
University of New Mexico
Department of Computer Science

Midterm Examination
CS 561 Data Structures and Algorithms

Fall, 2011

Name:

Email:

• “Nothing is true. All is permitted” - Friedrich Nietzsche. Well, not exactly. You are not
permitted to discuss this exam with any other person. If you do so, you will surely
be smitten: collusion on any problem will result in a 0 on the entire exam. However, you may
consult any non-human sources including books, papers, web pages, computational devices,
animal entrails, etc. in your quest for truth. Please acknowledge your sources.

• Show your work! You will not get full credit if we cannot figure out how you arrived at your
answer. A numerical solution obtained via a computer program is unlikely to get much credit,
if any, without a correct mathematical derivation.

• Write your solution in the space provided for the corresponding problem.

• If any question is unclear, ask for clarification.

Question Points Score Grader

1 20

2 20

3 15

4 20

5 25

Total 100



1. Recurrences

Remember that when the base case for a recurrence is not explicitly given, assume that it is
constant for inputs of constant size.

(a) (5 points) Solve the following recurrence using annihilators: f(n) = 5f(n− 1)− 6f(n−
2) + 2n. Do not solve for the constant coefficients

(b) (5 points) Solve the following recurrence using a transformation and the Master method:
f(n) = 10f(

√
n)+n. Do not solve for the constant coefficients. If an algorithm’s runtime

is given by this recurrence, how would it compare with algorithms with runtimes of θ(2n),
θ(n), θ(

√
n), θ(log n)?



Imagine that there is a computer virus where infected machines slowly ramp up the rate
at which they infect other machines. In particular, in a given round, each machine that
has been infected for exactly i rounds infects exactly i − 1 new machines. Let f(n) be
the number of machines infected at round n - the base case is f(1) = 1. One of your
coworkers claims that the recurrence relation for f(n) is f(n) =

∑n−1
i=1 f(i). Another

coworker claims that the correct recurrence relation is f(n) =
∑n−1

i=1 i ∗ f(i).

(c) (3 points) Which coworker is correct and why?

(d) (7 points) Find an exact solution to the first recurrence relation. Prove your answer is
correct via induction.



2. Data Structures

(a) (4 points) Imagine that you are storing n items in a Bloom Filter with m bits. You want
the probability of a false positive to be less than 1/10000. Approximately how large
must m be as a function of n? Approximately how many hash functions will you need
(i.e. how big is k). Show your work!

(b) (8 points) Now imagine that you are keeping a blacklist of n items and you want to
determine quickly if any given item is in this blacklist. However, you need the false
positive rate to be no more than 1/n (i.e. the probability of a false positive must quickly
go to 0 as n gets large). If you use a Bloom filter to store the blacklist, what are the
approximate values of m and k you need as a function of n? What is the time and space
cost of using a Bloom filter with this error rate? Is there any other data structure we’ve
discussed in class that would have asymptotically the same time and space costs as a
Bloom filter, and perhaps smaller error probability for this problem?



(c) (8 points) Imagine that in a red-black tree, each internal node has exactly 3 children.
All rules for red-black trees remain the same, so for example each red node must have
all black children; for each node, all paths from that node to all descendant leaves must
contain the same number of black nodes; all leaf nodes (NIL) are black; etc. Recall that
for standard red-black trees, we proved that: “The subtree rooted at the node x contains
at least 2bh(x)− 1 internal nodes” (Lecture 5). Show that the number of nodes (not just
internal) in the subtree rooted at x is now at least 3bh(x). Prove this bound via induction
- don’t forget to include the BC, IH and IS.



3. Chips

In the following problem, you are trying to detect illegal copies of items made at a company.
For concreteness, assume that the company makes “chips” and that it embeds a unique id
into each chip that it manufactures. Unfortunately, there are reports of illegal copies of the
company’s chips. It is possible to detect these copies because they are completely identical.1

For any pair of chips, you can place them in a “tray” that will test the two chips and tell you
whether or not they are identical. However, this is a time consuming operation, so you want
to minimize the number of times that you use the tray. Your goal is to determine if more
than half the chips in some collection are identical.

Thus, you have the following algorithmic problem. You are given a collection of n chips. If
no more than n/2 are identical, you should answer NO. If more than n/2 are identical, you
should answer YES and return one chip that is a member of this set of identical chips. Sketch
an algorithm to solve this problem that minimizes the number of times you use the tray.
Argue that your algorithm is correct and determine how many times your algorithm uses the
tray.

Hint: Use recursion! You must use the tray O(n log n) times for full credit (15 points).

1For example the company may use a watermark or a digital signature to digitally sign an ID for each chip; this
is hard to forge.



3. Chips , continued.



4. Dynamic Programming

In this problem, you have a n wireless sensors located in a network, and you must assign
each sensor one of two possible channels. When two adjacent nodes, x and y are assigned
the same channel, there is a certain amount of interference, w(x, y), which is given by the
weight on the edge between the adjacent nodes. In this problem, the weight on an edge can
be either positive or negative. An assignment for the network is an assignment of one of the
two channels to each node in the network, and the total cost of an assignment is the sum of
the interference costs for all adjacent nodes. Your goal in the problems below is to find an
assignment that minimizes total cost.

For each of the variants below, 1) give a recurrence relation for the desired value;
2) describe a dynamic program; and 3) give an analysis of the runtime of your
dynamic program.

(a) (6 points) Assume the n sensors are connected in a line, and that for all 1 ≤ i < n, you are
given edge weight w(i−1, i). Hint: Let c(i, 1) be the minimum cost for assigning channels
to nodes 1 through i when node i is assigned channel 1. Let c(i, 2) be the minimum cost
of assigning channels to nodes 1 through i when node i is assigned channel 2.



(b) (7 points) Now assume that the sensors are connected in a binary tree. Hint: for node v
in the tree, let c(v, 1) be the min cost for assigning channels to all nodes in the subtree
rooted at v when v is assigned channel 1, and define c(v, 2) similarly. Let left(v) (right(v))
be the left (reps. right) child of v if they exist or NIL otherwise; let w(x, y) = 0 if either
x or y is NIL.



(c) (7 points) Finally, assume that the sensors are connected in a binary tree and that at
least a 2/3 fraction must be assigned channel 1. Hint: Add another parameter to the
function c. For this problem, you only need to write down the recurrence relation for c
and give a very brief sketch of the algorithm and its runtime.



5. Randomized Algorithms

Consider a situation where we have n servers and n clients. The servers all know a message
m and the clients want to learn that message. Our goal is to design an algorithm that ensures
that all clients learn m, while sending the smallest number of messages possible. We have
access to a global random number generator R that generates a number uniformly at random
between 1 and

√
n, and which all the servers can read.

Consider the following algorithm:

(a) Each client chooses a subset S of k
√
n of the n servers, uniformly at random from all

such subsets. The client then generates k
√
n requests by choosing independently for

each s ∈ S, a tag t that is an integer distributed uniformly at random between 1 and√
n. The client sends each such request (s, t) to the server s

(b) A random number r is generated by the global random number generator and all servers
read that number

(c) Every server s considers the requests they have received of the form (s, r). If there are
less than k

√
n such requests, then s sends m to each client that it received such a request

from. k is a parameter to be determined later.

Unfortunately, some of the clients are bad in that they may disregard the first line of the algo-
rithm, possibly sending out more than k

√
n requests, and these requests may not necessarily

be generated randomly. Note that the number of messages sent by each good client and server
is always only O(

√
n). In this problem, you will show that even with the bad clients around,

and even with this bound on communication costs, the protocol still has a good chance of
ensuring all the good clients will learn m. (The algorithm thus has applications to mitigating
situations like denial of service attacks by botnets.)

Call a sever overloaded if it receives ≥ k
√
n requests with tag r. Assume that each server

receives at most n requests total, since if they receive ≥ 2 requests from the same client, they
can throw out these requests, since that client is necessarily bad.

(a) (5 points) Derive an upper bound on the probability that a fixed server is overloaded.



(b) (5 points) Give an upperbound on the expected number of servers that are overloaded.
Note: The events that two different servers are overloaded are NOT independent.

(c) (5 points) Now use Markov’s inequality to bound the probability that the number of
overloaded servers is greater than or equal to n/6. If everything is going well, you
should be able to show this probability is no more than 6/k.



(d) (5 points) Now assuming that at most n/6 servers are overloaded, calculate the prob-
ability that a given client fails to send a request to any server that is not overloaded.
Note: The servers that a single client sends requests to are NOT chosen independently
(since a given server can not be chosen more than once). You may find the following
bound from the book helpful:

(x/y)y ≤
(
x

y

)
≤ (xe/y)y

Hint: In how many ways can you choose k
√
n of the n servers? In how many ways can

you choose k
√
n of only the n/6 overloaded servers?



(e) (5 points) Finally, use union bounds and the above results to bound the probability that
any good client does not receive the message. For n large, what is a good approximation
to the probability of failure? Hint: Since the tags for good clients are chosen indepen-
dently, you can use Chernoff bounds (see HW 2, problem 1) to bound the distribution
of the number of requests from good clients that have tag r.


