
Measures of Complexity

• Entropy
• AIC (Kolmogorov Complexity)
• EFFECTIVE COMPLEXITY
• Total Information
• Logical Depth
• Statistical Complexity
• Size
• Fractal Dimension

Gell-Mann’s Effective Complexity
• The length of the shortest description of a set’s regularities
• EC(x) = K(r) where r is the set of regularities in x

and Kolmogorov Complexity (or AIC), K(r), is the length of a
concise description of a set

• Highest for entities that are not strictly regular or random

Ef
fe

ct
iv

e
C

om
pl

ex
ity

Randomness h µRandomness h µ

A
lg

or
ith

m
ic

C

om
pl

ex
ity

 &

En
tro

py

Low Shannon Info
High compressibility
Orderly

High Shannon Info
Low compressibility*
Random

Algorithmic Complexity (AIC)
(also known as Kolmogorov-Chaitin complexity)

• Kolomogorov complexity or Algorithmic Information Content
(AIC), written K(x), is the length, in bits, of the smallest program
that when run on a Universal Turing Machine outputs (prints) x
and then halts.

• Example: What is K(x)
– where x is the first 10 even natural numbers?

– where x is the first 5 million even natural numbers?

• Possible representations where n is the length of x
– 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, … (2n - 2)
– for (j = 0; j < n: j++) printf(“%d\n”, j * 2)

Algorithmic Complexity (AIC)
(also known as Kolmogorov-Chaitin complexity)

• Kolomogorov complexity or Algorithmic Information Content
(AIC), written K(x), is the length, in bits, of the smallest program
that when run on a Universal Turing Machine outputs (prints) x
and then halts.

• Example: What is K(x)
– where x is the first 10 even natural numbers?

– where x is the first 5 million even natural numbers?

• Possible representations where n is the length of x
– 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, … (2n - 2) K(x) = O(n log n) bits
– for (j = 0; j < n: j++) printf(“%d\n”, j * 2) K(x) = O(log n) bits *

*Complexity of program size (length), not program running time

• AIC formalizes what it means for a set of numbers to be compressible
– Data that are redundant can be compressed and have lower AIC.
– Random strings are incompressible, therefore contain no regularities to

compress
• K(x) = | Print(x) |

• Implication: The more random a system, the greater its AIC (and
greater entropy)

• Contrast with Statistical simplicity
Random strings are simple because you can approximate them
statistically
– Coin toss, random walks, Gaussian (normal distributions)
– You can compress random numbers with statistical descriptions and only

a few parameters

Algorithmic Complexity (AIC)
(also known as Kolmogorov-Chaitin complexity)

• s1 = 1111111111111111
for i:=1:16
print ‘1’

K(s) is O(log n) where n = length(s1)
The dominant term is the number “16” whose representation in bits will require log216
= 4 bits

• S2 is a string of 1’s, length(s2) = 1 billion
for i:=1:1,000,000,000
print ‘1’

K(s1) is O(log n) where n = length(s2)
K(s2) is O(log2109) (approximately 30 bits)

Constant terms such as the representation of the print statement are ignored

The minimum K(x), given length(x) = n, is log(n).

s3 = 0101010101010101
s4 = 011011011011011
s5 = 000100001000100001
s6 = 01110111011000110110101

s3 = 0101010101010101
for i:=1:8

print ‘01’
2 bits are needed to represent the pattern, 3 bits to represent the 8 repetitions
K(s3) = O(log(n))

s4 = 011011011011011
for i:=1:5

print ‘011’
3 bits to represent the repeating pattern, log(5) bits to represent the number of repetitions
K(s4) = O(log(n))

s5 = 000100001000100001
for c = 1:2

print ‘000100001’

8 bits to represent the repeating pattern, 1 bit to represent the repetitions. Here the length of the pattern
is ½ n, so

K(s5) = O(n)

s6 = 01110111011000110110101

There are two problems with AIC

– Calculation of K(x) depends on the machine we
have available (e.g., what if we have a machine
with an instruction “print the first 10 even natural
numbers”?)
• COMPLEXITY DEPENDS ON CONTEXT

– Determining K(x) for arbitrary x is uncomputable

Problem 1: K(x) depends on the programming language
Resolution: optimal specification functions can be
defined so that

“The complexity of an object x is invariant (up to an
additive constant independent of x) under transition
from one optimal specification function to another.”
(Li & Vitanyi “An Introduction Kolmogorov Complexity and it’s
Applications” 2008)

http://jeremykun.com/2012/04/21/kolmogorov-complexity-a-
primer/

http://jeremykun.com/2012/04/21/kolmogorov-complexity-a-primer/

Problem 2: Identifying the shortest program to
print the string is uncomputable

Resolution: None

It is not possible to determine the amount of
randomness in any arbitrary string

Regularities can be difficult to identify

• s6 = 01110111011000110110101
• It looks like a random string, so K(s6) = length(s6)
But its not !

• What is the shortest program that would produce this string?

Fibonacci Series

0 1 1 10 11 101 1000 1101 10101
0 1 1 2 3 5 8 13 21

A short computer program (of length (Lfb) that produces the Fibonacci
series can generate s6, so K(s6) can be reduced to max (Lfb, log(n)
where n specifies the length of the Fibonacci series to be printed.

What About

s7=00100100001111110110101010001000100001011010001
100001000110100...?

This is a statistically random string.
It is also the binary representation of the first decimals of pi.

A short program could generate this random string.

Gell-Mann:
In Evolution “Frozen Accidents” cause regularities

Identify “frozen accidents” (regularities) in genomes
Calculate Effective Complexity as the AIC of the regularities

http://c2.com/cgi/wiki?KolmogorovComplexity

Gell-Mann’s Effective Complexity
• The length of the shortest description of a set’s regularities
• EC(x) = K(r) where r is the set of regularities in x

and Kolmogorov Complexity (or AIC), K(r), is the length of a
concise description of a set

• Highest for entities that are not strictly regular or random

Ef
fe

ct
iv

e
C

om
pl

ex
ity

Randomness h µRandomness h µ

A
lg

or
ith

m
ic

C

om
pl

ex
ity

 &

En
tro

py

Low Shannon Info
High compressibility
Orderly

High Shannon Info
Low compressibility*
Random

What’s a regularity?

• Gell Mann suggests one formal way to identify regularities
• Determine mutual AIC between parts of the string

– If x = [x1,x2]
– K(x1,x2) = K(x1) + K(x2) – K (x)
– The sum of the AICs of the parts – the AIC of the whole
– Eg. 10010 10011 10010 -the whole has more regularity than the sum of the regularities

in the parts
– Regularities exist when K(x1,x2) > 0

• Identify the regularities, r,
• Calculate K(r), the AIC of the regularities
• Effective complexity = K(r)

Here r = 10010
AIC of 10010 which is O(5)
Effective Complexity is O(5)

Logical Depth

• Bennett 1986;1990:
– The Logical depth of x is the run time of the shortest program

that will cause a UTM to produce x and then halt.

– Logical depth is not a measure of randomness; it is small both
for trivially ordered and random strings.

• Drawbacks:
– Uncomputable.

– Loses the ability to distinguish between systems that can be
described by computational models less powerful than Turing
Machines (e.g., finite-state machines).

• Ay et al 2008, recently proposed proof that strings with high
effective complexity also have high logical depth, and low effective
complexity have small logical depth.

Total Information

– Alternative approach in Gell-Mann & Lloyd 1998
– EC(x) = K(E) where E is the set of entities of which x is a

typical member
– Then K(x) is the length of the shortest program required to

specify the members of a the set of which x is a typical
member

– Effective complexity measures knowledge—the extent to
which the entity is nonrandom and predictable

– Total Information is Effective complexity, K(E), + the
Shannon Information of the peculiarities (remaining
randomness)

– TI(x) = K(E) + H(x)
– There is a tradeoff between the effective complexity (the

completeness of a description of the regularities) and the
remaining randomness

– Ex: 10010 10011 10010 10011 10010 10011

Summary of Complexity Measures

• Information-theoretic methods:

– Shannon Entropy

– Algorithmic complexity

– Mutual information

• Effective Complexity:

– Neither regular nor random entities have high Effective Complexity

• Total Information: Effective Complexity + Entropy

• AIC of regularities + entropy of what remains

• Computational complexity:

– How many resources does it take to compute a function?

• The language/machine hierarchy:

– How complex a machine is needed to compute a function?

• Logical depth:

– Run-time of the shortest program that generates the phenomena and halts.

• Asymptotic behavior of dynamical systems:

– Fixed points, limit cycles, chaos

Defining Complexity
Suggested References

• Computational Complexity by Papadimitriou. Addison-Wesley (1994).
• Elements of Information Theory by Cover and Thomas. Wiley (1991).
• Kaufmann, At Home in the Universe (1996) and Investigations (2002).
• Per Bak, How Nature Works: The Science of Self-Organized Criticality (1988)
• Gell-Mann, The Quark and the Jaguar (1994)
• Ay, Muller & Szkola, Effective Complexity and its Relation to Logical Depth, ArXiv

(2008)

Kolmogorov Complexity References

• Kolmogorov Complexity With Python
https://www.youtube.com/watch?v=KyB13PD-UME

• http://en.wikipedia.org/wiki/Kolmogorov_complexity
• http://www.neilconway.org/talks/kolmogorov.pdf
• http://people.cs.uchicago.edu/~fortnow/papers/quaderni.pdf
• http://c2.com/cgi/wiki?KolmogorovComplexity

https://www.youtube.com/watch?v=KyB13PD-UME
http://en.wikipedia.org/wiki/Kolmogorov_complexity
http://www.neilconway.org/talks/kolmogorov.pdf
http://people.cs.uchicago.edu/~fortnow/papers/quaderni.pdf

