CS 362, Pre Lecture 1

Jared Saia
University of New Mexico

Today's Outline

- Background
- Asymptotic Analysis

Why study algorithms?

"Seven years of College down the toilet" - John Belushi in Animal House

Can you get a job without knowing algorithms? Yes, but:

- You won't understand why software systems work the way they do
- You won't learn the fundamentals of systematic thinking (aka computation/problem solving)
- You'll have less fun!

Why study algorithms?

- Almost all big companies want programmers with knowledge of algorithms: Google, Facebook, Amazon, Oracle, Yahoo, Sandia, Los Alamos, etc.
- In most programming job interviews, they will ask you several questions about algorithms and/or data structures
- Your knowledge of algorithms will set you apart from the large masses of interviewees who know only how to program
- If you want to start your own company: many startups are successful because they've found better algorithms for solving a problem (e.g. Google, OpenAI, Akamai, etc.)

Why Study Algorithms? (III)

- You'll improve your research skills in almost any area
- You'll write better, faster code
- You'll learn to think more abstractly and mathematically
- It's one of the most challenging and interesting area of CS!

A Real Job Interview Question

The following is a real job interview question (thanks to Maksim Noy):

- You are given an array with integers between 1 and 1,000,000.
- All integers between 1 and 1,000,000 are in the array at least once, and one of those integers is in the array twice
- Q: Can you determine which integer is in the array twice? Can you do it while iterating through the array only once?

Solution

- Ideas on how to solve this problem?? What if we allowed multiple iterations?

Naive Algorithm

- Create a new array of ints between 1 and $1,000,000$, which we'll use to count the occurences of each number. Initialize all entries to 0
- Go through the input array and each time a number is seen, update its count in the new array
- Go through the count array and see which number occurs twice.
- Return this number

Naive Algorithm Analysis

- Q: How long will this algorithm take?
- A: We iterate through the numbers 1 to $1,000,000$ three times!
- Note that we also use up a lot of space with the extra array
- This is wasteful of time and space, particularly as the input array gets very large (e.g. it might be a huge data stream)
- Q: Can we do better?

Ideas for a better Algorithm

- Note that $\sum_{i=1}^{n} i=(n+1) n / 2$
- Let S be the sum of the input array
- Let x be the value of the repeated number
- Then $S=(1,000,000+1) 1,000,000 / 2+x$
- Thus $x=S-(1,000,000+1) 1,000,000 / 2$

A better Algorithm

- Iterate through the input array, summing up all the numbers, let S be this sum
- Let $x=S-(1,000,000+1) 1,000,000 / 2$
- Return x

Analysis

- This algorithm takes iterates through the input array just once
- It uses up essentially no extra space
- It is at least three times faster than the naive algorithm
- Further, if the input array is so large that it won't fit in memory, this is the only algorithm which will work!
- These time and space bounds are the best possible

Take Away

- Designing good algorithms matters!
- Not always this easy to improve an algorithm
- However, with some thought and work, you can almost always get a better algorithm than the naive approach

How to analyze an algorithm?

- There are several resource bounds we could be concerned about: time, space, communication bandwidth, logic gates, etc.
- However, we are usually most concerned about time
- Recall that algorithms are independent of programming languages and machine types
- Q: So how do we measure resource bounds of algorithms
- We will use RAM model of computation in this class
- All instructions operate in serial
- All basic operations (e.g. add, multiply, compare, read, store, etc.) take unit time
- All "atomic" data (chars, ints, doubles, pointers, etc.) take unit space

Worst Case Analysis

- We'll generally be pessimistic when we evaluate resource bounds
- We'll evaluate the run time of the algorithm on the worst possible input sequence
- Amazingly, in most cases, we'll still be able to get pretty good bounds
- Justification: The "average case" is often about as bad as the worst case.

Example Analysis

- Let's consider the more general problem of the duplicate number problem, where the numbers are 1 to n instead of 1 to $1,000,000$

Algorithm 1

- Create a new "count" array of ints of size n, which we'll use to count the occurences of each number. Initialize all entries to 0
- Go through the input array and each time a number is seen, update its count in the "count" array
- As soon as a number is seen in the input array which has already been counted once, return this number

Algorithm 2

- Iterate through the input array, summing up all the numbers, let S be this sum
- Let $x=S-(n+1) n / 2$
- Return x

Example Analysis: Time

- Worst case: Algorithm 1 does $5 * n$ operations (n inits to 0 in "count" array, n reads of input array, n reads of "count" array (to see if value is 1), n increments, and n stores into count array)
- Worst case: Algorithm 2 does $2 * n+4$ operations (n reads of input array, n additions to value $S, 4$ computations to determine x given S)

Example Analysis: Space

- Worst Case: Algorithm 1 uses n additional units of space to store the "count" array
- Worst Case: Algorithm 2 uses 2 additional units of space

A Simpler Analysis

- Analysis above can be tedious for more complicated algorithms
- In many cases, we don't care about constants. $5 n$ is about the same as $2 n+4$ which is about the same as $a n+b$ for any constants a and b
- However we do still care about the difference in space: n is very different from 2
- Asymptotic analysis is the solution to removing the tedium but ensuring good analysis

Asymptotic analysis?

- A tool for analyzing time and space usage of algorithms
- Assumes input size is a variable, say n, and gives time and space bounds as a function of n
- Ignores multiplicative and additive constants
- Concerned only with the rate of growth
- E.g. Treats run times of $n, 10,000 * n+2000$, and $.5 n+2$ all the same (We use the term $O(n)$ to refer to all of them)

What is Asymptotic Analysis?(II)

- Informally, O notation is the leading (i.e. quickest growing) term of a formula with the coefficient stripped off
- O is sort of a relaxed version of " \leq "
- E.g. n is $O(n)$ and n is also $O\left(n^{2}\right)$
- By convention, we use the smallest possible O value i.e. we say n is $O(n)$ rather than n is $O\left(n^{2}\right)$

More Examples

- E.g. $n, 10,000 n-2000$, and $.5 n+2$ are all $O(n)$
- $n+\log n, n-\sqrt{n}$ are $O(n)$
- $n^{2}+n+\log n, 10 n^{2}+n-\sqrt{n}$ are $O\left(n^{2}\right)$
- $n \log n+10 n$ is $O(n \log n)$
- $10 * \log ^{2} n$ is $O\left(\log ^{2} n\right)$
- $n \sqrt{n}+n \log n+10 n$ is $O(n \sqrt{n})$
- $10,000,2^{50}$ and 4 are $O(1)$

More Examples

- Algorithm 1 and 2 both take time $O(n)$
- Algorithm 1 uses $O(n)$ extra space
- But, Algorithm 2 uses $O(1)$ extra space
- A function $f(n)$ is $O(g(n))$ if there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$

Example

- Let's show that $f(n)=10 n+100$ is $O(g(n))$ where $g(n)=n$
- We need to give constants c and n_{0} such that $0 \leq f(n) \leq$ $c g(n)$ for all $n \geq n_{0}$
- In other words, we need constants c and n_{0} such that $10 n+$ $100 \leq c n$ for all $n \geq n_{0}$

Example

- We can solve for appropriate constants:

$$
\begin{align*}
10 n+100 & \leq c n \tag{1}\\
10+100 / n & \leq c \tag{2}
\end{align*}
$$

- So if $n>1$, then c should be greater than 110 .
- In other words, for all $n>1,10 n+100 \leq 110 n$
- So $10 n+100$ is $O(n)$

Questions

Express the following in O notation

- $n^{3} / 1000-100 n^{2}-100 n+3$
- $\log n+100$
- $10 * \log ^{2} n+100$
- $\sum_{i=1}^{n} i$

The following are relatives of big-O:

Formal Defns

- $O(g(n))=\left\{f(n)\right.$: there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$
- $\Theta(g(n))=\left\{f(n):\right.$ there exist positive constants c_{1}, c_{2}, and n_{0} such that $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $\left.n \geq n_{0}\right\}$
- $\Omega(g(n))=\left\{f(n)\right.$: there exist positive constants c and n_{0} such that $0 \leq c g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$
- $o(g(n))=\{f(n):$ for any positive constant $c>0$ there exists $n_{0}>0$ such that $0 \leq f(n)<c g(n)$ for all $\left.n \geq n_{0}\right\}$
- $\omega(g(n))=\{f(n):$ for any positive constant $c>0$ there exists $n_{0}>0$ such that $0 \leq c g(n)<f(n)$ for all $\left.n \geq n_{0}\right\}$

Relatives of big-O

When would you use each of these? Examples:
O " \leq " This algorithm is $O\left(n^{2}\right)$ (i.e. worst case is $\Theta\left(n^{2}\right)$)
Θ " $=$ " This algorithm is $\Theta(n)$ (best and worst case are $\Theta(n)$) Any comparison-based algorithm for sorting is $\Omega(n \log n)$ Can you write an algorithm for sorting that is $o\left(n^{2}\right)$?
This algorithm is not linear, it can take time $\omega(n)$

Rule of Thumb

- Let $f(n), g(n)$ be two functions of n
- Let $f_{1}(n)$, be the fastest growing term of $f(n)$, stripped of its coefficient.
- Let $g_{1}(n)$, be the fastest growing term of $g(n)$, stripped of its coefficient.

Then we can say:

- If $f_{1}(n) \leq g_{1}(n)$ then $f(n)=O(g(n))$
- If $f_{1}(n) \geq g_{1}(n)$ then $f(n)=\Omega(g(n))$
- If $f_{1}(n)=g_{1}(n)$ then $f(n)=\Theta(g(n))$
- If $f_{1}(n)<g_{1}(n)$ then $f(n)=o(g(n))$
- If $f_{1}(n)>g_{1}(n)$ then $f(n)=\omega(g(n))$

More Examples

The following are all true statements:

- $\sum_{i=1}^{n} i^{2}$ is $O\left(n^{3}\right), \Omega\left(n^{3}\right)$ and $\Theta\left(n^{3}\right)$
- $\log n$ is $o(\sqrt{n})$
- $\log n$ is $o\left(\log ^{2} n\right)$
- $10,000 n^{2}+25 n$ is $\Theta\left(n^{2}\right)$

Problems

True or False? (Justify your answer)

- $n^{3}+4$ is $\omega\left(n^{2}\right)$
- $n \log n^{3}$ is $\Theta(n \log n)$
- $\log ^{3} 5 n^{2}$ is $\Theta(\log n)$
- $10^{-10} n^{2}+n$ is $\Theta(n)$
- $n \log n$ is $\Omega(n)$
- $n^{3}+4$ is $o\left(n^{4}\right)$

Another Example

- Let $f(n)=10 \log ^{2} n+\log n, g(n)=\log ^{2} n$. Let's show that $f(n)=\Theta(g(n))$.
- We want positive constants c_{1}, c_{2} and n_{0}
such that $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $n \geq n_{0}$

$$
0 \leq c_{1} \log ^{2} n \leq 10 \log ^{2} n+\log n \leq c_{2} \log ^{2} n
$$

Dividing by $\log ^{2} n$, we get:

$$
0 \leq c_{1} \leq 10+1 / \log n \leq c_{2}
$$

- If we choose $c_{1}=1, c_{2}=11$ and $n_{0}=2$, then the above inequality will hold for all $n \geq n_{0}$

Show that for $f(n)=n+100$ and $g(n)=(1 / 2) n^{2}$, that $f(n) \neq$ $\Theta(g(n))$

- What statement would be true if $f(n)=\Theta(g(n))$?
- Show that this statement can not be true.

