Control in the Reliable Region of a Statistical Model
with Gaussian Process Regression

Youngmok Yun and Ashish D. Deshpande

Abstract— We present a novel statistical model-based control
algorithm, called Control in the Reliable Region of a Statistical
Model (CRROS). A statistical model is unreliable when its
state passes into a region where training data is sparse.
CRROS drives the state away from such an unreliable region
while pursuing the desired output by taking advantage of the
redundancy in the input-output relationships. We validated the
performance of CRROS by a simulation with a redundant
manipulator and experiments with a robot. In the experiments,
a manipulator called the Flex-finger, for which it is challenging
to build an analytical model, is controlled to demonstrate the
practical effectiveness of the proposed method.

I. INTRODUCTION

Using a statistical model is an attractive alternative to
using an analytical model for controlling a robotic system.
For many systems (e.g., soft robots), it is difficult to build a
suitable analytical model. Even if a suitable analytical model
exists, determination of its parameters (e.g., mass matrix of
manipulator) is another difficult problem. To address this,
many researchers have devised statistical modeling methods
to learn the system model based on input-output trials (i.e.,
training data set). Methods such as neural networks (NN) [1],
support vector regression (SVR) [2], and Gaussian process
regression (GRP) [3] are commonly employed for statistical
modeling. A number of researchers have controlled robotic
systems using models developed with statistical modeling
methods [4].

However, a crucial weakness of the statistical modeling
methods is that the reliability of statistical models is highly
dependent on the training data. Even if a learning algorithm
successfully works with a given training data, it is almost
impossible to reliably predict the behavior of nonlinear
systems when the robot state passes into a region where no
training data is available or where training data is sparse.
A reliable statistical model can be obtained only when the
states are near a region where many training data points have
been collected.

We consider a tracking control problem for the following
system.

y = 9(x) (1)
dim(x) > dim(y)

Y. Yun is a PhD student of Mechanical Engineering, The University of
Texas at Austin, 3.130, ETC, Austin, Texas, USA yunyoungmok at
utexas.edu

A.D. Deshpande is a faculty of Mechanical Engineering, The University
of Texas at Austin, 3.130, ETC, Austin, Texas, USA Ashish at
austin.utexas.edu

where y is the output, x is the controllable state, and g
is a nonlinear system. Since dim(x) > dim(y), multiple
x can work as solution for a given y. A kinematically
redundant manipulator with joint angles as state and end-
effector position as output is a well-known example of such
a system [5]. Another example is a human-like tendon-driven
finger [4]. Our goal is to design a control algorithm to
determine values of x that lead to tracking of a desired
trajectory of y with a statistical model, denoted as f. Here,
for successful control, the statistical model f should reliably
represent g.

We present a statistical model-based control strategy for
the system (1), called CRROS (Control in the reliable region
of a statistical model). The underlying idea is to drive x
toward an area of reliable f by regulating redundant DOFs
while pursuing a desired output trajectory. With a statistical
modeling method, unreliable f is inevitable in sparse data
regions, but CRROS is able to avoid these unreliable regions.
The first step of CRROS is to develop a statistical model with
the GPR algorithm. Since GPR is fully based on the Bayesian
theorem, it provides not only the predicted output for a given
input but also the uncertainty of the prediction. Here the
prediction uncertainty is important because it indicates which
region is reliable. The next step in CRROS is to track a
desired output y by using the pseudoinverse of the Jacobian
of the GPR model, and simultaneously regulate the null space
to drive x toward a region of low uncertainty.

A statistical model, which has different features compared
with an analytic model, demands different control strate-
gies. After the introduction of the GPR, few researchers
have developed feedfoward control strategies with nonlin-
ear model predictive control (NMPC) [6] to address the
model reliability issues. However, because the combination
of GPR with NMPC requires considerable computational
burden, the applications have been restricted to only chemical
process control [7][8]. In contrast, CRROS is an iterative-
optimization-free algorithm, and thus has the potential for
implementation in high frequency control loop or large scale
problems.

II. SYSTEM MODELING WITH GAUSSIAN PROCESS
REGRESSION

In this section, we will build a model for a nonlinear
system with the GPR algorithm [3][9]. An advantage of
the GPR is that the user does not need to actively tune
the complexity and parameters of the model, in contrast
to other nonlinear regression modeling methods including
NN [1][10] and SVR [2]. Once the Gaussian Process (GP)

is defined with a mean and a covariance function, the detailed
model is determined by the database itself. Another merit is
that its prediction output is a probabilistic distribution (i.e.,
Gaussian distribution), and the variance of the distribution
can be regarded as the level of prediction uncertainty. This
uncertainty plays a key role in the development of CRROS.

Let us assume that we have a training data set D for
the system (1), which contains inputs x; and outputs y; :
D = {(xyy)i = 1,2,...,n}, X = [x1 X2...X,],
y=[y1 ¥2...yn] . Given this data set, we wish to predict
the probability density of y. for a new query point x,. In
other words, we want to find p(y«|x., D,), where © is
a hyperparameter set for the GPR model. If the system (1)
has a multidimensional output (MIMO system), its output is
predicted by multiple functions, p(yl|x., D7, ©7), where j
is the index of the output. In this section, for simplicity, we
only explain p(y.|x«, D, ©). The next section describes the
expansion into a multidimensional output.

A Gaussian process is a stochastic process, and it is
defined as a collection of random variables, any finite number
of which have a joint Gaussian distribution. It is completely
determined with a mean function and a covariance function
as:

f(x) =GP (m(x), k(x,x)) 2)

where mean function m(x) = E[f(x)], and covariance
function k(x,x’) = E[(f(x) — m(x))(f(x") — m(x'))]. In
our GP model, the mean function and the covariance function
are determined as:

m(x) =0 3)

-
k(x,x") :1/]2@ exp {_W} +v20(i,5) (4
where dx is defined as x — x'. ©(7,7) is the Kronecker
delta function. A is a diagonal matrix whose elements are
(squared inverse) length scales for input space. VJ% specifies
the overall vertical scale of variation of the latent values, I/TQL
the latent noise variance. The hyperparameter set, denoted
as O, is defined as a set of v¢, v, and A, and determines the
characteristics of a GP model.

The Gaussian process prior is updated with a training data
set based on the Bayes theorem. The posterior is given as
(For the derivation, refer to [3]):

p(yu|x, D,©) = N(k] Ky, s —k/ K 'k,) (5

where K is a matrix whose elements K;; are
covariance function values of k(x;,x;). ki =
k(X X1) .. k(xe,x0)]T. & = k(x«,x.). Fig. 1 helps
in understanding the useful feature of GPR. The posterior
of GP provides large variance for sparse input data regions.

The characteristics of a GP model are determined by the
choice of the hyperparameter set, so selection of an appropri-
ate hyperparameter set is critical for a good representation of
a system. We select a hyperparameter set which maximizes
the log-likelihood p(y|X, ©). For the detail, refer [3].

== Original function
* Training data

—2f| = = =Predicted function

[JPrediction variance

-0.5 0 0.5 1 15 2 2.t
X

Fig. 1. An example of GPR. From a nonlinear function, y = 2 cos(z —
0.5), a training data set was sampled with noise. The Gaussian process
posterior, updated with the training data, provides not only the predicted
function but also its variance, which can be regarded as the level of
prediction reliability. The prediction variance is large where training data is
sparse or noisy.

III. DEVELOPMENT OF CRROS

As stated in Section I, a statistical model has different
features compared to an analytical model, thus it demands a
different control strategy. Specifically, if we apply a conven-
tional control algorithm to a statistical model, it will output
a path of x with no regard to the distribution of the training
data. Since the reliability of the model is highly dependent
on the density of data, this may result in failure of control.
One example of this situation is presented in Section IV. To
address this problem, which all the statistical models suffer
from, we propose a novel control strategy, called CRROS
that takes advantage of the system redundancy to drive the
system states to reliable regions.

The basic idea of CRROS is to first track a desired
output with the pseudoinverse of the Jacobian of the GPR
model, then push the state of the system in a direction
which minimizes the prediction uncertainty on the null space
associated with the Jacobian. This method is inspired by the
solutions to the obstacle avoidance problem in kinematically
redundant robot [5]. In CRROS, the obstacle is the unreliable
region of a statistical model. CRROS is able to achieve three
goals: to track a desired output, to drive the state toward
a region of low uncertainty, and to execute the algorithm
at a high speed, which is essential for robot control. Since
CRROS takes advantages of the Jacobian operation, which
provides a continuous local optimum solution, it does not
need any iterations, and thus allows for high speed control
loop. Other possible algorithms for avoiding sparse data
regions, such as ILC (iterative learning control) [11] or
NMPC [6], involve iterative optimization procedure, and
would require considerable computational time.

A. Preliminary work

To introduce CRROS, we first need to define a number
of mathematical terms which will be used in the next
subsection. The GP in (5) provides two values: predicted
output and variance of the prediction, which can be re-
written with two functions. The first function, f,(x.) in (6),
is for the predicted output at a query point x., and the other
function, fx(x*) in (7), is for the variance (uncertainty) of

the prediction.

fulx) =KK™y (6)
fo(x.) =k — kK 'k, (7)
Next, their Jacobians are calculated as:
O fu(xx)
Tulx,) = lplx)
ok
e —1\T OKx
= (K ') 5" ®)
~ Ofs(xs)
Tolx:) = 0.
— —zij—l% 9)
00X,

The size of both matrixes J, and Jy are 1 x d where d =
dim(x). The term 9k, /0x., commonly used in (8) and (9),
is defined as:
O(k(x4,%1)) O(k(x+,%1))
Ox.[1] Ox.[d]
= - : (10)
3(k(x*,xn)) a(k(x* -,xn))
0%, [1] 0%, [d]

Ok,
).

where x,[¢] indicates the i-th element in the vector x,. In our
case, since the covariance function of GP uses the squared
exponential kernel, each element is defined as:

A6 30) e [(607 AGY)
i =~ i o { -

Y

So far, we have been limited to an one-dimensional output.

Let us expand this problem into a multidimensional output

problem, dim(y) = ¢ > 1. We assume that we do not have

any knowledge of relation between the outputs, a priori, thus

the multi-dimensional output functions are simply stacked
with the one dimensional functions. That is:

f,(c) = [fu(xe) fr(x.) [T 12)
fo(x.) = [f(x) f3(x))T a3)

fi and f§ are for individual outputs, built in (6) and (7) .
Both f,, and fx, are g-dimensional vectors. In the same way,
g x d dimensional jacobian matrixes J,, and Jy are built as:

I (x4) I (%)

Jﬁ(x JE(x.)
J“(X*) = . (14) JZ(X*) = (15)

(%) I3 (%)

Since we want to solve a control problem, we are more
interested in the sum of variances of multiple outputs rather
than individual variances. Therefore, another function and its
gradient are defined as:

fa(x)

q T
ng*))

i=1

f=(x:) = (16)

-

=1

Viz(x.) = a7)

POUER

where f= is a scalar function providing the sum of predic-
tion variances; the variances are already squared values of
standard deviations, thus the sum operation can represent its
total variance. V fz(x.) is a d-dimensional gradient vector
which indicates the direction of the linearized slope of fz at
X, point.

B. Algorithm of CRROS

The system equation g in (1) is modeled with the GP
mean function f,,, and it can be linearized as (18). It can be
rewritten as (19). In the view point of the feedback control,
(19) can be rewritten as (20).

Ay =J,Ax (18)
Ax=J Ay + (1= JfJ,)v (19)
X1 =& (T (e —y0) + Ta =T LT)v) + % (20)

where X; 1 is the next target state to be controlled, X; is the
observed current state. y;;1 is the next desired output. ¥, is
the observed current output. From here, since we are only
interested in the prediction at the point X;, in other words
X, = Xy, we will use J,, instead of J,,(%;). Other notations
will follow this omission rule as well. J, is the Jacobian
matrix for f,. Jf is the Moore Penrose pseudoinverse of J,
and ¢ is a scalar gain. (I; —J;*J),) is a matrix projecting a
vector on the null space associated with J,, where I; is a dxd
identity matrix. v is an arbitrary d-dimensional vector. Here,
the remarkable point is that we can select any v because the
v is projected on the null space which does not affect Ay,
but v can affect Ax. In many robotics applications, v is set
to be a zero vector because it minimizes ||X;+1 — X¢||, in
other words, it is the minimum norm solution. In our case,
v is set in a different way.

In CRROS, we wish to minimize the sum of prediction
variances fz while tracking a desired path. To reduce f=,
we need to consider a direction of Ax to minimize A fz.
The direction of Ax is defined with a direction vector vg:

Viz
IV f=ll
where ¢ is a small positive real number. (21) is a widely used

theorem in gradient-based optimization algorithms [12]. The
change of f=, caused by vy, is defined with v, as (22):

Vin = f=(Re +va) — f2(&) ~ Vs va = —||Vfz]| (22)

vy = argmin (fz(X: +eu) — f=(%:)) = — 1)

“~” is caused by linearization, or the gradient operation.
Now, let us build CRROS’s v whose direction is v4 and
magnitude is (||v,,||. Using (21) and (22), v = —fV f=
where (3 is a control gain for reducing the prediction vari-
ance. v points toward a reliable region in the GPR statistical
model, and its magnitude is proportional to the slope of f=.
Finally, (20) is rewritten with the new v as:

Xt41 = § (J:(Yt-i-l - }A’t) - 5(Id - J:Ju)va) + %
(23)

Because the primary task is to track a desired trajectory, J*
first uses a part of x space, and then the remaining space (i.e.,

‘World

Fig. 2. The configuration of 3-DOF articulated manipulator which is used
in the simulations. The x-y positions of the end-effector y are controlled
by the three joint angles x.

null space) is used for —3V f=. Value of 5 determines how
strongly the algorithm pushes the target state x;, toward the
low uncertainty region. A large value of 3 increases ||X;41 —
X¢|| because the null space is orthogonal to the space of J 7[

IV. RESULTS
A. Simulation of 3-DOF Articulated Manipulator

For validation of the algorithm, we conducted a simulation
with a 3-DOF articulated manipulator. Fig. 2 demonstrates
the configuration of the simulated 3-DOF articulated manipu-
lator. The input x consists of three joint angles and the output
y consists of the x-y positions of the end-effector. Based on
the system configuration, the kinematics are governed by a
nonlinear function g as shown in (24):

y =9(x) (24)
ll COS(l‘l) + lg COS(Il + 172) -+ l3 COS(IEl —+ 2o + 1‘3)

Yi| _
[yg} o [11 sin(z1) + lo sin(xy + x2) + I3 sin(zy + 2 + x3)

where 11,02, and [3 are length of each link. (y in Fig. 2 has
an offset for generality.)

The model of (24) is built with the GPR. For generating
the training data collection, 30 input angles, x, were ran-
domly sampled within 7 /2 rad ranges. This range constraint
has two purposes. The first is to simulate a realistic situation;
most articulated arm actuators have a limited operation
range of motion due to hardware contact and safety. The
second reason is to create a sparse region in the training
data, in order to clearly show the effectiveness of CRROS.
Corresponding training data outputs y were collected using
(24).

Based on the GPR model constructed with the collected
training data, CRROS controlled the manipulator to track a
desired circular trajectory. The simulations were conducted
with three different conditions, 5 = 0.0,1.0 and 10, to
investigate the effect of 5. We assumed observation error and
control error, X = X+ €, ¥ =y + ¢y and X441 = X411 +
€. where ¢ is unbiased Guassian noise. This simulates a
noisy environment for training data collection and trajectory
tracking control. Table I specifies the parameters which were
used in the simulation, and Fig. 3 and Fig. 4 illustrates the
results.

In the first case S = 0, as shown in Fig. 3 (a), (b) and
Fig. 4, the algorithm failed to track a desired trajectory. With
B = 0, CRROS does not consider the distribution of training

* Training data

e Qutput
s Desired path * Training data
3DOF Manipulator e State -
3 Initial point
X 3
2
* g™ * 2 Initial point
~ ¢ .
o % . A% *ﬁé ¥ /
0 3 i : : ﬁ M
X Lk K
4 0 1) 3 17,8 0.5
X 05
¥, 5 |

(a) Result in y space, 8 = 0.0 (b) Result in x space, 5 = 0.0

Yy

(c) Result in y space, 8 = 1.0 (d) Result in x space, 8 = 1.0

(e) Result in y space, 8 = 10

(f) Result in x space, 8 = 10

Fig. 3. Simulation results of 3-DOF articulated manipulator control.
Experiments were conducted with three different conditions, 3 = 0.0, 1.0
and 10. Each row shows the results for different 3 values. The analysis were
performed in y space (left column) and x space (right column). If 8 = 0,
CRROS provides the minimum norm solution, and does not consider the
distribution of training data. As a result, it fails to track a desired trajectory.
In the second and third cases (8 = 1.0, 10), CRROS successfully tracked
a desired trajectory. In y space, their results (c)(e) look similar, but the
state path in x space are significantly different. The path in (f) tends to
be closer to training data points than (d), thus the trajectory has several
sharp curvatures. This is caused by a high gain 8 pushing strongly the state
toward a reliable region.

data, and simply outputs the minimum norm solution. As a
result, the state entered the region with sparse training data,
and this significantly deteriorated the control performance. In
the second and third cases, CRROS successfully tracked the
desired path, and simultaneously stayed in low uncertainty
region. This verifies that the algorithm successfully pushed
the state toward a reliable region by projecting V fz on a
null space. Because the low uncertainty region exists around
a training data point, the trajectory of state space tended to

0 0.2 0.4 0.6 0.8 1
Time

(a) Prediction uncertainty ®) [|Xt+1 — Xel|

Fig. 4. Simulation results of 3-DOF articulated manipulator control. (a)
shows the prediction uncertainty by standard deviation. It is expressed as
V/f=. Because CRROS in the case 3 = 0 does not consider prediction
uncertainty, the prediction uncertainty dramatically increased. After all, this
unreliable model made the control failed. The case 8 = 10 had a slightly
smaller prediction uncertainties during the control time than the case 8 =
1.0. (b) shows the norm of X;i1 — X¢. Initially the first case had the
smallest value because it provides the minimum norm solution. However,
at the end, large error in y space sharply increased the value. For the third
case, CRROS strongly pushed the state to reduce the prediction uncertainty,
and as a result, several peaks appear in the plot.

TABLE I
THE PARAMETERS USED IN THE SIMULATION

Std (ex) | Std (&)
0.02 rad 0.01

Std (ec) | &
0.02 rad | 0.05

I lo I3
1.5] 12| 10

8
0,1,10

be close to those points. This effect was more significant for
the third case because in this case CRROS pushed the state
strongly toward the low uncertainty region. This resulted in
several sharp turns in the state space (Fig. 3 (f)) and longer
travel distances (Fig. 4 (b)). The uncertainty in this case is
the lowest during the control time as shown in Fig. 4 (a).

B. Experiment with Flex-finger

In the previous subsection, we presented simulation results
of a 3-DOF articulated manipulator system to validate our
methodology. Of course, for such a system the control
engineers could also use an analytical model. However, there
are a number of nonlinear systems whose models cannot be
represented analytically. Additionally, many a times robot
designers stay away from optimal designs only to ensure
that analytical models can be developed for their systems.
A significant motivation of CRROS is to provide control
schemes for a wide range of systems. To demonstrate the
effectiveness of our method, we selected a robotic system
whose analytical model is difficult to derive.

The robot is called the Flex-finger which is designed to
study various features of the human finger (Fig. 5). The
robot is a highly nonlinear system. Its main body is made
of a spring-tempered steel plate and plastic bones, which
act as phalanges and joints, but do not have a deterministic
rotational center. Four compliant cables (corresponding to the
human tendons), consisting of strings and springs, connect
the plastic bones to the motors in order to generate flex-
ion/extension motion. Four servo motors (corresponding to
human muscles) change the cable lengths, which leads to a
change in the pose of the Flex-finger. The pose of the finger-
tip is observed by a motion capture system (corresponding
to the human eye).

a2
Spring-tempered
Steel Plate
-

Motion Capture
Marker

(b) Overview of Flex-finger

Fig. 5. A manipulator called the Flex-finger was used to validate the
performance of CRROS. The Flex-finger consists of a spring-tempered
steel plate, plastic bone, string, spring, servo motor and pulley. Compliant
elements and nonlinear tendon configuration make it difficult to build an
analytical model.

The objective in this experiment is to control the tip of
the Flex-finger to track a desired path, which is similar
to the control of the human finger with muscles. In this
case, going back to (1), x consists of the rotational angles
of servo motors and y consists of the x-y coordinates of
fingertip position. This is a challenging control problem.
First, the kinematics of the system are highly nonlinear.
Particularly, there are several bifurcation points due to the
characteristics of spring-tempered steel plate. This means
that for a small change in x, y can dramatically diverge.
Second, the available operation range of x is quite complex.
The servo motor always needs to generate a minimum load
on the cable to prevent cables from slacking, which severely
affects the available operation range. The problem is that
the operation range of each servo motor is not fixed but is
dependent on the configuration of other cables. Because of
these reasons, it is impossible to generate an analytical model
to represent this system.

For collecting the training data, 500 motor angle values,
or x, were supplied and corresponding finger positions, or
y, were recorded. The input values were randomly selected
from within the available operation range. A GPR model
was built based on the training data. CRROS algorithm was
implemented in C++ (with RTAI Linux) and executed in a
desktop with Intel Xeon 3.1 GHz CPU and 8 GB RAM.
In the program, the control loop ran at 30 Hz. The loop
frequency was mainly determined by the communication
speed with servo motors, not by the speed of CRROS. The
execution time of CRROS was less than 10 ms. The tracking
experiment results are shown in Fig. 6 and in the video [13].

As Fig. 6 (a) and (b) illustrate, overall CRROS success-
fully tracked the desired path with reasonably low errors. As
soon as the CRROS algorithm starts, the output immediately
converged into the desired trajectory and which led to
reduction in prediction uncertainty. The tracking was good

60[< x
o X XX
x Training Data :*} & ’g/ B
Desired Path | x ; Ve
" Actual Path) ;ﬁé
e X s
)3(x
¥ X .
g * *x ¥
g 0 ; X
i;jxx
72 X x
Initial point x :X x
—4 {
. A
x
-6
-30 20 -10 0 10 20 30

(a) Results from control experiments with the Flex-
finger (in output space)

30

0 20 40 60
sec

(b) Prediction uncertainty and error (||yges — yl|)

Fig. 6. For the validation of CRROS, we controlled the Flex-finger to
track a desired trajectory. (a) and (b) illustrate that successful control was
achieved with reasonably low error. As soon as the control starts, CRROS
reduced both the tracking error and the prediction uncertainty. Because area
A is a sparse training data region, the prediction variance becomes higher
even though CRROS worked to minimize it. In area B, friction led to jerky
motions, resulting in peaks in error plot. The video [13] shows the detail
of the Flex-finger experiments.

until the finger tip reached area A. CRROS tried to minimize
the prediction uncertainty, but because the area A is a region
with sparse training data, the rise of prediction variance
was inevitable, leading to a peak in error plot. Another
interesting region is area B. As shown in Fig. 6, its prediction
uncertainty is low because it is a region with dense training
data. Nevertheless, the fingertip made several error peaks and
exhibited jerky motions. Our analysis showed that in order to
create the output in area B, high cable tensions are required,
which caused friction and jerky motions.

V. CONCLUSION AND FUTURE WORKS

We have presented a statistical model-based control algo-
rithm using GPR, called CRROS. CRROS drives the state
toward a low uncertainty region while tracking a desired
output trajectory. The algorithm is validated by simulation
with a 3-DOF articulated manipulator and experiments with
the Flex-finger, a robotic system which is difficult to model
analytically. The simulation and experiments with the Flex-
finger demonstrates the potential of the novel method. We are
able to control this highly nonlinear system using the statis-
tical model developed with GPR, while keeping the states in
the reliable region. Moreover, since CRROS takes advantages

of the Jacobian operation which provides a continuous local
optimum solution, it does not need any iteration, and thus
allows for high speed control loop, which is essential in many
robotics applications.

There are a number of ways for improving the presented
method. The first one is the development of a more system-
atic data collection method. Because the performance of the
statistical model-based control is highly dependent on the
distribution of a training data set, a better strategy of data
collection would lead to better control performance. Another
important issue is heteroscedastic noise, or input-dependent
noise [14]. Uncertainty of prediction is caused by two
sources: sparsity of data and measurement noise. CRROS is
using a standard GP algorithm which assumes a consistent
noise level. The improved CRROS algorithm with a modified
GP which can cover the heteroscedastic noise is a part of
our ongoing works. Lastly, connecting with reinforcement
learning and policy searching algorithms [15][16] might lead
a better statistical model-based control algorithm.

REFERENCES

[11 C. M. Bishop, Neural Networks for Pattern Recognition. New York,
NY, USA: Oxford University Press, Inc., 1995.

[2] A. Smola and B. Schlkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, no. 3, pp. 199-222, 2004.

[3] C. E. Rasmussen and C. K. 1. Williams, Gaussian processes for
machine learning. The MIT Press, 2006.

[4] A. D. Deshpande, J. Ko, D. Fox, and Y. Matsuoka, “Control strategies
for the index finger of a tendon-driven hand,” The International
Journal of Robotics Research, vol. 32, no. 1, pp. 115-128, 2013.

[5] C. Klein and C.-H. Huang, “Review of pseudoinverse control for
use with kinematically redundant manipulators,” Systems, Man and
Cybernetics, IEEE Transactions on, vol. SMC-13, no. 2, pp. 245-250,
1983.

[6] F. Allgower, T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J.
Wright, “Nonlinear predictive control and moving horizon estima-
tionan introductory overview,” in Advances in control, pp. 391-449,
Springer, 1999.

[7] B. Likar and J. Kocijan, “Predictive control of a gasliquid separation
plant based on a gaussian process model,” Computers and Chemical
Engineering, vol. 31, no. 3, pp. 142 — 152, 2007.

[8] J. Kocijan, R. Murray-Smith, C. Rasmussen, and A. Girard, “Gaus-
sian process model based predictive control,” in Proceedings of the
American Control Conference, vol. 3, pp. 2214-2219, 2004.

[91 G. Gregori and G. Lightbody, “Gaussian process approach for mod-
elling of nonlinear systems,” Engineering Applications of Artificial
Intelligence, vol. 22, no. 45, pp. 522 — 533, 2009.

[10] D.F. Specht, “A general regression neural network,” Neural Networks,
IEEE Transactions on, vol. 2, no. 6, pp. 568-576, 1991.

[11] S. Mondal, Y. Yun, and W. K. Chung, “Terminal iterative learning
control for calibrating systematic odometry errors in mobile robots,”
in IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, pp. 311-316, 2010.

[12] M. J. Powell, “A fast algorithm for nonlinearly constrained optimiza-
tion calculations,” in Numerical analysis, pp. 144-157, Springer, 1978.

[131 Y. Yun and A. D. Deshpande, “Experimental result video,”
http://youtu.be/mptKKNfLcLE, 2014.

[14] K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard, “Most likely
heteroscedastic gaussian process regression,” in Proceedings of the
24th international conference on Machine learning, pp. 393-400,
2007.

[15] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on Machine Learning, pp. 465-472, 2011.

[16] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning
in robotics: A survey,” International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238-1274, 2013.

