CS 561, Lecture 9

Jared Saia
University of New Mexico

Today's Outline

- Minimum Spanning Trees
- Safe Edge Theorem
- Kruskal and Prim's algorithms
- Graph Representation

Graph Definition

- A graph is a pair of sets (V, E).
- We call V the vertices of the graph
- E is a set of vertex pairs which we call the edges of the graph.
- In an undirected graph, the edges are unordered pairs of vertices and in a directed graph, the edges are ordered pairs.
- We assume that there is never an edge from a vertex to itself (no self-loops) and that there is at most one edge from any vertex to any other (no multi-edges)
- $|V|$ is the number of vertices in the graph and $|E|$ is the number of edges

Graph Defns

- A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$
- If (u, v) is an edge in a graph, then u is a neighbor of v
- For a vertex v, the degree of $v, \operatorname{deg}(v)$, is equal to the number of neighbors of v
- A path is a sequence of edges, where each successive pair of edges shares a vertex
- A graph is connected if there is a path from any vertex to any other vertex
- A disconnected graph consists of several connected components which are maximal connected subgraphs
- Two vertices are in the same component if and only if there is a path between them

Graph Defns

- A cycle is a path that starts and ends at the same vertex and has at least 3 edges
- A graph is acyclic if no subgraph is a cycle. Acyclic graphs are also called forests
- A tree is a connected acyclic graph. It's also a connected component of a forest.
- A spanning tree of a graph G is a subgraph that is a tree and also contains every vertex of G. A graph can only have a spanning tree if it's connected
- A spanning forest of G is a collection of spanning trees, one for each connected component of G

Minimum Spanning Tree Problem

- Suppose we are given a connected, undirected weighted graph
- That is a graph $G=(V, E)$ together with a function $w: E \rightarrow$ R that assigns a weight $w(e)$ to each edge e. (We assume the weights are real numbers)
- Our task is to find the minimum spanning tree of G, i.e., the spanning tree T minimizing the function

$$
w(T)=\sum_{e \in T} w(e)
$$

Example

A weighted graph and its minimum spanning tree

Applications

- Creating an inexpensive road network to connect cities
- Wiring up homes for phone service with the smallest amount of wire
- Finding a good approximation to the TSP problem

Generic MST Algorithm

```
Generic-MST(G,w) \{
        \(\mathrm{A}=\{ \} ;\)
        while (A does not form a spanning tree) \{
        find an edge (u,v) that is safe for \(A\);
        \(A=A\) union ( \(u, v\) );
    \}
return A;
\}
```


Safe edges

- A cut $(S, V-S)$ of a graph $G=(V, E)$ is a partition of V
- An edge (u, v) crosses the cut $(S, V-S)$ if one of its endpoints is in S and the other is in $V-S$
- A cut respects a set of edges A if no edge in A crosses the cut.
- An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut

Theorem

Let $G=(V, E)$ be a connected, undirected graph with a realvalued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G. Let ($S, V-S$) be any cut of G that respects A and let (u, v) be a light edge crossing $(S, V-S)$. Then edge (u, v) is safe for A

Proof

- Let T be a MST that includes some set of edges A
- Assume that T does not contain the light edge $e=(u, v)$
- Since T is connected, it contains a unique path from u to v and at least one edge e^{\prime} on this path crosses the cut that respects A
- Note that $w(e) \leq w\left(e^{\prime}\right)$ by assumption
- Removing e^{\prime} from the MST and adding e gives us a new spanning tree T^{\prime}
- T^{\prime} has total weight no more than T and this T^{\prime} must also be a MST. QED.

Example

Proof that every safe edge is in some MST. The red edges are the set A.

Corollary

Let $G=(V, E)$ be a connected, undirected graph with a realvalued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $C=\left(V_{c}, E_{c}\right)$ be a connected component (tree) in the forest $G_{A}=(V, A)$. If (u, v) is a light edge connecting C to some other component in G_{A}, then (u, v) is safe for A

Proof: The cut $\left(V_{C}, V-V_{C}\right)$ respects A, and (u, v) is a light edge for this cut. Therefore (u, v) is safe for A.

Two MST algorithms

- There are two major MST algorithms, Kruskal's and Prim's
- In Kruskal's algorithm, the set A is a forest. The safe edge added to A is always a least-weighted edge in the graph that connects two distinct components
- In Prim's algorithm, the set A forms a single tree. The safe edge added to A is always a least-weighted edge connecting the tree to a vertex not in the tree

Kruskal's Algorithm

- Q: In Kruskal's algorithm, how do we determine whether or not an edge connects two distinct connected components?
- A: We need some way to keep track of the sets of vertices that are in each connected components and a way to take the union of these sets when adding a new edge to A merges two connected components
- What we need is the data structure for maintaining disjoint sets (aka Union-Find) that we discussed last week

Kruskal's Algorithm

```
MST-Kruskal(G,w){
    for (each vertex v in V)
        Make-Set(v);
    sort the edges of E into nondecreasing order by weight;
    for (each edge (u,v) in E taken in nondecreasing order){
        if(Find-Set(u)!=Find-Set(v)){
            A = A union (u,v);
            Set-Union(u,v);
        }
    }
    return A;
}
```


Example Run

Kruskal's algorithm run on the example graph. Thick edges are in A. Dashed edges are useless.

Correctness?

- Correctness of Kruskal's algorithm follows immediately from the corollary
- Each time we add the lightest weight edge that connects two connected components, hence this edge must be safe for A
- This implies that at the end of the algorith, A will be a MST

Runtime?

- The runtime for Kruskal's alg. will depend on the implementation of the disjoint-set data structure. We'll assume the implementation with union-by-rank and path-compression which we showed has amortized cost of log* n

Runtime?

- Time to sort the edges is $O(|E| \log |E|)$
- Total amount of time for the $|V|$ Make-Sets and up to $|E|$ Set-Unions is $O\left((|V|+|E|) \log ^{*}|V|\right)$
- Since G is connected, $|E| \geq|V|-1$ and so $O\left((|V|+|E|) \log ^{*}|V|\right)=$ $O\left(|E| \log ^{*}|V|\right)=O(|E| \log |E|)$
- Total amount of additional work done in the for loop is just $O(E)$
- Thus total runtime of the algorithm is $O(|E| \log |E|)$
- Since $|E| \leq|V|^{2}$, we can rewrite this as $O(|E| \log |V|)$

Prim's Algorithm

- In Prim's algorithm, the set A maintained by the algorithm forms a single tree.
- The tree starts from an arbitrary root vertex and grows until it spans all the vertices in V
- At each step, a light edge is added to the tree A which connects A to an isolated vertex of $G_{A}=(V, A)$
- By our Corollary, this rule adds only safe edges to A, so when the algorithm terminates, it will return a MST

Example Run

Prim's algorithm run on the example graph, starting with the bottom vertex.
At each stage, thick edges are in A, an arrow points along A 's safe edge, and dashed edges are useless.

An Implementation

- To implement Prim's algorithm, we keep all edges adjacent to A in a heap
- When we pull the minimum-weight edge off the heap, we first check to see if both its endpoints are in A
- If not, we add the edge to A and then add the neighboring edges to the heap
- If we implement Prim's algorithm this way, its running time is $O(|E| \log |E|)=O(|E| \log |V|)$
- However, we can do better

Prim's Algorithm

- We can speed things up by noticing that the algorithm visits each vertex only once
- Rather than keeping the edges in the heap, we will keep a heap of vertices, where the key of each vertex v is the weight of the minimum-weight edge between v and A (or infinity if there is no such edge)
- Each time we add a new edge to A, we may need to decrease the key of some neighboring vertices

Prim's

We will break up the algorithm into two parts, Prim-Init and Prim-Loop

```
Prim(V,E,s){
    Prim-Init(V,E,s);
    Prim-Loop(V,E,s);
}
```


Prim-Init

```
Prim-Init(V,E,s){
    for each vertex v in V - {s}{
        if ((v,s) is in E){
            edge(v) = (v,s);
            key(v) = w((v,s));
        }else{
            edge(v) = NULL;
            key(v) = infinity;
        }
    Heap-Insert(v);
    }
    Heap-Insert(s);
}
```


Prim-Loop

```
Prim-Loop(V,E,s){
    A = {};
    for (i = 1 to |V| - 1){
        v = Heap-ExtractMin();
        add edge(v) to A;
        for (each edge (u,v) in E){
            if (u is not in A AND key(u) > w(u,v)){
                edge(u) = (u,v);
                Heap-DecreaseKey(u,w(u,v));
            }
        }
    }
    return A;
}
```


Runtime?

- The runtime of Prim's is dominated by the cost of the heap operations Insert, ExtractMin and DecreaseKey
- Insert and ExtractMin are each called $O(|V|)$ times
- DecreaseKey is called $O(|E|)$ times, at most twice for each edge
- If we use a Fibonacci Heap, the amortized costs of Insert and DecreaseKey is $O(1)$ and the amortized cost of ExtractMin is $O(\log |V|)$
- Thus the overall run time of Prim's is $O(|E|+|V| \log |V|)$
- This is faster than Kruskal's unless $E=O(|V|)$

Note

- This analysis assumes that it is fast to find all the edges that are incident to a given vertex
- We have not yet discussed how we can do this
- This brings us to a discussion of how to represent a graph in a computer

Graph Representation

There are two common data structures used to explicity represent graphs

- Adjacency Matrices
- Adjacency Lists

Adjacency Matrix

- The adjacency matrix of a graph G is a $|V| \times|V|$ matrix of 0 's and 1's
- For an adjacency matrix A, the entry $A[i, j]$ is 1 if $(i, j) \in E$ and O otherwise
- For undirectd graphs, the adjacency matrix is always symmetric: $A[i, j]=A[j, i]$. Also the diagonal elements $A[i, i]$ are all zeros

Example Graph

Example Representations

$$
\begin{aligned}
& \frac{a b c d e f g h i}{a 011000000} \\
& \text { b } 101110000 \\
& \text { c } 110110000 \\
& \text { d } 011011000 \\
& \text { e } 011101000 \\
& \text { f000110000 } \\
& \text { g } 000000010 \\
& h 000000101 \\
& \text { i000000110 }
\end{aligned}
$$

Adjacency matrix and adjacency list representations for the example graph.

Adjacency Matrix

- Given an adjacency matrix, we can decide in Θ (1) time whether two vertices are connected by an edge.
- We can also list all the neighbors of a vertex in $\Theta(|V|)$ time by scanning the row corresponding to that vertex
- This is optimal in the worst case, however if a vertex has few neighbors, we still need to examine every entry in the row to find them all
- Also, adjacency matrices require $\Theta\left(|V|^{2}\right)$ space, regardless of how many edges the graph has, so it is only space efficient for very dense graphs

Adjacency Lists

- For sparse graphs - graphs with relatively few edges we're better off with adjacency lists
- An adjacency list is an array of linked lists, one list per vertex
- Each linked list stores the neighbors of the corresponding vertex

Adjacency Lists

- The total space required for an adjacency list is $O(|V|+|E|)$
- Listing all the neighbors of a node v takes $O(1+\operatorname{deg}(v))$ time
- We can determine if (u, v) is an edge in $O(1+\operatorname{deg}(u))$ time by scanning the neighbor list of u
- Note that we can speed things up by storing the neighbors of a node not in lists but rather in hash tables
- Then we can determine if an edge is in the graph in expected $O(1)$ time and still list all the neighbors of a node v in $O(1+$ $\operatorname{deg}(v)$) time

