n-1)+T(n-2)+1$ (Let $T_{n}=T(n)$, and $T=\left\langle T_{n}\right\rangle$)
- We know that ($\mathbf{L}^{2}-\mathbf{L}-1$) annihilates the homogeneous terms
- Let's apply it to the entire equation:

$$
\begin{aligned}
\left(\mathbf{L}^{2}-\mathbf{L}-1\right)\left\langle T_{n}\right\rangle & =\mathbf{L}^{2}\left\langle T_{n}\right\rangle-\mathbf{L}\left\langle T_{n}\right\rangle-1\left\langle T_{n}\right\rangle \\
& =\left\langle T_{n+2}\right\rangle-\left\langle T_{n+1}\right\rangle-\left\langle T_{n}\right\rangle \\
& =\left\langle T_{n+2}-T_{n+1}-T_{n}\right\rangle \\
& =\langle 1,1,1, \cdots\rangle
\end{aligned}
$$

Example

- This is close to what we want but we still need to annihilate $\langle 1,1,1, \cdots\rangle$
- It's easy to see that $\mathbf{L}-1$ annihilates $\langle 1,1,1, \cdots\rangle$
- Thus $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-1)$ annihilates $T(n)=T(n-1)+T(n-$ 2) +1
- When we factor, we get $(\mathbf{L}-\phi)(\mathbf{L}-\hat{\phi})(\mathbf{L}-1)$, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\hat{\phi}=\frac{1-\sqrt{5}}{2}$.
- Looking up $(\mathbf{L}-\phi)(\mathbf{L}-\hat{\phi})(\mathbf{L}-1)$ in the table
- We get $T(n)=c_{1} \phi^{n}+c_{2} \hat{\phi}^{n}+c_{3} 1^{n}$
- If we plug in the appropriate initial conditions, we can solve for these three constants
- We'll need to get equations for $T(2)$ in addition to $T(0)$ and $T(1)$

General Rule

To find the annihilator for recurrences with non-homogeneous terms, do the following:

- Find the annihilator a_{1} for the homogeneous part
- Find the annihilator a_{2} for the non-homogeneous part
- The annihilator for the whole recurrence is then $a_{1} a_{2}$

Another Example

- Consider $T(n)=T(n-1)+T(n-2)+2$.
- The residue is $\langle 2,2,2, \cdots\rangle$ and
- The annihilator is still $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-1)$, but the equation for $T(2)$ changes!

Another Example

- Consider $T(n)=T(n-1)+T(n-2)+2^{n}$.
- The residue is $\langle 1,2,4,8, \cdots\rangle$ and
- The annihilator is now $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-2)$.

Another Example

- Consider $T(n)=T(n-1)+T(n-2)+n$.
- The residue is $\langle 1,2,3,4, \cdots\rangle$
- The annihilator is now $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-1)^{2}$.

Another Example

- Consider $T(n)=T(n-1)+T(n-2)+n^{2}$.
- The residue is $\langle 1,4,9,16, \cdots\rangle$ and
- The annihilator is $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-1)^{3}$.

Another Example

- Consider $T(n)=T(n-1)+T(n-2)+n^{2}-2^{n}$.
- The residue is $\langle 1-1,4-4,9-8,16-16, \cdots\rangle$ and the
- The annihilator is $\left(\mathbf{L}^{2}-\mathbf{L}-1\right)(\mathbf{L}-1)^{3}(\mathbf{L}-2)$.

In Class Exercise

- Consider $T(n)=3 * T(n-1)+3^{n}$
- Q1: What is the homogeneous part, and what annihilates it?
- Q2: What is the non-homogeneous part, and what annihilates it?
- Q3: What is the annihilator of $T(n)$, and what is the general form of the recurrence?

Limitations

- Our method does not work on $T(n)=T(n-1)+\frac{1}{n}$ or $T(n)=$ $T(n-1)+\lg n$
- The problem is that $\frac{1}{n}$ and $\lg n$ do not have annihilators.
- Our tool, as it stands, is limited.
- Key idea for strengthening it is transformations

Transformations Idea

- Consider the recurrence giving the run time of mergesort $T(n)=2 T(n / 2)+k n($ for some constant $k), T(1)=1$
- How do we solve this?
- We have no technique for annihilating terms like $T(n / 2)$
- However, we can transform the recurrence into one with which we can work

Transformation

- Let $n=2^{i}$ and rewrite $T(n)$:
- $T\left(2^{0}\right)=1$ and $T\left(2^{i}\right)=2 T\left(\frac{2^{i}}{2}\right)+k 2^{i}=2 T\left(2^{i-1}\right)+k 2^{i}$
- Now define a new sequence t as follows: $t(i)=T\left(2^{i}\right)$
- Then $t(0)=1, t(i)=2 t(i-1)+k 2^{i}$

Now Solve

- We've got a new recurrence: $t(0)=1, t(i)=2 t(i-1)+k 2^{i}$
- We can easily find the annihilator for this recurrence
- ($\mathbf{L}-2$) annihilates the homogeneous part, ($\mathbf{L}-2$) annihilates the non-homogeneous part, So ($\mathbf{L}-2$) ($\mathbf{L}-2$) annihilates $t(i)$
- Thus $t(i)=\left(c_{1} i+c_{2}\right) 2^{i}$

Reverse Transformation

- We've got a solution for $t(i)$ and we want to transform this into a solution for $T(n)$
- Recall that $t(i)=T\left(2^{i}\right)$ and $2^{i}=n$

$$
\begin{align*}
t(i) & =\left(c_{1} i+c_{2}\right) 2^{i} \tag{1}\\
T\left(2^{i}\right) & =\left(c_{1} i+c_{2}\right) 2^{i} \tag{2}\\
T(n) & =\left(c_{1} \lg n+c_{2}\right) n \tag{3}\\
& =c_{1} n \lg n+c_{2} n \tag{4}\\
& =\Theta(n \lg n) \tag{5}
\end{align*}
$$

Success!

Let's recap what just happened:

- We could not find the annihilator of $T(n)$ so:
- We did a transformation to a recurrence we could solve, $t(i)$ (we let $n=2^{i}$ and $t(i)=T\left(2^{i}\right)$)
- We found the annihilator for $t(i)$, and solved the recurrence for $t(i)$
- We reverse transformed the solution for $t(i)$ back to a solution for $T(n)$

Another Example

- Consider the recurrence $T(n)=9 T\left(\frac{n}{3}\right)+k n$, where $T(1)=1$ and k is some constant
- Let $n=3^{i}$ and rewrite $T(n)$:
- $T\left(2^{0}\right)=1$ and $T\left(3^{i}\right)=9 T\left(3^{i-1}\right)+k 3^{i}$
- Now define a sequence t as follows $t(i)=T\left(3^{i}\right)$
- Then $t(0)=1, t(i)=9 t(i-1)+k 3^{i}$
- $t(0)=1, t(i)=9 t(i-1)+k 3^{i}$
- This is annihilated by $(\mathbf{L}-9)(\mathbf{L}-3)$
- So $t(i)$ is of the form $t(i)=c_{1} 9^{i}+c_{2} 3^{i}$

Reverse Transformation

- $t(i)=c_{1} 9^{i}+c_{2} 3^{i}$
- Recall: $t(i)=T\left(3^{i}\right)$ and $3^{i}=n$

$$
\begin{aligned}
t(i) & =c_{1} 9^{i}+c_{2} 3^{i} \\
T\left(3^{i}\right) & =c_{1} 9^{i}+c_{2} 3^{i} \\
T(n) & =c_{1}\left(3^{i}\right)^{2}+c_{2} 3^{i} \\
& =c_{1} n^{2}+c_{2} n \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

In Class Exercise

Consider the recurrence $T(n)=2 T(n / 4)+k n$, where $T(1)=1$, and k is some constant

- Q1: What is the transformed recurrence $t(i)$? How do we rewrite n and $T(n)$ to get this sequence?
- Q2: What is the annihilator of $t(i)$? What is the solution for the recurrence $t(i)$?
- Q3: What is the solution for $T(n)$? (i.e. do the reverse transformation)

A Final Example

Not always obvious what sort of transformation to do:

- Consider $T(n)=2 T(\sqrt{n})+\log n$
- Let $n=2^{i}$ and rewrite $T(n)$:
- $T\left(2^{i}\right)=2 T\left(2^{i / 2}\right)+i$
- Define $t(i)=T\left(2^{i}\right)$:
- $t(i)=2 t(i / 2)+i$

A Final Example

- This final recurrence is something we know how to solve!
- $t(i)=O(i \log i)$
- The reverse transform gives:

$$
\begin{align*}
t(i) & =O(i \log i) \tag{6}\\
T\left(2^{i}\right) & =O(i \log i) \tag{7}\\
T(n) & =O(\log n \log \log n) \tag{8}
\end{align*}
$$

Todo

- HW 1
- Start Chapter 15 in text

