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Abstract—Many biological processes, including immune recog-
nition, enzyme -catalysis, and molecular signaling, are driven
by molecular binding. The binding of a protein receptor to
a ligand is still an open problem in biological sciences. We
present a method, the Haptic-Guided Ligand Docking Tool, that
explores the binding between a protein receptor and ligand by
utilizing crowdsourced haptic-guided motion planning. Haptic
touch devices enable users to feel the interactions of the two
molecules as they move the ligand into an appropriate binding
site on the receptor. We demonstrate the method on a system
critical for human immune response, the binding of ligands to
Major Histocompatibility Complex (MHC) molecules. From the
multiple runs by the users, our approach is able to construct a
global roadmap that finds low energy paths to molecular docking
sites. We find that the crowdsourcing results are comparable
to the highly-biased case of roadmaps generated by Gaussian
conformational sampling around a known docked ligand confor-
mation.

I. INTRODUCTION

Many biological processes rely on the interactions between
small-molecule ligands and large protein receptors. Ligand-
receptor binding prediction is therefore critical to biochemical
engineering. Ligands bound in a low energy conformation are
said to be docked. Binding affinities are controlled by the
energetic feasibility of transition from undocked to docked
conformations. Motion planning techniques can predict inter-
actions between molecules efficiently without falling into local
minima traps [12] while screening techniques only consider
the validity of final docked conformations.

Molecular docking methods are more computationally effi-
cient than Molecular Dynamics (MD) methods for predict-
ing ligand and receptor binding. Efficiency from reduced-
complexity models make interactive components (e.g., haptics)
feasible. Many molecule docking tools keep receptors and/or
ligands rigid during simulation. While such simplifications
prevent identification of some properly docked conformations,
they enable interactivity by improving runtime efficiency.

Haptic-based molecular docking simulators can be efficient
tools for studying molecular interactions and docking. In
this work we develop a method to generate ligand docking
pathways using motion planning techniques integrated with
realtime haptic simulations, similar to previous realtime haptic
adaptations running on commodity hardware [6]. Probabilistic
Roadmap Methods (PRMs) have been applied to motion plan-
ning problems with high-dimensional space of conformation,

such as protein folding [29 [1]] and ligand binding [3] appli-
cations. PRMs are easy to apply, only needing the ability to
sample conformations and evaluate conformational feasibility.
Conformations with the ligand bound to the receptor are low
in potential energy, allowing for the use of potential energy to
test for feasibility.

Finding solutions to biological problems using crowdsourc-
ing has been successfully implemented in popular programs
such as Foldit [22| [11] and Folding@home [26] 4] for protein
folding. Crowdsourcing utilizes the public to generate a large
set of data, and in some applications as users become more
familiar with the software, they can improve their performance
which may result in achieving low energy conformations.

In this study, we construct pathways of ligands moving
into binding sites generated using two different methods of
construction. In the first method, users operate a haptic device
with force-feedback to explore the feasible space of conforma-
tions. Multiple user inputs are combined to generate a roadmap
that can be traversed to identify feasible paths. The second
method uses a Gaussian distribution sampling to generate
conformations, centered around a known docked conformation
of the ligand. As this method is biased towards the native
binding site, it provides us with a “best-case scenario” result
that we can use to compare to the outcomes from the Haptic-
Guided Ligand Docking Tool.

This novel approach also incorporates a reduced polygon
model for visualization efficiency, intuitive docking, and small
data storage while computing energy and forces from the all-
atom structures. These simplifications and multi-threading al-
lows for fast real-time use on commodity hardware. The haptic
device used in this work is the Novint Falcon®), a commodity
haptic device with three degrees of freedom. However, the
Haptic-Guided Ligand Docking Tool is not limited to one kind
of haptic device as it applies general methods and is therefore
expandable to multiple platforms.

II. RELATED WORK
A. Molecular Docking

Molecular simulations and physical experiments are costly
and time-consuming, so fast accurate methods sampling and
scoring ligand-receptor binding candidates help prioritize lim-
ited scientific resources. A wide array of molecular docking
algorithms and tools have been developed (see [20]).



Early docking tools used ligand-receptor cavity geometry
complementarity to both guide sampling and score feasi-
bility [23]. Later tools incorporate atomic force fields into
scoring [15]. Methods to discover and measure ligand/cavity
complementarity have also become more sophisticated [9].

Relative to rigid body approximations, accounting for ligand
and receptor flexibility greatly increases docking problem
dimensionality. Techniques applied to the problem of docking
with flexible molecules include incremental construction by
tree search [28], genetic algorithms [21], and Monte Carlo
energy minimization [25]. Receptor flexibility may also be
handled as ligand binding to rigid receptor ensembles [10].

Most docking tools automate conformation sampling; in
contrast, our method utilizes user guidance to discover feasible
ligand trajectories. The force field used to score samples addi-
tionally provides haptic feedback informing the user’s search.
We present a system that merges conformations discovered by
separate users to produce better quality trajectories than any
individual user produced.

B. Molecular Docking With Haptics

Haptic devices can enhance the operator’s intuition and
understanding of molecular binding processes [S)]. They can
assist automated docking algorithms with “hints” from user-
sampled ligand conformations combined with existing sampled
conformations into a single roadmap [2]]. Haptic feedback has
also been incorporated into docking simulations with adaptive
user control of the flexibility/performance tradeoff [[6]]. Haptic
controls directly manipulating ligand position have been com-
pared against force-based control schemes [7]. These devices
have also been applied to the control of “probe” objects such as
water molecules to discover solvent accessible locations [30]].

Molecular docking tools developed for different device
capabilities include 3-DOF force feedback and 6-DOF
force/torque feedback [19]. Collaborating users simultaneously
manipulating separate molecules has been considered [17]; the
method presented here, by contrast, synthesizes conformation
sampling performed independently by multiple users into
ligand binding trajectories.

We implement haptic force-feedback as the gradient of po-
tential energy, with force scaled and time-smoothed to prevent
unstable haptic feedback. Unlike [17]], there are no dead zones;
haptic feedback always reflects the potential energy gradient.
Responsiveness is maintained on commodity hardware by
computing potentials and haptic-feedback on separate threads.
A complex energy model is handled similarly in realtime in
[L3]; but this was not performed on commodity hardware.

C. Motion Planning With Haptics

Haptics are well suited for integration with motion planning
problems and have been used to give guiding hints to existing
motion planners [3) [16]. These devices can also be used by
guide or train the user [31} 24].

In [31]], Kautham path planning (configuration space cellu-
lar decomposition/classification) is used to generate a “local

channel” (path). This local channel is used to generate haptic
force feedback to aid the user during execution of a task.

In our method, force on the ligand is felt since potential
energy gradient generates the haptic force-feedback. The user
makes the decisions for ligand movement based on this force-
feedback, taking advantage of their intuition during docking.
Sampled ligand conformations in this process are used in
probabilistic roadmap construction.

III. IMPLEMENTATION AND METHODS

A. Molecular Simulation

Fig. 1. Ligand (orange) with receptor (purple). The potential docking cavity
can be seen as an actual cavity in the receptor’s isosurface. (A) The actual
appearence of ligand TellP and receptor MHC in Haptic-Guided Ligand
Docking Tool; (B) underlying atoms with transparent isosurface of ligand
TellP bound in MHC.

In our simulation, the receptor and the ligand are repre-
sented as rigid body isosurfaces with static internal atoms.
This rigid body representation reduces complexity for runtime
performance but prevents Haptic-Guided Ligand Docking Tool
from finding docked conformations that require flexibility.
The TellP and MHC chains from 3H9S combined have 3027
atoms. The receptor is fixed in place while the ligand is free
for the user to move. The underlying set of atoms shown in
Figure [T{B) are used for the potential energy approximation,
but are only shown to the user as isosurfaces in Figure [T(A).
Drawing only the isosurface representation decreases the time
spent drawing the scene and simplifies the problem visually for
the user. The colors chosen for the molecules in Haptic-Guided
Ligand Docking Tool are arbitrary and only used to visually
differentiate between the ligand and receptor. The isosurface
models were generated from PDB files using Chimera with a
resolution setting of 2 for the ligand and 3 for the receptor [27].
The ligand atoms translate and rotate as a rigid body when
the user moves the ligand. The structures for the human class
I MHC molecule (receptor) bound to Tellp (ligand) were
taken from the RCSB Protein Data Bank [8] (PDB 3H9S).
MHC is used due to its diverse binding and importance in
immune system activation. The missing hydrogen atoms (due
to the nature of X-Ray Crystallography) were inserted using
Chimera [27]] and its built-in “Add H” tool.

B. Energy Approximation Function

We calculate intermolecular potential energy Uiner (I) be-
tween receptor R and ligand L as the sum of all pairwise



electrostatic Ues (2) and Lennard-Jones Uyqy (3)) atomic inter-
actions of receptor atoms i and ligand atoms j:
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In the above equations, 7;; is interatomic distance and C
the electrostatic constant. Our current implementation uses
values for partial charges g;, Lennard-Jones well depths ¢;, and
Lennard-Jones minimal distances p; = 2% o; from the AMBER
force field [[14].

The intermolecular potential energy is used directly to rank
ligand-receptor conformations. (Because we make the rigid
body assumption for both molecules, intramolecular interac-
tions are not calculated.) This value is displayed to users which
they are challenged to reduce as much as possible. By this
mechanism, users are encouraged to manipulate the ligand to
discover local and global potential minima.

The force approximation used for feedback is calculated
from the gradient of the potential approximation. For torque,
the cross product between each ligand atom’s displacement
vector (from the center of mass) and the force from the
interaction between the ligand atom and each receptor atom
can be used, similar to [18]. However, torque and force are
not handled at the same time due to the limitations of the
particular three axis haptic device. The operator can hold one
button down for translation movement and force feedback, or
a different button for angular movement and torque feedback.
These calculations are done using an all-atom cloud model
between ligand and receptor.

High DOF haptic devices may not be available for some
users. The method to convert user input and force feedback
can be adapted for other devices that support various methods
of input and force feedback. A device might allow the user to
touch the ligand on screen, or might have a vibration motor
for force feedback. A deployment of this method for a large
amount of users would have to adapt to many input/output
devices available to the users.

C. Force Feedback

The energy potential approximation is highly sensitive to the
position of the atoms due to the nature of the Lennard-Jones
potential. Because of these large differences between low
and high energy approximation values, a logarithmic scaling
function (@) is used to bring the values into a smaller range for
force-feedback. Energy values can be scaled logarithmitically
to reduce the sudden differences in energy as seen in Figure [2}
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Fig. 2. Scaled potential energy approximation near the native bound
conformation of human class I MHC receptor bound to ligand TellP (PDB
3H9S)

where E is the original energy value and Ej is energy rescaled.
To prevent sudden device tremors and confusion with force-
feedback, the feedback vector is time-smoothed according to:

v = S(Vi — Vo), S

V; is the new force-feedback direction, V; is the eventual
target feedback direction, and Vg is the current force-feedback
direction. S is an adjustable factor that increases or decreases
the speed at which V; reaches v;. This proportional time delay
applied to each frame of the program maintains the need for
quick changes in feedback for extreme energy differences, as
well as smooths out the general noise in the scaled energy ap-
proximation. Higher values of S “tighten” the force-feedback
with § = 1 resulting in no time delay. A value of § = % was
used in the study to balance stability with responsiveness.

After scaling and proportional time delay, the resulting
vector is passed to the haptic device for output. With all
of these combined, a maximum threshold for force output
through the haptic device is unnecessary. The force-feedback
effect strength scale can be adjusted for the user’s comfort. In
addition to force-feedback scaling, the user can zoom in and
out to increase or decrease the device sensitivity.

The 3 degree of freedom haptic force feedback device
described may not be available to all users, so adaptations
may be needed for other input devices. Vibration force feed-
back motors are present in many mobile phones and video
game controllers, thus requiring the three dimensional force
feedback vector to change to a scalar response.

Fig. 3. Users operating the haptic device and laptop running Haptic-Guided
Ligand Docking Tool.



D. Roadmaps

Roadmaps are constructed similar to the PRM method.
However, specific user ligand conformations are used as
input conformations. First, conformations are sampled from
Haptic-Guided Ligand Docking Tool by recording user ligand
conformations where each conformation is no more than 0.1A
apart. Ligand conformations of an energy greater than a high
potential energy threshold Ejs4x are not recorded.

An edge between two ligand conformations (ci,c¢) is
weighted by a function of the difference between the max-
imum potential energy among interpolated ligand confor-
mations between the start and end conformation, ¢; =
50,81,--.,8n = ¢, and the initial potential energy E(c;). The
edge weight, W;;, is In(AE + 1) where the difference in
energy, AE, is max(E(so),...,E(sy)) — E(c1). Therefore, edges
of decreasing potential energy are given a weight of 0,
otherwise the weight reflects an energetic traversal cost. This
is needed to identify shortest paths using Djikstra’s algorithm.
Edges are calculated for every pair of conformations in both
directions. New roadmaps are built from existing roadmaps
by appending them with new user sets using the incremental
roadmap generation method [32].

IV. RESULTS
A. Performance

In order to quantify the computation time for the interactive
system, we captured runtimes that reflected the potential calcu-
lation and the impact of model rendering and resolution. Our
method uses multiple threads to improve overall performance
and provide smooth force-feedback. One thread repeatedly
updates potential energy, averaging about 12 calculations per
second. Force-feedback and scene drawing are handled on
another thread, using the most recent results of the potential
energy thread to calculate force. The scene is drawn using the
isosurface representation for higher performance.

TABLE I
RUNTIME PERFORMANCE OF MAIN THREAD WITH ISOSURFACE MODEL
POLYGON COUNT

Resolution
(Chimera setting)

Polygons in Isosurfaces | Time per Frame (ms)

- 0 (No Drawing) 18
3 3160 21
2 7840 23
1 60184 51

The polygon count in the isosurface vs. main thread perfor-
mance can be seen in Table[ll Recall that model resolution can
be adjusted without affecting the energy and force calculations.
In Table [l the first entry is the baseline performance, force
feedback and program overhead, when drawing no models.
We also studied the impact of model resolution. In Table [I|
resolution corresponds to the isosurface model resolution
setting from Chimera. Polygon triangles are more efficient
for GPUs to render than realistic atomic spheres, of which
TellP and MHC combined have 3027 atoms. Together, this
multi-threaded environment produces a real-time sensation of

the atomic forces modeled in the energy approximation on
commodity hardware with a visual and haptic touch feedback
frame rate of about 42 frames per second (about 23 mil-
liseconds per visual and haptic touch feedback frame) using
61.4MB memory on a commodity laptop with an AMD A6-
5200 APU chipset with a 4-core CPU 2GHz clock rate and
Radeon HD 4800 GPU.

B. Haptic-Guided User Sampled Conformations

In order to capture conformations for roadmap generation,
data from three users with two runs per user were recorded.
Each user run contributed 1000 conformations, shown in
Figure [4] It is interesting to notice that different strategies
are implemented by users, represented by distinct colors in
Figure [4] The inset shows details around negative energy con-
formations. There are particular locations where users would
focus exploration before investigating other locations, such as
“User 3” (blue) between 2 and 4 A RMSD and the cluster
generated by several users near the native conformation.Also,
the area around the native conformation had been densely
explored despite the fact that users were not explicitly aware
of the native conformation location.

Tle+12

User 1Run 1
L User 1Run 2 B LR e,
Tes10 * User2Run1 N 4
User 2 Run 2
* User3Run1
° User3Run2

Te+08
16406 : 8

10000 ) b
sl

Energy Approximation (KCal/Mol)

aaaaa

2 4 5 6
RMSD From Native State (angstroms)

Fig. 4. RMSD and potential energy for automatic and manual haptic-guided
conformations. The energy is shown on a logarithmic scale.

C. Multi-user Roadmaps

Once we obtain sets of different conformations from all
user runs, they can be combined to generate roadmaps, as
explained in Section The samples from Section
were used to build the roadmap. Each subsequent user ex-
tended the roadmap iteratively. Table [I} shows the number of
conformations and edges created for each run.

For comparison against the roadmap of haptic-guided con-
formations, a roadmap was built with 6000 Gaussian dis-
tributed rigid-body ligand conformations centered at a mean of
0A when the ligand is in a docked conformation, with 5A in
translational and 5° in rotational standard deviations. 88,758
weighted edges were created between these conformations.

All roadmap conformations were connected by nearest
neighbors (K = 10) using the scaled euclidean distance metric,



TABLE I
ROADMAPS FROM HAPTIC-GUIDED CONFORMATIONS AND GAUSSIAN
DISTRIBUTED CONFORMATIONS.

Data type Cumulative sets Conformation | Edge
(User,Run) Count Count

(1,1) 1000 12516

(1,D,2,1) 2000 25246

(1,1),(2,1),(1,2) 3000 37424

Haptics (1,1),(2,1),(1,2),(3,1) 4000 50240
(1,1),(2,1),(1,2),(3,1),(2,2) 5000 63126
(1,1),(2,1),(1,2),(3,1),(2,2),(3,2) 6000 75750

Gaussian - 6000 88758

and then a K-pair = 10 component connection method to
connect “islands” of connected conformations.

Roadmaps of user sampled conformations are created by
incremental construction, using the method presented in [32].
Building roadmaps incrementally also requires less computa-
tion and is online, enabling the roadmap constructor to recieve
new user sets during runtime. After the first roadmap of 1000
samples is built, we create successive roadmaps by importing
another set of user conformations and connecting.
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Fig. 5. Potential energy through the same query for constructed roadmaps.

Path completion is the normalized amount of total RMSD traveled in query
path. The energy is shown on a logarithmic scale.

Finally, queries were performed from a start ligand confor-
mation about 5.02A RMSD distance from the known native
conformation of 3H9S using Djikstra’s shortest weighted path
method. As user sets were combined into larger roadmaps,
the resulting query path became smoother with less peaks or
energy barriers to overcome as seen in Figure [5] The path
resulting from 6 user sets, shown in blue, also has the least
potential energy as it approaches the native conformation.

The resulting query from the Gaussian roadmap, displayed
in black, also contains less pronounced energy peaks. How-
ever, recall that the Gaussian ligand conformation samples
were generated with a centered mean around the known native
conformation while the users did not know the precise native
conformation and had only the force feedback to guide them.
Therefore, the Gaussian sampler could not be applied to new
ligand receptor pairs of unknown native conformation where
the program doesn’t require a known native conformation.

V. CONCLUSION AND FUTURE WORK

To our knowledge, this is the first work that investigates
molecular docking by combining haptics and crowdsourced
multi-user path planning. Roadmaps built from a small number
of haptic-guided user trajectories produced paths of low,
smooth potential energy to the native conformation where an
automated sampling method required full knowledge of the
native conformation. We are currently undertaking a larger
crowdsourcing study and expanding the Haptic-Guided Ligand
Docking Tool to other input devices. By supporting vari-
ous commodity input/output hardware devices, a larger user
base could be leveraged. The iterative nature of roadmap
construction can be integrated easily with streams of new
user conformation sets and resulting roadmap quality can
be monitored over time. Also, we are exploring kinematic
linkage extensions that will allow us to represent molecular
flexibility. Implementing molecular flexibility would enable
Haptic-Guided Ligand Docking Tool to find conformations
that a rigid body model couldn’t.
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