
CS 561, HW2

Prof. Jared Saia, University of New Mexico

Due: Sept. 22nd

1. In this problem you will use Chernoff bounds to show that for most
of the levels of a skip list, the size of the level is very tightly bounded
around its expectation.

Chernoff Bounds: Assume you have n independent, indicator random
variables X1, X2, ..., Xn and let X =

∑n
i=1Xi and µ = E(X). Then

Chernoff bounds tell us that for any 0 ≤ δ ≤ 1:

Pr(X ≤ (1− δ)µ or X ≥ (1 + δ)µ) ≤ 2e−µδ
2/4

Use Chernoff and Union bounds to show that with probability at least
1−1/n, for all 0 ≤ j ≤ log n− log logn−5, List j in a skip list contains
between n/2j+1 and 3n/2j+1 nodes. Let List 0 be the bottom list, List
1 be the next higher up, etc. You may assume that n is sufficiently
large, e.g. n is larger than some constant n0.

Note: Chernoff bounds are more powerful than bounds on Binomial
distributions since X need not be binomially distributed (although it
can be). The only requirement is that the Xi be independent. Hint:
Remember that e−x ≤ 2−x.

2. Drunken Debutants: Imagine that there are n debutants, each with
her own porsche. After a very late party, each debutant stumbles into
a porsche selected uniformly at random (thus, more than one debutant
may wind up in a porsche). Let X be a random variable giving the
number of debutants that wind up in their own porsche. Use linearity
of expectation to compute the expected value of X. Now use Markov’s
inequality, to bound the probability that X is larger than k for any
positive k.

3. Consider the recurrence T (n) = 3T (n/4) + log2 n

(a) Use the Master method to solve this recurrence

1



(b) Now use annihilators (and a transformation) to solve the recur-
rence. Show your work. (This is perhaps stating the obvious, but
please note that your two bounds should match)

4. Consider the following function:

int f (int n){

if (n==0) return 3;

else if (n==1) return 5;

else{

int val = 3*f (n-1);

val = val - 2*f (n-2);

return val;

}

}

(a) Write a recurrence relation for the value returned by f . Solve the
recurrence exactly. (Don’t forget to check it)

(b) Write a recurrence relation for the running time of f . Get a tight
upperbound (i.e. big-O) on the solution to this recurrence.

5. Stooge-Sort Problem 7-3 in the second edition

Consider the following sorting algorithm

Stooge-Sort(A,i,j)

if A[i] > A[j]

then exchange A[i] and A[j];

if i+1 >= j

then return;

k = floor(j-i+1)/3);

Stooge-Sort(A,i,j-k);

Stooge-Sort(A,i+k,j);

Stooge-Sort(A,i,j-k);

(a) Argue (by induction) that if n is the length of A, then Stooge-
Sort(A,1,n) correctly sorts the input array A[1...n]

(b) Give a recurrence relation for the worst-case run time of Stooge-
Sort and a tight bound on the worst-case run time

(c) Compare this worst-case runtime with that of insertion sort, merge
sort, heapsort and quicksort. Do the professors deserve tenure?

2



6. Primes and Probability.

In this problem, you will use the following facts. 1) any integer can be
uniquely factored into primes; 2) the number of primes less than any
number m is θ(m/ logm) (this is the prime number theorem).

We will also make use of the following notation for integers x and y: 1)
x|y means that x “divides” y, which means that there is no remainder
when you divide y by x. and 2) x ≡ y (mod p) means that x and y
have the same remainder when divided by p, or in other words, p|x−y.

(a) Show that for any integer x, x factors into at most log x primes.
Hint: 2 is the smallest prime.

(b) Let x be some positive integer and let p be a prime chosen uni-
formly at random from all primes less than or equal to m. Use
the prime number theorem to show that the probability that p|x
is O((log x)(logm)/m).

(c) Now let x and y both be numbers less than n and let p be a prime
chosen uniformly at random from all primes less than or equal
to m. Using the previous result, show that the probability that
x ≡ y (mod p) is O((log n)(logm)/m)).

(d) If m = log2 n in the previous problem, then what is the prob-
ability that x ≡ y (mod p). Hint: If you’re on the right track,
you should be able to show that this probability is “small”, i.e.
it goes to 0 as n gets large.

(e) (5 points) Finally, show how to apply this result to the following
problem. Alice and Bob both have databases x and y where x
and y have value no more than n, for n a very large number
(think terabytes). They want to check to see if their databases
are consistent (i.e. they want to check if they are the same) but
Alice does not want to have to send her entire database to Bob.
What is an algorithm Alice and Bob can use to check consistency
with reasonably good probability by sending a lot fewer bits?
How many bits does Alice need to send to Bob as a function of n,
and what is the probability of failure, where failure means that
this algorithm says the databases are the same but in fact they
are different?

3


