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Abstract

Many biological processes, including immune recognition, enzyme
catalysis, and molecular signaling, are associated to the binding of
two or more proteins. This molecular docking is still an open prob-
lem in biological sciences. We present Molecular Tetris, a game
in which a player can explore the binding between a protein re-
ceptor and ligand. This exploration is similar to the game Tetris
with atomic forces guiding best fits between shapes. This game
will be utilized for crowdsourced haptic-guided motion planning.
Haptic touch devices enable users to feel the interactions of two
molecules as they move the ligand into an appropriate binding site
on the receptor. We demonstrate the method on a critical piece of
human immune response, ligand binding to a Major Histocompat-
ibility Complex (MHC) molecule. Through multiple runs by our
users, we construct a global roadmap that finds low energy paths to
molecular docking sites. These paths are comparable to a highly-
biased roadmap generated by Gaussian sampling around the known
bound state. Our users are able to find low energy paths with both a
specialized force-feedback device and a commodity game console
controller.

CR Categories: J.3 [Computer Applications]: LIFE AND MED-
ICAL SCIENCES—Biology and genetics

Keywords: probabilistic roadmap methods, molecular docking,
haptics, crowdsourcing

1 Introduction

Many biological processes rely on the interactions between small-
molecule ligands and large protein receptors. Ligand-receptor bind-
ing prediction is therefore critical to biochemical engineering. Lig-
ands bound in a low energy configuration are said to be docked.
Binding affinities are controlled by the energetic feasibility of tran-
sition from undocked to docked configurations. Motion planning
techniques can predict interactions between molecules efficiently
without falling into local minima traps [Cortés et al. 2005] while
screening techniques consider the validity of final configurations.

Molecular docking methods are more efficient than molecular dy-
namics (MD) methods for predicting ligand-receptor binding [Jones
et al. 1997]. Efficiency from reduced-complexity models make in-
teractive components (e.g., haptics) feasible. Molecule docking
tools can keep molecules rigid during simulation [Morris et al.
2009]. While such simplifications may prevent identification of
properly docked configurations, they enable interactivity.
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Haptic-based molecular docking simulators can be efficient tools
for studying molecular interactions and docking. In this work we
develop a method to generate docking pathways using motion plan-
ning techniques integrated with realtime haptic simulations, sim-
ilar to previous realtime haptic adaptations running on commod-
ity hardware [Bolopion et al. 2010]. Probabilistic Roadmap Meth-
ods (PRMs) have been applied to motion planning problems with
high-dimensional configuration space (e.g., protein folding, dock-
ing) [Al-Bluwi et al. 2012]. We construct a roadmap of feasible
motions by sampling the configuration space and connecting con-
figurations with weighted edges that indicate the feasibility of mov-
ing between configurations. Configurations with the ligand bound
to the receptor are low in potential energy, allowing for the use of
potential energy to test for feasibility.

Crowdsourcing utilizes the public to generate a large set of data,
and in some applications as users become more familiar with the
software, they can improve their performance. Finding solutions
to biological problems using crowdsourcing has been successful.
Popular programs such as Foldit [Khatib et al. 2011] and Fold-
ing@home [Beberg et al. 2009] have been applied to protein fold-
ing. To our knowledge, crowdsourcing has not been applied to lig-
and binding.

In this study, we construct pathways of ligands moving into binding
sites generated using two different methods of construction. The
first method utilizes the Molecular Tetris game (a preliminary ver-
sion appears in [Adamson et al. 2014]) where players operate a hap-
tic device with force-feedback or a game controller with vibrational
feedback to explore the configuration space. Multiple player inputs
are combined to generate a roadmap that can be traversed to iden-
tify feasible paths. The second method uses a Gaussian distribu-
tion sampling to generate configurations, centered around a known
docked configuration of the ligand. As this method is biased to-
wards a pre-identified, e.g., native, binding site, it provides us with
a “best-case scenario” result that we can use to compare to the out-
comes from Molecular Tetris.

This novel approach incorporates a reduced polygon model for vi-
sualization efficiency, intuitive docking, and small data storage,
while computing energy and forces from the all-atom structures.
These simplifications along with multi-threading allow for fast real-
time use on commodity hardware and an intuitive, gaming experi-
ence. The force feedback devices used in this work are the Novint
Falcon R©, and an Xbox 360 controller.

2 Related Work

2.1 Molecular Docking

Molecular simulations and physical experiments are costly and
time-consuming, so fast accurate methods for sampling and scoring
ligand-receptor binding candidates help prioritize limited scientific
resources. A wide array of molecular docking algorithms and tools
have been developed (see [Huang and Zou 2010]). Early dock-



ing tools used ligand-receptor cavity geometry complementarity to
both guide sampling and score feasibility [Kuntz et al. 1982]. Later
tools incorporate atomic force fields into scoring [Moustakas et al.
2006]. Methods to discover and measure ligand/cavity complemen-
tarity have also become more sophisticated [Chen and Honig 2010].
Relative to rigid body approximations, accounting for ligand and
receptor flexibility greatly increases docking problem dimension-
ality. Techniques applied to the problem of docking with flexible
molecules include incremental construction by tree search [Rarey
et al. 1996], genetic algorithms [Jones et al. 1997], and Monte Carlo
energy minimization [Meiler and Baker 2006]. Receptor flexibil-
ity may also be handled as ligand binding to rigid receptor ensem-
bles [ClauBen et al. 2001]. Most docking tools automate configu-
ration sampling; in contrast, our method utilizes user guidance to
discover feasible ligand trajectories. The force field used to score
samples additionally provides haptic feedback informing the user’s
search. We present a system that merges configurations discovered
by separate users to produce better quality trajectories.

2.2 Molecular Docking With Haptics

It has been shown that haptic devices enhance the operator’s in-
tuition and understanding of molecular binding processes [Bivall
et al. 2011]. They can enable the user to guide automated dock-
ing algorithms with hints from user ligand configurations com-
bined with existing configurations into a single roadmap [Bayazit
et al. 2001]. Haptic feedback has also been incorporated into
docking simulations with adaptive user control of the flexibil-
ity/performance tradeoff [Bolopion et al. 2010]. Haptic controls
directly manipulating ligand positions have been compared against
force-based control schemes [Bolopion et al. 2010]. These devices
have also been applied to the control of probe objects such as wa-
ter molecules to discover solvent accessible locations [Stocks et al.
2009].

Molecular docking tools developed for different device capabili-
ties include 3-DOF force feedback and 6-DOF force/torque feed-
back [Hou and Sourina 2011]. Collaborating users manipulating
separate molecules has been considered [Hou et al. 2014]; our
method, by contrast, synthesizes configuration sampling performed
independently by multiple users into ligand binding trajectories.

We implement haptic force-feedback as the gradient of potential
energy. We scale, and time-smoothe forces to prevent unstable hap-
tic feedback. Unlike [Hou et al. 2014], there are no dead zones;
haptic feedback always reflects the potential energy gradient. Re-
sponsiveness is maintained on commodity hardware by computing
potentials and haptic-feedback on separate threads. A complex en-
ergy model is handled similarly in realtime in [Daunay et al. 2007],
but was not performed on commodity hardware.

2.3 Motion Planning With Haptics

Haptics are well suited for integration with motion planning prob-
lems and have been used to give hints to planners [Bayazit et al.
2001; He and Chen 2009]. These devices can also be used to
guide or train users [Vázquez et al. 2010; Lawitzky et al. 2012].
In [Vázquez et al. 2010], Kautham path planning (configuration
space cellular decomposition/classification) is used to generate a
local channel (path). This local channel is used to generate hap-
tic force feedback to aid the user during execution of a task. In
our method force on the ligand is felt since the potential energy
gradient generates the haptic force-feedback. The user makes the
decisions for ligand movement based on this force-feedback, tak-
ing advantage of their intuition during docking. Sampled ligand
configurations in this process are used in PRM construction.

3 Implementation and Methods

3.1 Molecular Simulation

(a) Isosurface (b) All Atoms

Figure 1: (a-b) Ligand (orange) with receptor (purple). The dock-
ing site can be seen as a cavity in the receptor’s isosurface.

In our simulation the receptor and ligand are represented as rigid
bodies with static atoms. This rigid body representation reduces
complexity for runtime performance, but prevents Molecular Tetris
from finding docked configurations that require flexibility. The
Tel1p and MHC chains have 3027 atoms combined. The receptor is
fixed in place while the ligand is free for the user to move. The un-
derlying set of atoms (Figure 1b) are used for the potential energy
approximation, but the molecules are only shown to the user as iso-
surfaces (Figure 1a). Drawing only the isosurface representation
decreases the time spent drawing the scene and simplifies the prob-
lem visually for the user. The colors chosen for the molecules are
arbitrary and only used to visually differentiate between them. The
isosurface models were generated from PDB files using Chimera
with a resolution setting of 2 for the ligand and 3 for the recep-
tor [Pettersen et al. 2004]. The ligand atoms translate and rotate as
a rigid body when the user moves the ligand. The structure of the
human class I MHC molecule (receptor) bound to Tel1p (ligand)
was taken from the RCSB Protein Data Bank (PDB ID 3H9S) [Bor-
bulevych et al. 2009]. MHC is used due to its diverse binding and
importance in immune system activation.

3.2 Energy Approximation Function

We calculate intermolecular potential energy Uinter (1) between re-
ceptorR and ligandL as the sum of all pairwise electrostaticUes (2)
and Lennard-Jones Uvdw (3) atomic interactions of receptor atoms i
and ligand atoms j:

Uinter(R,L) =
R∑
i

L∑
j

Ues(i, j) + Uvdw(i, j), (1)

Ues(i, j) = C
qiqj
rij

, (2)

Uvdw(i, j) =
√
εiεj

[(
ρi + ρj
rij

)12

− 2

(
ρi + ρj
rij

)6
]
. (3)

In the above equations, rij is interatomic distance and C the elec-
trostatic constant. Our current implementation uses values for par-
tial charges qi, Lennard-Jones well depths εi, and Lennard-Jones
minimal distances ρi = 2

1
6 σi from the AMBER force field [Duan

et al. 2003].



The intermolecular potential energy is used directly to rank ligand-
receptor configurations. Because we make the rigid body assump-
tion for both molecules, intramolecular interactions are not calcu-
lated, therefore E = Uinter . Users are encouraged to manipulate
the ligand to discover local and global potential minima.

The force approximation used for feedback is calculated from the
gradient of the potential approximation. For torque, the cross prod-
uct between each ligand atom’s displacement vector (from the cen-
ter of mass) and the force from the interaction between the ligand
atom and each receptor atom can be used, similar to [Hou and Sou-
rina 2011]. However, torque and force are not handled at the same
time due to the limitations of the particular three axis device. The
operator can hold one button down for translation movement and
force feedback, or a different button for angular movement and
torque feedback. These calculations are done using an all-atom
cloud model between ligand and receptor (see Figure 1b).

3.3 Force Feedback

Figure 2: Scaled potential energy approximation near the native
bound configuration of human class I MHC receptor bound to lig-
and Tel1p. The lowest energy points are at the bottom of the frame
as seen in dark blue.

The energy potential approximation is highly sensitive to the posi-
tion of the atoms due to the nature of the Lennard-Jones potential.
Because of these large differences between low and high energy
approximation values, a logarithmic scaling function (4) is used to
bring the values into a smaller range for force-feedback (Figure 2):

Es(E) =

{
ln(E), if E ≥ 1

− ln(2− E), if E < 1
, (4)

where E is the original energy value and Es is energy rescaled. To
prevent sudden device tremors and confusion with force-feedback,
the feedback vector is time-smoothed according to:

~vt = S(~vi − ~vt0), (5)

~vt is the new force-feedback direction, ~vi is the eventual target feed-
back direction, and ~vt0 is the current force-feedback direction. S is
an adjustable factor that increases or decreases the speed at which
~vt reaches ~vi. This proportional time delay applied to each frame
of the program maintains the need for quick changes in feedback
for extreme energy differences, as well as smooths out the peaks in
the scaled energy approximation. Higher values of S “tighten” the
force-feedback with S = 1 resulting in no time delay. A value of
S = 1

2
was used in the study to balance stability with responsive-

ness.

After scaling and proportional time delay, the resulting vector is
passed to the haptic device for output. With all of these combined,

a maximum threshold for force output through the haptic device is
unnecessary.

Since force-feedback devices may not be available to all users, we
have also used a game controller with vibrational feedback. For
the controller used, the motor is a scalar output and the force feed-
back was adapted by using the magnitude of force as the vibration
feedback strength. This enables the user to feel the atomic forces
through the strength of the vibration.

3.4 Roadmaps

Roadmaps are constructed similar to previous PRM methods [Am-
ato and Song 2002]. However, in this paper, users generate the
ligand configurations that are used for the roadmap. First, configu-
rations are sampled from Molecular Tetris by recording user ligand
configurations where each configuration is no more than 0.1Å apart
from the next. Ligand configurations of an energy greater than a
high potential energy threshold Emax are not recorded.

An edge between two ligand configurations (c1, c2) is weighted by
a function of the difference between the maximum potential energy
among interpolated ligand configurations between the start and end
configuration, c1 = s0, s1, ..., sn = c2, and the initial potential en-
ergy E(c1). The edge weight, Wi,j , is ln(∆E + 1) where the dif-
ference in energy, ∆E, ismax(E(s0), ..., E(sn))−E(c1). There-
fore, edges of decreasing potential energy are given a weight of 0,
otherwise the weight reflects an energetic traversal cost. This is
needed to identify shortest paths using Dijkstra’s algorithm. Edges
are calculated for every pair of configurations in both directions.
New roadmaps are built from existing roadmaps by appending
them with new user sets using the incremental roadmap generation
method [Xie et al. 2008].

3.5 Game Mechanics

(a) Gameplay (b) Leaderboards

(c) Force Feedback Device (d) Game Controller

Figure 3: (a-b) Screenshots of Molecular Tetris, (c) users operating
the force feedback device, and (d) game controller and laptop.

While playing Molecular Tetris, the user will have the ability to
move the ligand in space and explore the receptor surface to look
for low-energy binding configurations. Example players, hardware
setups, and game screens are shown in Figure 3. A scoring system
is incorporated based on the lowest energy found by a user while



playing. As the player encounters configurations with lower en-
ergy than the user’s current score, the score is updated. The score
improvement is also reflected on the screen with an animation of
the new score above the molecules (Figure 3a). Leaderboards have
been constructed for players to see how their personal scores com-
pare to scores achieved by other players (Figure 3b). Since low
energy states correspond to good docking configurations, players
who find the lowest energy configurations will be at the top of the
leaderboard. This study presents results with an Xbox 360 con-
troller (Figure 3d) and the Novint Falcon R© (Figure 3c); two sys-
tems that utilize haptic feedback, are commonly availiable, facili-
tate user interactions, and have not been previously used for molec-
ular docking.

4 Results

4.1 Performance

In order to quantify the computation time for the interactive system,
we captured runtimes that reflected the potential calculation and
the impact of model rendering and resolution. Our method uses
two threads to improve overall performance and provide smooth
force-feedback. One thread repeatedly updates potential energy,
averaging about 12 calculations per second. Force-feedback and
scene drawing are handled on another thread, using the most recent
results of the potential energy thread to calculate force. The scene is
drawn using the isosurface representation for higher performance.

Table 1: Runtime Performance of Main Thread With Different
Chimera Resolution Settings

Resolution Polygons in Isosurfaces Time per Frame (ms)
- 0 (No Drawing) 18
3 3160 21
2 7840 23
1 60184 51

The polygon count in the isosurface vs. main thread performance
can be seen in Table 1. Recall that model resolution can be adjusted
without affecting the energy and force calculations. In Table 1, the
first entry is the baseline performance, force feedback and program
overhead, when drawing no models. We also studied the impact of
model resolution. In Table 1 resolution corresponds to the isosur-
face model resolution setting from Chimera. Polygon triangles are
more efficient for GPUs to render than realistic atomic spheres, of
which Tel1P and MHC combined have 3027 atoms. Together, this
multi-threaded environment produces a real-time sensation of the
atomic forces modeled in the energy approximation on commod-
ity hardware with a visual and haptic touch feedback frame rate of
about 42 frames per second (about 23 milliseconds per visual and
haptic touch feedback frame) using 61.4MB memory on a com-
modity laptop with an AMD A6-5200 APU chipset with a 4-core
CPU 2GHz clock rate and Radeon HD 4800 GPU. User runs lasted
between 5 to 15 minutes depending on the user speed.

4.2 Haptic-Guided User Sampled Configurations

In order to capture configurations for roadmap generation, data
from six users with two runs per user were recorded. Each user
run contributed 1000 configurations (Figure 4). The first three op-
erated the force feedback device (Figure 4a) while the second three
used a game controller (Figure 4b) with vibration feedback. It is
interesting to notice that different strategies are implemented by
users, represented by distinct colors (Figure 4). The inset shows
details around negative energy configurations. Root-mean-squared
deviation (RMSD) is the distance between two configurations, and

we show the RMSD to the known native bound state. There are
particular locations where users would focus exploration before in-
vestigating other locations, such as User 3 (blue) between 2 and 4
Å RMSD and the cluster generated by several users near the native
configuration (Figure 4a). Also, the area around the native config-
uration had been densely explored despite the fact that users were
not explicitly aware of the native configuration location.

(a) Force Feedback Device

(b) Game Controller

Figure 4: Potential energies and RMSD for (a) force feedback de-
vice and (b) game controller. Points are configurations generated
by users as they play the game. The game controller (b) shows a
larger spread of data as compared to (a), which shows well-defined
clusters. The insets show detail around the low energy RMSD re-
gions, i.e., near the bound native state. The energy is shown on a
logarithmic scale.

The lowest RMSD from the known native state found amongst
the configurations in each set are similar between the two devices,
shown in Table 2. Low RMSD configurations, 0.075Å and 0.068Å,
were found with both force-feedback device and game controller
inputs, respectively. This shows that users were able to find config-
urations extremely close to the experimentally determined bound
state with only haptic and visual guidance.

4.3 Multi-user Roadmaps

Once we obtain configurations from all user runs they can be com-
bined to generate roadmaps, as explained in Section 3.4. The sam-
ples from Section 4.2 were used to build the roadmap. Each sub-
sequent user extended the roadmap iteratively. Table 3 shows the
number of configurations and edges created for each run.

For comparison against haptic-guided roadmaps, a roadmap was
built with 6000 Gaussian distributed rigid-body ligand configura-



Table 2: Lowest RMSD from native state found for each user run.

Type (User,Run) Lowest RMSD
Force-Feedback (1,1) 0.128Å

Device (1,2) 4.143Å
(2,1) 0.143Å
(2,2) 0.126Å
(3,1) 0.079Å
(3,2) 0.075Å

Game Controller (4,1) 0.100Å
(4,2) 0.106Å
(5,1) 0.088Å
(5,2) 0.077Å
(6,1) 0.157Å
(6,2) 0.068Å

Table 3: Roadmaps from haptic-guided configurations and Gaus-
sian distributed configurations.

Data type Cumulative sets Configuration Edge
(User,Run) Count Count

(1,1) 1000 12516
(1,1),(2,1) 2000 25246

Force-Feedback (1,1),(2,1),(1,2) 3000 37424
Device (1,1),(2,1),(1,2),(3,1) 4000 50240

(1,1),(2,1),(1,2),(3,1),(2,2) 5000 63126
(1,1),(2,1),(1,2),(3,1),(2,2),(3,2) 6000 75750

(4,1) 1000 1998
(4,1),(5,1) 2000 15926

(4,1),(5,1),(4,2) 3000 29498
Game Controller (4,1),(5,1),(4,2),(6,1) 4000 44086

(4,1),(5,1),(4,2),(6,1),(5,2) 5000 59892
(4,1),(5,1),(4,2),(6,1),(5,2),(6,2) 6000 75326

Gaussian - 6000 88758

tions centered where the ligand is in a docked configuration, with
5Å in translational and 5◦ in rotational standard deviations. In total
88,758 weighted edges were created.

All roadmap configurations were connected by nearest neighbors
(K = 10) using a Euclidean distance metric. Then a K-pair = 10
component connection method was used. Roadmaps of user sam-
pled configurations are created by incremental construction [Xie
et al. 2008]. Building roadmaps incrementally is online and re-
quires less computation, enabling the roadmap constructor to re-
ceive new user sets during runtime. After the first roadmap of 1000
samples is built, we create successive roadmaps by importing an-
other set of user configurations and connecting.

Finally, queries were performed from a start ligand configuration
about 5.02Å RMSD distance from the known native configuration
of 3H9S using Dijkstra’s algorithm. As user sets were combined
into larger roadmaps, the resulting query path became smoother
with less peaks or energy barriers to overcome as seen in Figure 5.
The query path results from force feedback device data in Figure 5a
are similar to the results from the game controller data in Figure 5b.
The path resulting from 6 user sets, shown in blue, also has the least
potential energy as it approaches the native configuration.

The query from the Gaussian roadmap, displayed in black, contains
less pronounced energy peaks. However, recall that the Gaussian
ligand configuration samples were generated with a mean centered
around the known native configuration while the users did not know
the precise native configuration and had only the force feedback to
guide them. However, the Gaussian sampler could not be applied
to new ligand receptor pairs of unknown native configuration.

5 Conclusion and Future Work
To our knowledge, this is the first work that investigates molecu-
lar docking by combining haptics and the potential to crowdsource

(a) Force Feedback Device

(b) Game Controller

Figure 5: (a-b) Potential energy from the query to the docked con-
figuration for constructed roadmaps. Path completion is the nor-
malized amount of total RMSD traveled in query path. The energy
is shown on a logarithmic scale.

path planning. Based on our preliminary user test, we found that
the force-feedback device more strongly restricted the space a user
explored, but that both types of devices allowed users to identify
low potential energy configurations and smooth trajectories. This
result allows us to expand user-assisted molecular docking from
specialty force-feedback devices to commodity hardware devices.
Hardware devices such as the game controller allow us to expand
our experimental results to a larger, crowdsourced user base.

Roadmaps built from a small number of haptic-guided user trajec-
tories produced paths of low, smooth potential energy to the na-
tive configuration where an automated sampling method required
full knowledge of the native configuration. The iterative nature of
roadmap construction can be integrated easily with streams of new
user configuration sets and resulting roadmap quality can be moni-
tored over time. We are exploring kinematic linkage extensions that
will allow us to represent molecular flexibility. This would enable
the exploration of larger configuration spaces, possibly leading to
improved path quality and lower energy configurations.
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