CS 362, Lecture 2

Jared Saia
University of New Mexico
\qquad

- L'Hopital's Rule
- Log Facts
- Recurrence Relation Review
- Recursion Tree Method
- Master Method

For any functions $f(n)$ and $g(n)$ which approach infinity and are differentiable, L'Hopital tells us that:

- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}$
-

Example

\qquad

- Q: Which grows faster $\ln n$ or \sqrt{n} ?
- Let $f(n)=\ln n$ and $g(n)=\sqrt{n}$
- Then $f^{\prime}(n)=1 / n$ and $g^{\prime}(n)=(1 / 2) n^{-1 / 2}$
- So we have:

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{\ln n}{\sqrt{n}} & =\lim _{n \rightarrow \infty} \frac{1 / n}{(1 / 2) n^{-1 / 2}} \tag{1}\\
& =\lim _{n \rightarrow \infty} \frac{2}{n^{1 / 2}} \tag{2}\\
& =0 \tag{3}
\end{align*}
$$

- Thus \sqrt{n} grows faster than $\ln n$ and so $\ln n=O(\sqrt{n})$
\qquad
\qquad

It rolls down stairs alone or in pairs,
and over your neighbor's dog,
it's great for a snack or to put on your back,
it's log, log, log!

- "The Log Song" from the Ren and Stimpy Show
- The log function shows up very frequently in algorithm analysis
- As computer scientists, when we use log, we'll mean $\log _{2}$ (i.e. if no base is given, assume base 2)
\qquad

Definition \qquad

Γ

- $\log 1=0$
- $\log 2=1$
- $\log 32=5$
- $\log 2^{k}=k$

Note: $\log n$ is way, way smaller than n for large values of n

Examples \qquad

- $\log _{3} 9=2$
- $\log _{5} 125=3$
- $\log _{4} 16=2$
- $\log _{24} 24^{100}=100$
\qquad
\qquad

Recall that:

- $\left(x^{y}\right)^{z}=x^{y z}$
- $x^{y} x^{z}=x^{y+z}$

From these, we can derive some facts about logs

- Fact 3: $\log _{c} a=\log a / \log c$

To prove this, consider the equation $a=c^{\log _{c} a}$, take $\log _{2}$ of both sides, and use Fact 2. Memorize this fact

To prove both equations, raise both sides to the power of 2, and use facts about exponents

- Fact 1: $\log (x y)=\log x+\log y$
- Fact 2: $\log a^{c}=c \log a$

Memorize these two facts

- Fact 1: $\log (x y)=\log x+\log y$
- Fact 2: $\log a^{c}=c \log a$
- Fact 3: $\log _{c} a=\log a / \log c$

These facts are sufficient for all your logarithm needs. (You just need to figure out how to use them)
\qquad
\qquad

- Note that $\log _{8} n=\log n / \log 8$.
- Note that $\log _{600} n^{200}=200 * \log n / \log 600$.
- Note that $\log _{100000} 30 * n^{2}=2 * \log n / \log 100000+\log 30 / \log 100000$
- Thus, $\log _{8} n, \log _{600} n^{600}$, and $\log _{100000} 30 * n^{2}$ are all $O(\log n)$
- In general, for any constants k_{1} and $k_{2}, \log _{k_{1}} n^{k_{2}}=k_{2} \log n / \log k_{1}$, which is just $O(\log n)$
- $\log ^{2} n=(\log n)^{2}$
- $\log ^{2} n$ is $O\left(\log ^{2} n\right)$, $n o t ~ O(\log n)$
- This is true since $\log ^{2} n$ grows asymptotically faster than $\log n$
- All log functions of form $k_{1} \log _{k_{3}}^{k_{2}} k_{4} * n^{k_{5}}$ for constants k_{1}, k_{2}, k_{3}, k_{4} and k_{5} are $O\left(\log ^{k_{2}} n\right)$
\qquad In-Class Exercise \qquad

Simplify and give O notation for the following functions. In the big-O notation, write all logs base 2 :

- $\log 10 n^{2}$
- $\log ^{2} n^{4}$
- $2^{\log _{4} n}$
- $\log \log \sqrt{n}$
\qquad
\qquad
- Often easier to prove that a recurrence is no more than some quantity than to prove that it equals something
- Consider: $f(n)=f(n-1)+f(n-2), f(1)=f(2)=1$
- "Guess" that $f(n) \leq 2^{n}$
- Each node represents the cost of a single subproblem in a recursive call
- First, we sum the costs of the nodes in each level of the tree
- Then, we sum the costs of all of the levels

Inequalities (II)
 \qquad

Goal: Prove by induction that for $f(n)=f(n-1)+f(n-2)$,
$f(1)=f(2)=1, f(n) \leq 2^{n}$

- Base case: $f(1)=1 \leq 2^{1}, f(2)=1 \leq 2^{2}$
- Inductive hypothesis: for all $j<n, f(j) \leq 2^{j}$
- Inductive step:

$$
\begin{align*}
f(n) & =f(n-1)+f(n-2) \tag{4}\\
& \leq 2^{n-1}+2^{n-2} \tag{5}\\
& <2 * 2^{n-1} \tag{6}\\
& =2^{n} \tag{7}
\end{align*}
$$

- Used to get a good guess which is then refined and verified using substitution method
- Best method (usually) for recurrences where a term like $T(n / c)$ appears on the right hand side of the equality
\qquad
- Consider the recurrence for the running time of Mergesort: $T(n)=2 T(n / 2)+n, T(1)=O(1)$

n
n
n
n
- Let's solve the recurrence $T(n)=3 T(n / 4)+n^{2}$
- Note: For simplicity, from now on, we'll assume that $T(i)=$ $\Theta(1)$ for all small constants i. This will save us from writing the base cases each time.

\qquad
- We can see that each level of the tree sums to n
- Further the depth of the tree is $\log n\left(n / 2^{d}=1\right.$ implies that $d=\log n$).
- Thus there are $\log n+1$ levels each of which sums to n
- Hence $T(n)=\Theta(n \log n)$

Example 2 \qquad

Example 2 \qquad

- We can see that the i-th level of the tree sums to $(3 / 16)^{i} n^{2}$.
- Further the depth of the tree is $\log _{4} n\left(n / 4^{d}=1\right.$ implies that $d=\log _{4} n$)
- So we can see that $T(n)=\sum_{i=0}^{\log _{4} n}(3 / 16)^{i} n^{2}$
\qquad
\qquad

$$
\begin{align*}
T(n) & =\sum_{i=0}^{\log _{4} n}(3 / 16)^{i} n^{2} \tag{8}\\
& <n^{2} \sum_{i=0}^{\infty}(3 / 16)^{i} \tag{9}\\
& =\frac{1}{1-(3 / 16)} n^{2} \tag{10}\\
& =O\left(n^{2}\right) \tag{11}
\end{align*}
$$

- Unfortunately, the Master Theorem doesn't work for all functions $f(n)$
- Further many useful recurrences don't look like $T(n)$
- However, the theorem allows for very fast solution of recurrences when it applies

Master Theorem

\qquad

- Divide and conquer algorithms often give us running-time recurrences of the form

$$
\begin{equation*}
T(n)=a T(n / b)+f(n) \tag{12}
\end{equation*}
$$

- Where a and b are constants and $f(n)$ is some other function.
- The so-called "Master Method" gives us a general method for solving such recurrences when $f(n)$ is a simple polynomial.
- Master Theorem is just a special case of the use of recursion trees
- Consider equation $T(n)=a T(n / b)+f(n)$
- We start by drawing a recursion tree
\qquad
\qquad
- The root contains the value $f(n)$
- It has a children, each of which contains the value $f(n / b)$
- Each of these nodes has a children, containing the value $f\left(n / b^{2}\right)$
- In general, level i contains a^{i} nodes with values $f\left(n / b^{i}\right)$
- Hence the sum of the nodes at the i-th level is $a^{i} f\left(n / b^{i}\right)$

Details

\qquad
Γ
Details
\qquad

- Let $T(n)$ be the sum of all values stored in all levels of the tree:
$T(n)=f(n)+a f(n / b)+a^{2} f\left(n / b^{2}\right)+\cdots+a^{i} f\left(n / b^{i}\right)+\cdots+a^{L} f\left(n / b^{L}\right)$
- Where $L=\log _{b} n$ is the depth of the tree
- Since $f(1)=\Theta(1)$, the last term of this summation is $\Theta\left(a^{L}\right)=$ $\Theta\left(a^{\log _{b} n}\right)=\Theta\left(n^{\log _{b} a}\right)$
\qquad
\qquad
- We can now state the Master Theorem
- We will state it in a way slightly different from the book
- Note: The Master Method is just a "short cut" for the recursion tree method. It is less powerful than recursion trees.

Master Method

\qquad

The recurrence $T(n)=a T(n / b)+f(n)$ can be solved as follows:

- If $a f(n / b) \leq K f(n)$ for some constant $K<1$, then $T(n)=$ $\Theta(f(n))$.
- If $a f(n / b) \geq K f(n)$ for some constant $K>1$, then $T(n)=$ $\Theta\left(n^{\log _{b} a}\right)$.
- If $a f(n / b)=f(n)$, then $T(n)=\Theta\left(f(n) \log _{b} n\right)$. ,
- If $f(n)$ is a constant factor larger than $a f(n / b)$, then the sum is a descending geometric series. The sum of any geometric series is a constant times its largest term. In this case, the largest term is the first term $f(n)$.
- If $f(n)$ is a constant factor smaller than $a f(n / b)$, then the sum is an ascending geometric series. The sum of any geometric series is a constant times its largest term. In this case, this is the last term, which by our earlier argument is $\Theta\left(n^{\log _{b} a}\right)$.
- Finally, if af(n/b)=f(n), then each of the $L+1$ terms in the summation is equal to $f(n)$.
- $T(n)=T(3 n / 4)+n$
- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=1, b=$ $4 / 3, f(n)=n$
- Here $a f(n / b)=3 n / 4$ is smaller than $f(n)=n$ by a factor of $4 / 3$, so $T(n)=\Theta(n)$
- Karatsuba's multiplication algorithm: $T(n)=3 T(n / 2)+$ n
- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=3, b=$ $2, f(n)=n$
- Here $a f(n / b)=3 n / 2$ is bigger than $f(n)=n$ by a factor of $3 / 2$, so $T(n)=\Theta\left(n^{\log _{2} 3}\right)$

Example

\qquad都

- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=2, b=$ $2, f(n)=n$
- Here a $f(n / b)=f(n)$, so $T(n)=\Theta(n \log n)$
\qquad

$$
-2+2
$$

$$
(1009
$$

\qquad

- $T(n)=T(n / 2)+n \log n$
- If we write this as $T(n)=a T(n / b)+f(n)$, then $a=1, b=$ $2, f(n)=n \log n$
- Here af(n/b) $=n / 2 \log n / 2$ is smaller than $f(n)=n \log n$ by a constant factor, so $T(n)=\Theta(n \log n)$
\square
- Consider the recurrence: $\boldsymbol{T}(\boldsymbol{n})=4 T(n / 2)+n \lg n$
- Q: What is $f(n)$ and $a f(n / b)$?
- Q: Which of the three cases does the recurrence fall under (when n is large)?
- Q: What is the solution to this recurrence?
\qquad
- Consider the recurrence: $\boldsymbol{T}(\boldsymbol{n})=\mathbf{2 T}(\boldsymbol{n} / 4)+\boldsymbol{n} \lg \boldsymbol{n}$
- Q: What is $f(n)$ and $a f(n / b)$?
- Q: Which of the three cases does the recurrence fall under (when n is large)?
- Q: What is the solution to this recurrence?
- Read Chapter 3 and 4 in the text
- Work on Homework 1
- Recursion tree and Master method are good tools for solving many recurrences
- However these methods are limited (they can't help us get guesses for recurrences like $f(n)=f(n-1)+f(n-2)$)
- For info on how to solve these other more difficult recurrences, review the notes on annihilators on the class web page.

