CS 362, Lecture 3

Jared Saia
University of New Mexico

Today's Outline
\qquad
"Listen and Understand! That terminator is out there. It can't be bargained with, it can't be reasoned with! It doesn't feel pity, remorse, or fear. And it absolutely will not stop, ever, until you are dead!" - The Terminator

- Solving Recurrences using Annihilators
- Suppose we are given a sequence of numbers $A=\left\langle a_{0}, a_{1}, a_{2}, \cdots\right\rangle$
- This might be a sequence like the Fibonacci numbers
- I.e. $A=\left\langle a_{0}, a_{1}, a_{2}, \ldots\right)=(T(1), T(2), T(3), \cdots\rangle$
\square Annihilator Operators \qquad

We define three basic operations we can perform on this sequence:

1. Multiply the sequence by a constant: $c A=\left\langle c a_{0}, c a_{1}, c a_{2}, \cdots\right\rangle$
2. Shift the sequence to the left: $\mathbf{L} A=\left\langle a_{1}, a_{2}, a_{3}, \cdots\right\rangle$
3. Add two sequences: if $A=\left\langle a_{0}, a_{1}, a_{2}, \cdots\right\rangle$ and $B=\left\langle b_{0}, b_{1}, b_{2}, \cdots\right\rangle$, then $A+B=\left\langle a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \cdots\right\rangle$
\qquad
\qquad

Let's annihilate $T=\left\langle 2^{0}, 2^{1}, 2^{2}, 2^{3}, \cdots\right\rangle$

- Multiplying by a constant $c=2$ gets:

$$
2 T=\left\langle 2 * 2^{0}, 2 * 2^{1}, 2 * 2^{2}, 2 * 2^{3}, \cdots\right\rangle=\left\langle 2^{1}, 2^{2}, 2^{3}, 2^{4}, \cdots\right\rangle
$$

- Shifting one place to the left gets $\mathbf{L} T=\left\langle 2^{1}, 2^{2}, 2^{3}, 2^{4}, \cdots\right\rangle$
- Adding the sequence $\mathbf{L} T$ and $-2 T$ gives:

$$
\mathbf{L} T-2 T=\left\langle 2^{1}-2^{1}, 2^{2}-2^{2}, 2^{3}-2^{3}, \cdots\right\rangle=\langle 0,0,0, \cdots\rangle
$$

- The annihilator of T is thus $\mathbf{L}-2$

Example

\qquad

- We first express our recurrence as a sequence T
- We use these three operators to "annihilate" T, i.e. make it all 0 's
- Key rule: can't multiply by the constant 0
- We can then determine the solution to the recurrence from the sequence of operations performed to annihilate T
- Consider the recurrence $T(n)=2 T(n-1), T(0)=1$
- If we solve for the first few terms of this sequence, we can see they are $\left\langle 2^{0}, 2^{1}, 2^{2}, 2^{3}, \cdots\right\rangle$
- Thus this recurrence becomes the sequence:

$$
T=\left\langle 2^{0}, 2^{1}, 2^{2}, 2^{3}, \cdots\right\rangle
$$

- The distributive property holds for these three operators
- Thus can rewrite $\mathbf{L} T-2 T$ as $(\mathbf{L}-2) T$
- The operator $(\mathbf{L}-2)$ annihilates T (makes it the sequence of all 0 's)
- Thus $(\mathbf{L}-2)$ is called the annihilator of T
\qquad
- Multiplication by 0 will annihilate any sequence
- Thus we disallow multiplication by 0 as an operation
- In particular, we disallow $(c-c)=0$ for any c as an annihilator
- Must always have at least one \mathbf{L} operator in any annihilator!

Uniqueness

\qquad
\qquad

If we apply operator $(\mathbf{L}-3)$ to sequence T above, it fails to annihilate T

$$
\begin{aligned}
(\mathbf{L}-3) T & =\mathbf{L} T+(-3) T \\
& =\left\langle 2^{1}, 2^{2}, 2^{3}, \cdots\right\rangle+\left\langle-3 \times 2^{0},-3 \times 2^{1},-3 \times 2^{2}, \cdots\right\rangle \\
& =\left\langle(2-3) \times 2^{0},(2-3) \times 2^{1},(2-3) \times 2^{2}, \cdots\right\rangle \\
& =(2-3) T=-T
\end{aligned}
$$

What does $(\mathbf{L}-c)$ do to other sequences $A=\left\langle a_{0} d^{n}\right\rangle$ when $d \neq c ?$:

$$
\begin{aligned}
(\mathbf{L}-c) A & =(\mathbf{L}-c)\left\langle a_{0}, a_{0} d, a_{0} d^{2}, a_{0} d^{3}, \cdots\right\rangle \\
& =\mathbf{L}\left\langle a_{0}, a_{0} d, a_{0} d^{2}, a_{0} d^{3}, \cdots\right\rangle-c\left\langle a_{0}, a_{0} d, a_{0} d^{2}, a_{0} d^{3}, \cdots\right\rangle \\
& =\left\langle a_{0} d, a_{0} d^{2}, a_{0} d^{3}, \cdots\right\rangle-\left\langle c a_{0}, c a_{0} d, c a_{0} d^{2}, c a_{0} d^{3}, \cdots\right\rangle \\
& =\left\langle a_{0} d-c a_{0}, a_{0} d^{2}-c a_{0} d, a_{0} d^{3}-c a_{0} d^{2}, \cdots\right\rangle \\
& =\left\langle(d-c) a_{0},(d-c) a_{0} d,(d-c) a_{0} d^{2}, \cdots\right\rangle \\
& =(d-c)\left\langle a_{0}, a_{0} d, a_{0} d^{2}, \cdots\right\rangle \\
& =(d-c) A
\end{aligned}
$$

\qquad

- The last example implies that an annihilator annihilates one type of sequence, but does not annihilate other types of sequences
- Thus Annihilators can help us classify sequences, and thereby solve recurrences

First calculate the annihilator:

- Recurrence: $T(n)=4 * T(n-1), T(0)=2$
- Sequence: $T=\left\langle 2,2 * 4,2 * 4^{2}, 2 * 4^{3}, \cdots\right\rangle$
- Calulate the annihilator:
$-\mathbf{L} T=\left\langle 2 * 4,2 * 4^{2}, 2 * 4^{3}, 2 * 4^{4}, \cdots\right\rangle$
$-4 T=\left\langle 2 * 4,2 * 4^{2}, 2 * 4^{3}, 2 * 4^{4}, \cdots\right\rangle$
- Thus $\mathbf{L} T-4 T=\langle 0,0,0, \cdots\rangle$
- And so $\mathbf{L}-4$ is the annihilator

Lookup Table

\qquad
\qquad
\qquad

Consider the recurrence $T(n)=3 * T(n-1), T(0)=3$,

- Q1: Calculate $T(0), T(1), T(2)$ and $T(3)$ and write out the sequence T
- Q2: Calculate $\mathbf{L} T$, and use it to compute the annihilator of T
- Q3: Look up this annihilator in the lookup table to get the general solution of the recurrence for $T(n)$
- Q4: Now use the base case $T(0)=3$ to solve for the constants in the general solution
- For example, we can multiply by the constant c and then by
- We can also multiply by c and then shift left to get $c \mathbf{L} T$ which
- We can also shift the sequence twice to the left to get LLT

Multiple Operators

- We can apply multiple operators to a sequence the constant d to get the operator $c d$ is the same as $\mathbf{L} c T$ which we'll write in shorthand as $\mathbf{L}^{2} T$
- We can string operators together to annihilate more complicated sequences
- Consider: $T=\left\langle 2^{0}+3^{0}, 2^{1}+3^{1}, 2^{2}+3^{2}, \cdots\right\rangle$
- We know that $(\mathbf{L}-2)$ annihilates the powers of 2 while leaving the powers of 3 essentially untouched
- Similarly, ($\mathbf{L}-\mathbf{3}$) annihilates the powers of 3 while leaving the powers of 2 essentially untouched
- Thus if we apply both operators, we'll see that ($\mathbf{L}-2)(\mathbf{L}-3)$ annihilates the sequence T

The Details \qquad

- Consider: $T=\left\langle a^{0}+b^{0}, a^{1}+b^{1}, a^{2}+b^{2}, \cdots\right\rangle$
- $\mathbf{L} T=\left\langle a^{1}+b^{1}, a^{2}+b^{2}, a^{3}+b^{3}, \cdots\right\rangle$
- $a T=\left\langle a^{1}+a * b^{0}, a^{2}+a * b^{1}, a^{3}+a * b^{2}, \cdots\right\rangle$
- $\mathbf{L} T-a T=\left\langle(b-a) b^{0},(b-a) b^{1},(b-a) b^{2}, \cdots\right\rangle$
- We know that $(\mathbf{L}-a) T$ annihilates the a terms and multiplies the b terms by $b-a$ (a constant)
- Thus $(\mathbf{L}-a) T=\left\langle(b-a) b^{0},(b-a) b^{1},(b-a) b^{2}, \cdots\right\rangle$
- And so the sequence $(\mathbf{L}-a) T$ is annihilated by $(\mathbf{L}-b)$
- Thus the annihilator of T is $(\mathbf{L}-b)(\mathbf{L}-a)$
\qquad
\qquad
- We now know enough to solve the Fibonnaci sequence
- Recall the Fibonnaci recurrence is $T(0)=0, T(1)=1$, and $T(n)=T(n-1)+T(n-2)$
- Let T_{n} be the n-th element in the sequence
- Then we've got:

$$
\begin{align*}
T & =\left\langle T_{0}, T_{1}, T_{2}, T_{3}, \cdots\right\rangle \tag{1}\\
\mathbf{L} T & =\left\langle T_{1}, T_{2}, T_{3}, T_{4}, \cdots\right\rangle \tag{2}\\
\mathbf{L}^{2} T & =\left\langle T_{2}, T_{3}, T_{4}, T_{5}, \cdots\right\rangle \tag{3}
\end{align*}
$$

- Thus $\mathbf{L}^{2} T-\mathbf{L} T-T=\langle 0,0,0, \cdots\rangle$
- In other words, $\mathbf{L}^{2}-\mathbf{L}-1$ is an annihilator for T

Lookup Table

\qquad

- In general, the annihilator $(\mathbf{L}-a)(\mathbf{L}-b)$ (where $a \neq b$) will anihilate only all sequences of the form $\left\langle c_{1} a^{n}+c_{2} b^{n}\right\rangle$
- We will often multiply out $(\mathbf{L}-a)(\mathbf{L}-b)$ to $\mathbf{L}^{2}-(a+b) \mathbf{L}+a b$
- Left as an exercise to show that $(\mathbf{L}-a)(\mathbf{L}-b) T$ is the same as $\left(\mathbf{L}^{2}-(a+b) \mathbf{L}+a b\right) T$
\qquad
- $\mathbf{L}^{2}-\mathbf{L}-1$ is an annihilator that is not in our lookup table
- However, we can factor this annihilator (using the quadratic formula) to get something similar to what's in the lookup table
- $\mathbf{L}^{2}-\mathbf{L}-1=(\mathbf{L}-\phi)(\mathbf{L}-\widehat{\phi})$, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\widehat{\phi}=\frac{1-\sqrt{5}}{2}$.
"Me fail English? That's Unpossible!" - Ralph, the Simpsons

High School Algebra Review:

- To factor something of the form $a x^{2}+b x+c$, we use the Quadratic Formula:
- $a x^{2}+b x+c$ factors into $(x-\phi)(x-\hat{\phi})$, where:

$$
\begin{align*}
\phi & =\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \tag{4}\\
\hat{\phi} & =\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \tag{5}
\end{align*}
$$

- Recall the Fibonnaci recurrence is $T(0)=0, T(1)=1$, and $T(n)=T(n-1)+T(n-2)$
- We've shown the annihilator for T is $(\mathbf{L}-\phi)(\mathbf{L}-\hat{\phi})$, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\hat{\phi}=\frac{1-\sqrt{5}}{2}$
- If we look this up in the "Lookup Table", we see that the sequence T must be of the form $\left\langle c_{1} \phi^{n}+c_{2} \widehat{\phi}^{n}\right\rangle$
- All we have left to do is solve for the constants c_{1} and c_{2}
- Can use the base cases to solve for these

Example

\qquad
\qquad」
\qquad
\qquad

- Recall Fibonnaci recurrence: $T(0)=0, T(1)=1$, and $T(n)=$ $T(n-1)+T(n-2)$
- The final explicit formula for $T(n)$ is thus:

$$
T(n)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

(Amazingly, $T(n)$ is always an integer, in spite of all of the square roots in its formula.)

$$
\begin{aligned}
(\mathbf{L}-a)\left\langle n a^{n}\right\rangle & =\left\langle(n+1) a^{n+1}-(a) n a^{n}\right\rangle \\
& =\left\langle(n+1) a^{n+1}-n a^{n+1}\right\rangle \\
& =\left\langle(n+1-n) a^{n+1}\right\rangle \\
& =\left\langle a^{n+1}\right\rangle \\
(\mathbf{L}-a)^{2}\left\langle n a^{n}\right\rangle & =(\mathbf{L}-a)\left\langle a^{n+1}\right\rangle \\
& =\langle 0\rangle
\end{aligned}
$$

\qquad

A Problem

\qquad

- Our lookup table has a big gap: What does $(\mathbf{L}-a)(\mathbf{L}-a)$ annihilate?
- It turns out it annihilates sequences such as $\left\langle n a^{n}\right\rangle$
- It turns out that $(\mathbf{L}-a)^{d}$ annihilates sequences of the form $\left\langle p(n) a^{n}\right\rangle$ where $p(n)$ is any polynomial of degree $d-1$
- Example: $(\mathbf{L}-1)^{3}$ annihilates the sequence $\left\langle n^{2} * 1^{n}\right\rangle=$ $\langle 1,4,9,16,25\rangle$ since $p(n)=n^{2}$ is a polynomial of degree $d-1=2$
\qquad
\qquad
- ($\mathbf{L}-a$) annihilates only all sequences of the form $\left\langle c_{0} a^{n}\right\rangle$
- ($\mathbf{L}-a)(\mathbf{L}-b)$ annihilates only all sequences of the form $\left\langle c_{0} a^{n}+\right.$ $\left.c_{1} b^{n}\right\rangle$
- $\left(\mathbf{L}-a_{0}\right)\left(\mathbf{L}-a_{1}\right) \ldots\left(\mathbf{L}-a_{k}\right)$ annihilates only sequences of the form $\left\langle c_{0} a_{0}^{n}+c_{1} a_{1}^{n}+\ldots c_{k} a_{k}^{n}\right\rangle$, here $a_{i} \neq a_{j}$, when $i \neq j$
- $(\mathbf{L}-a)^{2}$ annihilates only sequences of the form $\left\langle\left(c_{0} n+c_{1}\right) a^{n}\right\rangle$
- $(\mathbf{L}-a)^{k}$ annihilates only sequences of the form $\left\langle p(n) a^{n}\right\rangle$, $\operatorname{degree}(p(n))=k-1$

Lookup Table

\qquad

