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Motivation

Can we
create such
robots’




Motivation

e —

Uncertainty in tasks Programming complexity
and environment beyond human imagination

Adapt to humans

How can we fulfill Hollywood’s vision of future robots!?

® Smart Humans? Hand-coding of behaviors has allowed us to go very far!
® Maybe we should allow the robot to learn new tricks, adapt to situations, refine skills?
® “Off-the-shelf” machine learning approaches? Can they scale!?

B Ve need to develop skill learning approaches for autonomous robot systems!




Important Questions

l. How can we develop efficient motor learning methods!?

ll. How can anthropomorphic robots learn basic skills
similar to humans?

lll. Can complex skills be composed with these elements!?
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Example:

Internal and external state X;, action uy.




Modeling Assumptions

@ Autonomous Learning System: Modeled by a
policy that generates action Uy in state X;.

Teacher: Evaluates the performance and
rates it with 7.

S ——

Environment: An action u; causes the system
to change state from X; to X;.

Model in a perfect world: x;.1 = f(x;, uy)

Model in the real world: X341 ~ p(Xt+1 |Xt> ut)




Modeling Assumptions

@ Autonomous Learning System: Modeled by a
policy that generates action Uy in state X;.

How can we model a behavior with “rules’’?

Can we use a deterministic function u; = 7(x;)?

Stochasticity is important:
- needed for exploration
- eases algorithm design
- reduces the complexity
- optimal solution can be stochastic
- can model variance of the teacher

Hence, we use a stochastic policy:

u ~ (g xe) = p(ug]xe(0)




Let the loop roll out!
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Path distributions
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p(T) = p(X0) H P(Xet1]xe, ug ) m(uexy)
t=0
\ \ l \ l Path rewards:
G @ @ r(r) = Zatr(xt, uy)




A What is learning?
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In our model:
Optimize the expected scores

J(0) = B, {r(r)} = /Tr po (7Y (F)dr

of the teacher.

Peters & Schaal (2003).
Reinforcement Learning

for Humanoid Robotics,
HUMANOIDS
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Imitation Learning

Given a path distribution, can we reproduce the policy!?

D(pe(7T)||p(T)) — min Imitation

® only adapt the policy
parameters 0O

® model-free, purely sample-
based

® results in one-shot and
expectation maximization States

: —>

algorithms

Actions




Reinforcement Learning

Given a path distribution, can we find the optimal policy?

® Goal:

® Optimization function is the expected reward

J(0) = /Tpg(T)’l“(T)dT

® This part usually results into a greedy, softmax updates or a
‘vanilla’ policy gradient algorithm...

® Problem: Optimization Bias




Success Matching

“When learning from a set of their own trials in iterated decision problems,

humans attempt to match not the best taken action but the reward-weighted
frequency of their actions and outcomes” (Arrow, 1958).

Can we create better policies by matching the reward-
weighted previous policy ?

Observed or Exploratory Policy A New Policy
Match

Successes

Actions

- States

= Failure (low reward)

Many related frameworks, e.g., (Dayan&Hinton 1992;Andrews,’03;Attias,’04;Bagnell,’03;Toussaint,’06;...). 14




AN J llustrative Example
- Foothold Selection

|
“ —1_*_ \.A(

VQV* _u._;-

Match successful footholds! 5




Reinforcement Learning
by Reward-Weighted Imitation

Matching successful actions corresponds to minimizing the Kullback-Leibler ‘distance’
D(po(7)||r(r)p(r)) — min

For a Gaussian policy 7(u|x) = N (u|¢(x)? 0, 0°), we get the update rule

Or+1 = (" R®) '@ RU

New Policy Parameters Features Rewards Actions

Peters & Schaal (2007). Policy Learning for Motor Skills, International Conference on Machine Learning (ICML)
Kober & Peters (2009). Policy Search for Motor Primitives in Robotics, Advances in Neural Information Processing Systems (NIPS) 16




Resulting EM-like
Policy Search Methods

This insight has allowed us to derive a series of new
reinforcement learning methods:

® Reward-Weighted Regression (Peters & Schaal, ICML 2007)
® PoWER (Kober & Peters, NIPS 2009)

® [aWER (Neumann & Peters, NIPS 2009+ICML 2009)

® CrKR (Kober, Oztop & Peters, R:SS 2010; [JCAI 201 1)

All of these approaches are extensions of this idea.

Our follow-up approach “Relative Entropy Policy
Search” (Peters et al.,AAAI, 2010; Daniel et al., AlStats
2012) also relies on most of these insights.
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A Blue Print for Skill Learning?

Task Parameters

»  Activation Desired
ll Behavior )
ad Cortext g Primitives » Learning
> ' Signal
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Outline

- How can robots

learn elementary Desired
behaviors!? B havior
-

- How can behaviors
be adapted to new
situations?

- - .- - - -

- How can execution
on an unknown
system be learned?

20




Motor Primitives

How can we represent, acquire and
refine elementary movements!

® Humans appear to rely on context-driven motor
primitives (Flash & Hochner, TICS 2005)

® Many favorable properties:
® |nvariance under task parameters
® Robust, superimposable, ...

W Resulting approach:
® Use the dynamic system-based motor
primitives (ljspeert et al. NIPS2003; Schaal, Peters,
Nakanishi, ljspeert, ISRR2003).
® |[nitialize by Imitation Learning.
® Improve by trial and error on the real system
with Reinforcement Learning.

pA



Motor Primtives

Task/Hyperparameter

Trajectory Plan
Dynamics

Linear in learnable
Canonical »=a,(B,(g—x)-v) Policy Parameters
Dynamics

Local Linear
Model Approx.

(lispeert et al., NIPS 2003; Schaal, Peters, Nakanishi, ljspeert, ISRR 2003)

22




Acquisition by Imitation

Teacher shows the
task and the student
reproduces it.

® maximize similarity

A Imitation

Action

Kober & Peters (2009). Learning Motor Primitives, ICRA 23




Self-lmprovement by
Reinforcement Learning

Student improves by
reproducing his
successful trials.

® maximize reward-weighted
similarity

Reward-weighted Self-Imitation
A

Action

- = State

24

Kober & Peters (2009). Policy Search for Motor Primitives in Robotics, NIPS
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Motor Primtives

Task/Hyperparameter

Trajectory Plan
Dynamics

Linear in learnable
Canonical »=a,(B,(g—x)-v) Policy Parameters
Dynamics

Local Linear
Model Approx.

(lispeert et al., NIPS 2003; Schaal, Peters, Nakanishi, ljspeert, ISRR 2003)
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Task Context:
Goal Learning

Adjusting Motor Primitives through their Hyperparameters:

|. learn a single motor primitive using imitation and reinforcement learning
2. learn policies for the goal parameter and timing parameters by reinforcement
learning

Kober, Oztop & Peters (2012). Goal Learning for Motor Primitives, Autonomous Robots




Po— e

" Throwing and Catching...

i




Grasping and
Manipulation

Kroemer, O.; van Hoof, H.; Neumann, G.; Peters, J. (2014). Learning to Predict Phases of Manipulation Tasks as Hidden States,
Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA).
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Composition

Task Parameters
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ll Behavior )
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Let us put all these elements together! |




Applying the Whole
Framework

Steps to Learned Table Tennis Player:
|. Learn several motor primitives by imitation.

2. Self-lmprovement on repetitive targets by reinforcement
learning.

3. Generalize among targets and hitting points.

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.
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Demonstrations

Demonstrations
with Kinesthetic Teach-In

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.




Select & Generalize

From Imitation Learning
we obtain 25 Movement
Primitives

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.




Covered Situations

Demonstration
® Test set

1
o
N

E
=
N
=
9O
=
@
o
(o

!
o
o

-0.2 0
Position xinm

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.




Self-Improvement

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.




Changed Primitive
Activation

Orininal MP distribution on the hitting manifold Learned MP distribution on the hitting manifold

Positionzinm
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(a) Before training. (b) After training.

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.




Current Gameplay

Mulling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in
Robot Table Tennis, International Journal on Robotics Research.




Current Problems

Problem |: Workspace is too limited.
Problem Il: Arm accelerations are too low.

Problem lll: Limited reaction time.
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.. Problem lll: Reaction Time




Reactive Opponent Prediction

o
o

o
w

Wang, Z. et al.

Probabilistic Mo
of Human Move
for Intention Infg
R:SS 2012, IJRR
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Opponent Predictiom

Probabilistic Modeling of Human
Movements for Intention Prediction

prototype system

Z. Wang, K. Muelling, M. Deisenroth,
B. Schoelkopf, and ). Peters

Wang, Z. et al. Probabilistic Modeling of Human Movements for Intention Inference, R:SS 2012, IURR 2013
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Extracting Strategies
from Game Play

] =
-~

-

Miulling, K. et al.
(2014). Biological
Cybernetics.




Extracting Strategies from Game Play

Weights of the individual reward features

Weights' of

the most
Opponent
relevant Elbow
features!
Smash
Distance to the or not

Edge of the Table

Angle of Incoming
Bouncing Ball

Velocity
of the Ball

Distance to
the Opponent

Movement Direction
of the Opponent

Mdulling, K. et al. (2014)
Biological Cybernetics.
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It’s not all Table Tennis...

Industrial Application: Key bottleneck in manufacturing is the
high cost of robot programming and slow implementation.

Bosch: If a product costs less than 50€ or is produced less
than 10.000 times, it is not competitive with manual labor.

Assistive Robots: In hospital and rehablitation institutions,
nurses need to “program” the robot — not computer scientists.

Robots@Home: Robots need to adapt to the human and “blend
into the kitchen”.

46




Kroemer, O.; Detry, R.; Piater, J.; Peters, J. (2010). Grasping with Vision Descriptors and Motor Primitives, (ICINCO).

Transfer from
. Robot Table Tennis

Grasping with Dynamic Motor
Primitives

i .

R . o o o o :!' By RIS ] - sll.w:\.‘. BRI
Hitting a ball: Velocity at hitting point = | w1y
—— =t
/
Reaching and grasping
® Avoiding obstacles

® Approach direction

® Adjusting fingers to object



Phases of
Manipulation

® Manipulations consist of sequences of phases™

——3» Reach =% Load =% Lift =3 Hold == Replace =% Unload —>

® Effects of actions depend on the current phase

|
® Phase transitions are constraints and subgoals of tasks

Kroemer, O.; van Hoof, H.; Neumann, G.; Peters, J. (2014). Learning to Predict Phases of Manipulation Tasks as
Hidden States, ICRA 48




Transfer from
Robot [able Tennis:
First Examples

Phase: |

Demonstration of Pouring

Kroemer, O.; van Hoof, H.; Neumann, G.; Peters, J.
(2014). Learning to Predict Phases of Manipulation
Tasks as Hidden States, Proceedings of 2014 IEEE
International Conference on Robotics and
Automation (ICRA).

Lioutikov, R.; Kroemer, O.; Peters, J.; Maeda, G.
(2014). Learning Manipulation by Sequencing e

Motor Primitives with a Two-Armed Robot,

Proceedings of the 13th International Conference 4 ‘
on Intelligent Autonomous Systems (IAS).

Grasping thegggplant




Outlook

Robotics

and
Control Robot

Skill

Learning

Machine
Learning
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Robotics & Control

Robot Grasping o

and Manipulation - 3

i b (Kromer, Peters, Robotics & 8 0
‘“!w Autonomous Systems, 2010) g §
J 25
5
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Robotics £ 0
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Control 2 =

High-Speed

Real-Time Vision

(Lampert & Peters,
Journal of Real-Time
Vision)

Physics as prior
for Learning in

Planning & Control
(Nguyen-Tuong & Peters, ICRA 2010)

|
‘ . : Optimal Control
? Tactile Sensing & (Kroemer & Peters, NIPS 201 1)
] Sensory Integration
Nonlinear Robot Control (Kroemer, Lampert & Peters, IEEE
(Peters et al, Autonomous Robots, 2008) Trans. Robotics, 201 1) 5



Bayesian

Machine Learning 2%z

o BGP model
M d I L . =|-True objective
odel Learning L4 e
Much more (Nguyen-Tuong & Peters, %t\y & \\ /
Reinforcement Advanced Robotics 2010) =1 ? 4
8

Learning...

(Peters et al, Neural
Networks 2008;
Neurocomputing 2008)

- Parameters 6

—— GP SE-ARD
GP NN
| ====mGP

Maximum Entropy

(Peters et al., AAAI 2010;
Daniel, Neumann & Peters,
AlStats 2012)

Probabilistic Movement Representation
(Paraschos et al. NIPS 2013)

Policy Gradient

Manifold Gaussian Processes Methods

. . (Calandra et al, 2014) (Peters et al, IROS 2006)
Real-Time Regression

(Nguyen-Tuong & Peters, Neurocomputing 201 |)

- | Ot—1 —— Ot | Ot+1| ---

: <} >§ly&l
I e

Machine |

Learning Machine S e

for Motor . Pl

Games Learning Pattern Recognition in

= (Wang, Boularias &

= Time Series
Peters, AAAI 201 1)

(Alvarez, Peters et al., NIPS 2010a;
Chiappa & Peters, NIPS 2010b)




Biological Inspiration and
Application

Brain-Computer Interfaces with ECoG
for Stroke Patient Therapy

(Gomez, Peters & Grosse-Wentrup, Journal of
Neuroengineering 201 1)

Brain Robot
Interfaces

(Peters et al., Int. Conf.

on Rehabilitation
Robotics, 201 1)

Computational Models
of Motor Control & Learning

Understanding

Human Movements

(Mdlling, Kober & Peters,
Adaptive Behavior 201 )
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Conclusion

Motor skill learning is a promising way to avoid programming
all possible scenarios and continuously adapt to the
environment.

We have efficient Imitation and Reinforcement Learning
Methods which scale to anthropomorphic robots.

Basic skill learning capabilities of humans can be produced in
artificial skill learning systems.

We are working towards learning of complex tasks such as
table tennis.

Many interesting research topics benefit from this work!
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