CS 561, Lecture 2 : Hash Tables, Skip Lists , Count-Min Sketch and Bloom Filters

Jared Saia
University of New Mexico

Outline

- Hash Tables
- Skip Lists
- Count-Min Sketch

Dictionary ADT

A dictionary ADT implements the following operations

- Insert(x): puts the item x into the dictionary
- Delete (x) : deletes the item x from the dictionary
- IsIn (x) : returns true iff the item x is in the dictionary

Dictionary ADT

- Frequently, we think of the items being stored in the dictionary as keys
- The keys typically have records associated with them which are carried around with the key but not used by the ADT implementation
- Thus we can implement functions like:
- Insert(k, r): puts the item (k, r) into the dictionary if the key k is not already there, otherwise returns an error
- Delete(k): deletes the item with key k from the dictionary
- Lookup (k): returns the item (k, r) if k is in the dictionary, otherwise returns null

Implementing Dictionaries

- The simplest way to implement a dictionary ADT is with a linked list
- Let l be a linked list data structure, assume we have the following operations defined for l
- head(I): returns a pointer to the head of the list
- next(p): given a pointer p into the list, returns a pointer to the next element in the list if such exists, null otherwise
- previous(p): given a pointer p into the list, returns a pointer to the previous element in the list if such exists, null otherwise
- key(p): given a pointer into the list, returns the key value of that item
- record(p): given a pointer into the list, returns the record value of that item

At-Home Exercise

Implement a dictionary with a linked list

- Q1: Write the operation Lookup(k) which returns a pointer to the item with key k if it is in the dictionary or null otherwise
- Q2: Write the operation Insert(k,r)
- Q3: Write the operation Delete(k)
- Q4: For a dictionary with n elements, what is the runtime of all of these operations for the linked list data structure?
- Q5: Describe how you would use this dictionary ADT to count the number of occurences of each word in an online book.

Dictionaries

- This linked list implementation of dictionaries is very slow
- Q: Can we do better?
- A: Yes, with hash tables, AVL trees, etc

Hash Tables

Hash Tables implement the Dictionary ADT, namely:

- Insert(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Lookup(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Delete(x) - $O(1)$ expected time, $\Theta(n)$ worst case

Direct Addressing

- Suppose universe of keys is $U=\{0,1, \ldots, m-1\}$, where m is not too large
- Assume no two elements have the same key
- We use an array $T[0 . . m-1]$ to store the keys
- Slot k contains the elem with key k

Direct Address Functions

DA-Search (T,k) \{ return T[k];\}
DA-Insert(T, x) $\{\mathrm{T}[\mathrm{key}(\mathrm{x})]=\mathrm{x}$; $\}$
DA-Delete(T,x)\{T[key(x)] = NIL; \}

Each of these operations takes $O(1)$ time

Direct Addressing Problem

- If universe U is large, storing the array T may be impractical
- Also much space can be wasted in T if number of objects stored is small
- Q: Can we do better?
- A: Yes we can trade time for space

Hash Tables

- "Key" Idea: An element with key k is stored in slot $h(k)$, where h is a hash function mapping U into the set $\{0, \ldots, m-$ 1\}
- Main problem: Two keys can now hash to the same slot
- Q: How do we resolve this problem?
- A1: Try to prevent it by hashing keys to "random" slots and making the table large enough
- A2: Chaining
- A3: Open Addressing

Chained Hash

In chaining, all elements that hash to the same slot are put in a linked list.

```
CH-Insert(T,x){Insert x at the head of list T[h(key(x))];}
CH-Search(T,k){search for elem with key k in list T[h(k)];}
CH-Delete(T,x){delete x from the list T[h(key(x))];}
```


Analysis

- CH-Insert and CH -Delete take $O(1)$ time if the list is doubly linked and there are no duplicate keys
- Q: How long does CH-Search take?
- A: It depends. In particular, depends on the load factor, $\alpha=n / m$ (i.e. average number of elems in a list)

CH-Search Analysis

- Worst case analysis: everyone hashes to one slot so $\Theta(n)$
- For average case, make the simple uniform hashing assumption: any given elem is equally likely to hash into any of the m slots, indep. of the other elems
- Let n_{i} be a random variable giving the length of the list at the i-th slot
- Then time to do a search for key k is $1+n_{h(k)}$

CH-Search Analysis

- Q: What is $E\left(n_{h(k)}\right)$?
- A: We know that $h(k)$ is uniformly distributed among $\{0, . ., m-$ 1\}
- Thus, $E\left(n_{h(k)}\right)=\sum_{i=0}^{m-1}(1 / m) n_{i}=n / m=\alpha$
- Want each key to be equally likely to hash to any of the m slots, independently of the other keys
- Key idea is to use the hash function to "break up" any patterns that might exist in the data
- We will always assume a key is a natural number (can e.g. easily convert strings to naturaly numbers)

Division Method

- $h(k)=k \bmod m$
- Want m to be a prime number, which is not too close to a power of 2
- Why? Reduces collisions in the case where there is periodicity in the keys inserted

Hash Tables Wrapup

Hash Tables implement the Dictionary ADT, namely:

- Insert(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Lookup(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Delete(x) - $O(1)$ expected time, $\Theta(n)$ worst case

Skip List

- Enables insertions and searches for ordered keys in $O(\log n)$ expected time
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time (e.g. Find-Max, Find i-th element, etc.)

Skip List

- A skip list is basically a collection of doubly-linked lists, $L_{1}, L_{2}, \ldots, L_{x}$, for some integer x
- Each list has a special head and tail node, the keys of these nodes are assumed to be -MAXNUM and +MAXNUM respectively
- The keys in each list are in sorted order (non-decreasing)

Skip List

- Every node is stored in the bottom list
- For each node in the bottom list, we flip a coin over and over until we get tails. For each heads, we make a duplicate of the node.
- The duplicates are stacked up in levels and the nodes on each level are strung together in sorted linked lists
- Each node v stores a search key $(\operatorname{key}(v))$, a pointer to its next lower copy (down (v)), and a pointer to the next node in its level (right (v)).

Example

Search

- To do a search for a key, x, we start at the leftmost node L in the highest level
- We then scan through each level as far as we can without passing the target value x and then proceed down to the next level
- The search ends either when we find the key x or fail to find x on the lowest level

Search

```
SkipListFind(x, L){
    v = L;
    while (v != NULL) and (Key(v) != x){
        if (Key(Right(v)) > x)
            v = Down(v);
        else
            v = Right(v);
    }
return v;
}
```


Search Example

Insert

p is a constant between 0 and 1 , typically $p=1 / 2$, let rand() return a random value between 0 and 1

```
Insert(k){
First call Search(k), let pLeft be the leftmost elem <= k in L_1
Insert k in L_1, to the right of pLeft
i = 2;
while (rand()<= p){
    insert k in the appropriate place in L_i;
}
```


Deletion

- Deletion is very simple
- First do a search for the key to be deleted
- Then delete that key from all the lists it appears in from the bottom up, making sure to "zip up" the lists after the deletion

Analysis

- Intuitively, each level of the skip list has about half the number of nodes of the previous level, so we expect the total number of levels to be about $O(\log n)$
- Similarly, each time we add another level, we cut the search time in half except for a constant overhead
- So after $O(\log n)$ levels, we would expect a search time of $O(\log n)$
- We will now formalize these two intuitive observations

Height of Skip List

- For some key, i, let X_{i} be the maximum height of i in the skip list.
- Q: What is the probability that $X_{i} \geq 2 \log n$?
- A: If $p=1 / 2$, we have:

$$
\begin{aligned}
P\left(X_{i} \geq 2 \log n\right) & =\left(\frac{1}{2}\right)^{2 \log n} \\
& =\frac{1}{\left(2^{\log n}\right)^{2}} \\
& =\frac{1}{n^{2}}
\end{aligned}
$$

- Thus the probability that a particular key i achieves height $2 \log n$ is $\frac{1}{n^{2}}$

Height of Skip List

- Q: What is the probability that any key achieves height $2 \log n ?$
- A: We want

$$
P\left(X_{1} \geq 2 \log n \text { or } X_{2} \geq 2 \log n \text { or } \ldots \text { or } X_{n} \geq 2 \log n\right)
$$

- By a Union Bound, this probability is no more than

$$
P\left(X_{1} \geq k \log n\right)+P\left(X_{2} \geq k \log n\right)+\cdots+P\left(X_{n} \geq k \log n\right)
$$

- Which equals:

$$
\sum_{i=1}^{n} \frac{1}{n^{2}}=\frac{n}{n^{2}}=1 / n
$$

Height of Skip List

- This probability gets small as n gets large
- In particular, the probability of having a skip list of size exceeding $2 \log n$ is $o(1)$
- If an event occurs with probability $1-o(1)$, we say that it occurs with high probability
- Key Point: The height of a skip list is $O(\log n)$ with high probability.

In-Class Exercise Trick

A trick for computing expectations of discrete positive random variables:

- Let X be a discrete r.v., that takes on values from 1 to n

$$
E(X)=\sum_{i=1}^{n} P(X \geq i)
$$

$$
\begin{aligned}
\sum_{i=1}^{n} P(X \geq i) & =P(X=1)+P(X=2)+P(X=3)+\ldots \\
& +P(X=2)+P(X=3)+P(X=4)+\ldots \\
& +P(X=3)+P(X=4)+P(X=5)+\ldots \\
& +\ldots \\
& =1 * P(X=1)+2 * P(X=2)+3 * P(X=3)+\ldots \\
& =E(X)
\end{aligned}
$$

In-Class Exercise

Q: How much memory do we expect a skip list to use up?

- Let X_{i} be the number of lists that element i is inserted in.
- Q: What is $P\left(X_{i} \geq 1\right), P\left(X_{i} \geq 2\right), P\left(X_{i} \geq 3\right)$?
- Q: What is $P\left(X_{i} \geq k\right)$ for general k ?
- Q: What is $E\left(X_{i}\right)$?
- Q: Let $X=\sum_{i=1}^{n} X_{i}$. What is $E(X)$?

Search Time

- Its easier to analyze the search time if we imagine running the search backwards
- Imagine that we start at the found node v in the bottommost list and we trace the path backwards to the top leftmost senitel, L
- This will give us the length of the search path from L to v which is the time required to do the search

```
SLFback (v) \{
    while (v ! = L) \{
    if (Up(v)!=NIL)
        \(\mathrm{v}=\mathrm{Up}(\mathrm{v}) ;\)
    else
        \(\mathrm{v}=\operatorname{Left(v);~}\)
```

\}\}

Backward Search

- For every node v in the skip list $\mathrm{Up}(\mathrm{v})$ exists with probability $1 / 2$. So for purposes of analysis, SLFBack is the same as the following algorithm:

```
FlipWalk(v){
    while (v != L){
        if (COINFLIP == HEADS)
        v = Up(v);
        else
            v = Left(v);
}}
```


Analysis

- For this algorithm, the expected number of heads is exactly the same as the expected number of tails
- Thus the expected run time of the algorithm is twice the expected number of upward jumps
- Since we already know that the number of upward jumps is $O(\log n)$ with high probability, we can conclude that the expected search time is $O(\log n)$

Data Streams

- A router forwards packets through a network
- A natural question for an administrator to ask is: what is the list of substrings of a fixed length that have passed through the router more than a predetermined threshold number of times
- This would be a natural way to try to, for example, identify worms and spam
- Problem: the number of packets passing through the router is *much* too high to be able to store counts for every substring that is seen!

Data Streams

- This problem motivates the data stream model
- Informally: there is a stream of data given as input to the algorithm
- The algorithm can take at most one pass over this data and must process it sequentially
- The memory available to the algorithm is much less than the size of the stream
- In general, we won't be able to solve problems exactly in this model, only approximate

Our Problem

- We are presented with a stream of tuples of the form $\left(i_{t}, c_{t}\right)$, where i_{t} is an item and $c_{t}>0$ is an integer count increment
- We want to get a good approximation to the value Count(i,T), which is the sum of the count values seen for item i up to time T

Count-Min Sketch

- Our solution will be to use a data structure called a CountMin Sketch
- This is a randomized data structure that will keep approximate values of Count(i,T)
- It is implemented using k hash functions and m counters

Count-Min Sketch

- Think of our m counters as being in a 2-dimensional array, with m / k counters per row and k rows
- Let $C_{a, j}$ be the counter in row a and column j
- Our hash functions map items from the universe into counters
- In particular, hash function h_{a} maps item i to counter $C_{a, h_{a}(i)}$

Updates

- Initially all counters are set to 0
- When we see a tuple (i, c) in the data stream we do the following
- For each $1 \leq a \leq k$, increment $C_{a, h_{a}(i)}$ by c

Count Approximations

- Let $C_{a, j}(T)$ be the value of the counter $C_{a, j}$ after processing T tuples
- We approximate Count(i, T) by returning the value of the smallest counter associated with i
- Let $m(i, T)$ be this value

Analysis

Main Theorem:

- For any item $i, m(i, T) \geq \operatorname{Count}(\mathrm{i}, \top)$
- With probability at least $1-e^{-m \epsilon / e}$ the following holds:
$m(i, T) \leq \operatorname{Count}(\mathrm{i}, \top)+\epsilon \sum_{i=1}^{T} c_{i}$

Proof

- Easy to see that $m(i, T) \geq \operatorname{Count}(\mathrm{i}, \mathrm{T})$, since each counter $C_{a, h_{a}(i)}$ incremented by c_{t} every time pair $\left(i, c_{t}\right)$ is seen
- Hard Part: Showing $m(i, T) \leq \operatorname{Count}(\mathrm{i}, \mathrm{T})+\epsilon \sum_{i=1}^{T} c_{i}$.
- To see this, we will first consider the specific counter $C_{1, h_{1}(i)}$ and then use symmetry.

Proof

- Let Z_{1} be a random variable (r.v.) giving the amount the counter is incremented by items other than i
- Let X_{t} be an indicator r.v. that is 1 if j is the t-th item, and $j \neq i$ and $h_{1}(i)=h_{1}(j)$
- Then $Z_{1}=\sum_{t=1}^{T} X_{t} c_{t}$
- But if the hash functions are "good", then if $i \neq j$, $\operatorname{Pr}\left(h_{1}(i)=h_{1}(j)\right) \leq k / m$ (specifically, we need the hash functions to come from a 2-universal family, but we won't get into that in this class)
- Hence, $E\left(X_{t}\right) \leq k / m$

Proof

- Thus, by linearity of expectation, we have that:

$$
\begin{align*}
E\left(Z_{1}\right) & =\sum_{t=1}^{T} c_{t}(k / m) \tag{1}\\
& \leq k / m \sum_{t=1}^{T} c_{t} \tag{2}
\end{align*}
$$

- We now need to make use of a very important inequality: Markov's inequality

Markov's Inequality

- Let X be a random variable that only takes on non-negative values
- Then for any $\lambda \geq 0$:

$$
\operatorname{Pr}(X \geq \lambda) \leq E(X) / \lambda
$$

- Proof of Markov's: Assume instead that there exists a λ such that $\operatorname{Pr}(X \geq \lambda)$ was actually larger than $E(X) / \lambda$
- But then the expected value of X would be at least $\lambda * \operatorname{Pr}(X \geq$ $\lambda)>E(X)$, which is a contradiction!!!

Proof

- Now, by Markov's inequality,

$$
\operatorname{Pr}\left(Z_{1} \geq \epsilon \sum_{t=1}^{T} c_{t}\right) \leq(k / m) / \epsilon=k /(m \epsilon)
$$

- This is the event where Z_{1} is "bad" for item i.

Proof (Cont'd)

- Now again assume our k hash functions are "good" in the sense that they are independent
- Then we have that the probability that $Z_{j} \geq \epsilon \sum_{t=1}^{T} c_{t}$ for all j is no more than

$$
\prod_{i=1}^{k} \operatorname{Pr}\left(Z_{j} \geq \epsilon \sum_{t=1}^{T} c_{t}\right) \leq\left(\frac{k}{m \epsilon}\right)^{k}
$$

Proof

- Finally, we want to choose a k that minimizes this probability
- Using calculus, we can see that the probability is minimized when $k=m \epsilon / e$, in which case

$$
\left(\frac{k}{m \epsilon}\right)^{k}=e^{m \epsilon / e}
$$

- This completes the proof!

Recap

- Our Count-Min Sketch is very good at giving estimating counts of items with very little external space
- Tradeoff is that it only provides approximate counts, but we can bound the approximation!
- Note: Can use the Count-Min Sketch to keep track of all the items in the stream that occur more than a given threshold ("heavy hitters")
- Basic idea is to store an item in a list of "heavy hitters" if its count estimate ever exceeds some given threshold

Bloom Filters

- Randomized data structure for representing a set. Implements:
- Insert(x) :
- IsMember(x) :
- Allow false positives but require very little space
- Used frequently in: Databases, networking problems, p2p networks, packet routing

Bloom Filters

- Have m slots, k hash functions, n elements; assume hash functions are all independent
- Each slot stores 1 bit, initially all bits are 0
- Insert(x) : Set the bit in slots $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$ to 1
- IsMember(x) : Return yes iff the bits in $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$ are all 1

Analysis Sketch

- m slots, k hash functions, n elements; assume hash functions are all independent
- Then $P($ fixed slot is still 0$)=(1-1 / m)^{k n}$
- Useful fact from Taylor expansion of e^{-x} :

$$
e^{-x}-x^{2} / 2 \leq 1-x \leq e^{-x} \text { for } x<1
$$

- Then if $x \leq 1$

$$
e^{-x}\left(1-x^{2}\right) \leq 1-x \leq e^{-x}
$$

Analysis

- Thus we have the following to good approximation.

$$
\begin{aligned}
P(\text { fixed slot is still } 0) & =(1-1 / m)^{k n} \\
& \approx e^{-k m / n}
\end{aligned}
$$

- Let $p=e^{-k n / m}$ and let ρ be the fraction of 0 bits after n elements inserted then

$$
P(\text { false positive })=(1-\rho)^{k} \approx(1-p)^{k}
$$

- Where the first approximation holds because ρ is very close to p (by a Martingale argument beyond the scope of this class)

Analysis

- Want to minimize $(1-p)^{k}$, which is equivalent to minimizing $g=k \ln (1-p)$
- Trick: Note that $g=-(n / m) \ln (p) \ln (1-p)$
- By symmetry, this is minimized when $p=1 / 2$ or equivalently $k=(m / n) \ln 2$
- False positive rate is then $(1 / 2)^{k} \approx(.6185)^{m / n}$

Tricks

- Can get the union of two sets by just taking the bitwise-or of the bit-vectors for the corresponding Bloom filters
- Can easily half the size of a bloom filter - assume size is power of 2 then just bitwise-or the first and second halves together
- Can approximate the size of the intersection of two sets inner product of the bit vectors associated with the Bloom filters is a good approximation to this.

Extensions

- Counting Bloom filters handle deletions: instead of storing bits, store integers in the slots. Insertion increments, deletion decrements.
- Bloomier Filters: Also allow for data to be inserted in the filter - similar functionality to hash tables but less space, and the possibility of false positives.

