
Planning Preference-balancing Motions with Stochastic Disturbances

Aleksandra Faust1, Nick Malone1, and Lydia Tapia1

Abstract— Robots that operate in real-world conditions often
perform complex tasks in the presence of stochastic distur-
bances. The source of the disturbances can be widely varied,in-
cluding but not limited to, hardware imperfections, atmospheric
changes, and measurement inaccuracies. These disturbances
pose a great control challenge because stochastic drift induces
changes in the robot’s speed and direction. This paper presents
an online trajectory generation method for robots to complete
preference-balancing tasks under stochastic disturbances. Task
learning is done off-line assuming no disturbances, and then
trajectories are planned online in the presence of disturbances
using the current observed information. We model the robot
as a stochastic control-affine system with unknown dynamics
impacted by a Gaussian process. This paper introduces a
supervised machine learning method in lieu of a traditional
greedy policy. We verify the method in simulation for an
aerial vehicle cargo delivery and a flying inverted pendulum
task. Results show the presented method works on a range
of problems and outperforms the deterministic method in the
presence of non-zero mean disturbances.

I. INTRODUCTION

Real-world conditions pose many challenges to physical
robots. One such challenge is the introduction of stochastic
disturbances that can cause positional drift. For example,
atmospheric changes, hardware wear-and-tear or measure-
ment inaccuracies are possible sources of stochastic dis-
turbances [3]. Disturbances, along with complex nonlinear
system dynamics, make traditional solutions (e.g., adaptive
and robust control modeling), which solve this problem using
full system dynamics knowledge, difficult or intractable [16].

We are concerned with a specific class of robotic motion
plannings tasks described with set of preferences,preference-
balancing tasks(PBT) [9]. PBTs have a single goal (desti-
nation) state, but the trajectory that completes the task needs
to meet opposing preferences, such as speed and quality.
As a motivational example, we consider a quadrotor with
a suspended load task (Fig. 1a). The goal of this task is
to fly a quadrotor to a goal state while minimizing the
residual oscillations of the freely suspended load. With its
complicated dynamics, this problem is difficult for a human
to demonstrate, which renders impractical methods that rely
on expert demonstration [1]. This task is a PBT because
it requires balancing opposite preferences, e.g., moving the
quadrotor and not agitating the cargo.

This paper presents a novel online trajectory generation for
PBTs under stochastic disturbances. The method uses a state-
value function approximation learned deterministically off-

*Faust was supported in part by NM Space Grant; Malone and Tapia
were supported in part by the National Institutes of Health (NIH) Grant
P20RR018754 to the Center for Evolutionary and TheoreticalImmunology.

1The authors are with Computer Science Department, University of New
Mexico, USA{afaust,nmalone,tapia}@cs.unm.edu

The authors would like to thank Peter Ruymgaart for helpful discussions
on modeling the external disturbances.

line with reinforcement learning while assumingno stochas-
tic disturbances. The learned state-value function approxima-
tion is then used to generate trajectories that compensate for
non-zero mean stochastic disturbances. The method bridges
the gap between off-line motion planning [17] and controls-
based trajectory tracking [3]. Traditionally, off-line planning
produces either a reference path or trajectory assuming a
stationary environment [17]. Trajectory tracking methodssta-
bilize the system around the reference trajectory by adjusting
for experienced disturbances [3]. For the standard planning-
tracking pipeline to work for PBTs, the reference trajectory
must complete the task, and the trajectory tracking must
minimize the same task preferences used in the planning
phase. The method we propose combines trajectory planning
and tracking into one step,online trajectory planning. Online
trajectory planning has two advantages over the traditional
planning-control pipeline. First,online trajectory planning
does not require replanning if the goal changes. Second,
the method is model-free, meaning that it does not rely
on the analytical knowledge of the system dynamics, and
it generates trajectories without learning the system model,
in contrast to learning-based MPC methods [21].

Robotic systems are high-dimensional systems, most natu-
rally represented with continuous states and actions. Here, we
model the system as an unknown control-affine system [16]
with continuous states and actions. The system is controlled
through acceleration. We assume that we are able to interact
with the unknown system dynamics through a simulator or
available samples. A Gaussian process, defined with its mean
and variance, is used to model the disturbance of the input
[3]. We also assume that the probability distribution can
be measured outside of the planning algorithm [25]. This
can be done, for example, by measuring true acceleration
of the system with an accelerometer and estimating the
error, the difference between the observed and the input
acceleration. The system should perform a given task for
a range of initial conditions. The goal of this work is to be
able to take a task learned with deterministic assumptions,
and adapt it to perform in real-time in the presence of
changing disturbances. The deterministic learning decides
the priorities between the preferences in a deterministic
environment. These learned priorities are then used in an
online planning phase in the presence of disturbances. The
priorities remain unchanged when disturbance are added to
the system. The online planning phase uses another layer of
learning to find inputs that compensates for the disturbances
in order to produce a motion that adheres to the preferences’
priorities.

Our previous work developed anAxial Sumplanner for
deterministic control-affine systems [11]. The planner works
in a batch reinforcement leaning (RL) setting, using an con-



(a) Quadrotor with suspended load (b) Inverted pendulum
Fig. 1. preference-balancing task examples.

tinuous action fitted value iteration (CAFVI) [11], an approx-
imate value iteration method adapted for continuous action
Markov Decision Processes (MDP). Typically, approximate
value iteration-based methods learn an approximation of the
state-value function,V , off-line. Then in a separate phase,
they plan trajectories using a greedy policy with respect to
the learned state-value function approximation [6]. In our
case the state-value function is approximated with a linear
map of features that are selected to be squared preferences
[9]. For instance, the features for the balancing inverted
pendulum task (Fig. 1b) are squares of the pendulum’s
displacement from the upright position, pendulum’s velocity,
and vehicle’s velocity. These features are then weighted by
CAFVI. In the planning phase, we used theAxial Sumpolicy
to approximate a greedy policy by finding the best actions on
each axis and then combining them together. We showed that
the planner based on theAxial Sumpolicy leads the system to
the goal when CAFVI, applied to a control-affine system with
a bounded drift and quadratic features, results in all negative
weights [11]. Although we showed that theAxial Sumcan
compensate for some levels of zero-mean noise [11], [12],
the method stops working in the presence of external distur-
bances. This is because, the external disturbance produces
larger than the allowed drift onto the system. For theAxial
Sumplanner, Lagrangian interpolation finds the best action
on each axis. Here, we propose using supervised machine
learning to find the best action with respect to the current
disturbance. The key extension from [11] is the use of least
squares linear regression in lieu of interpolation to estimate
near-optimal action on each axis. This extension allows us
to apply the method to non-zero mean disturbances with the
only limits being the system’s physical limits.

II. RELATED WORK

Our method uses ideas from reinforcement learning, mo-
tion planning, and control theory. However, it differs from
the classical control methods such as LQR, perturbation tech-
niques, and adaptive controls which all require knowledge
(analytical or learned) of the system dynamics and state-
value function [3]. For example, piecewise linearization has
been used for quadrotor trajectory tracking under wind-gust
disturbances [2]. Another prior approach requires knowledge
of the system dynamics and uses harmonic potential fields for
UAV motion planning in environments with a drift field [20].
Similarly, [23] solves the system’s dynamics. In contrast,our
method is model-free.

Fig. 2. Flow diagram for learning and planning preference-balancing tasks.

Path planning and obstacle avoidance in the presence
of stochastic wind for a blimp was solved using dynamic
programming and augmented MDPs [15]. Other methods
to handle motion planning and trajectory generation under
uncertainties use low-level controllers for stabilization of
trajectories within reach tubes [8], or trajectory libraries [18].
The flying inverted pendulum with zero-mean disturbances
was solved using RL [12] and first principles [4], [14].

A new class of sampling based planning methods op-
timistically narrows the search space [5], [7], [19], [26].
Gradient descent methods for policy approximation work
well in some convex cases. However, they require an estimate
of the gradient, can be stuck in local minima, and can be
slow to converge [13]. In this paper, we show a fast policy
approximation that works for near-linear objective functions.

III. PRELIMINARIES

Our goal is to plan a preference-balancing task on a
control-affine system in the presence of an external stochas-
tic disturbance. Figure 2 describes the planner’s flow. We
assume that RL provides a feature vector,F , and weights,θ,
learned with a method with no disturbances, such as CAFVI
with Axial Sum policy [11]. In the planning phase, we
assume that we have a black-box simulator of the system and
know the current probability distribution of the disturbance.
For instance, assuming the presence of an accelerometer,
let M = [ˆ̈xt−k

ˆ̈xt−k . . . ˆ̈xt−1]
T be a sequence of accel-

eration observations, andT = [ẍt−k ẍt−k . . . ẍt−1]
T be

input applied to the system by the planner at time steps
t−k, . . . , t−1. Then the mean of the disturbance at the time
stept can be estimated asµ(t) = µM −µT with variance as
σ2(t) = Var(M − T ) (the difference between the observed
and applied input). Another more precise method to estimate
the input error is using a Kalman filter [16].

The planner generates trajectories for a physical system.
At every time step,t, the proposed method, Least Squares
Axial Policy Approximation (LSAPA), observes a state,
x(t), while the simulator receives current disturbance levels,
N (µ(t), σ(t)

2
). Sampling the simulator, LSAPA finds a near-

optimal input,u(t), to apply to the system.
We model a robot as a discrete time, control-affine system

with stochastic disturbance,D : X × U → X ,

D : xk+1 = f(xk) + g(xk)(uk + ηk). (1)

Statesxk ∈ X ⊆ R
dx belong to the position-velocity space

and the control input is acceleration,uk ∈ U ⊆ R
du . The

input space is a compact set containing origin,0 ∈ U . The
Lipschitz continuous functiong : X → R

dx×R
du is regular



outside the origin,xk ∈ X \ {0}. The drift f : X → R
dx ,

is bounded and Lipschitz continuous. The non-deterministic
term, ηk, is a Gaussian process with with a known mean
and distributionN (µηk

, σ2
ηk
); it acts as an additional and

unpredictable external force on the system. Time stepk is
omitted from the notation when possible.

As in [11], our goal is to learn a preference-balancing task
that takes the system to the origin in a timely-manner while
reducing along the trajectory preferences given by matrix
Ax = [a1 . . .adg

]. Each of the vectorsai defines a task
preference. For instance, vectorai that corresponds to pref-
erence to reduce the displacement of the inverted pendulum
on the quadrotor, will have components that correspond to
the position of the pendulum be set to one, while the rest of
the components will be equal to zero.

The state-value function approximation is

V (x) =

dg
∑

i=1

θiFi(x). (2)

VectorF (x) = [F1(x), ..., Fdg
(x)]T is a feature vector, and

θ = [θ1, ..., θdg
]T is the parametrization that we learn. The

feature vector is selected with the task in mind,

Fi(x) = ‖a
T
i x‖

2, i = 1, ..., dg. (3)

Greedy policy,h∗(x) = argmaxu∈U V (D(x,u)) is optimal
with respect to the state-value functionV . The problem is
that in continuous action spaces greedy policy calculation
becomes an optimization problem over an unknown objective
functionV ◦D.

RL literature often works withaction-value function, Q :
X × U → R, a measure of the discounted accumulated
reward collected when actionu is taken at statex [24]. In
relation to state-value function, V (2), action-valueQ can be
represented as

Q(x,u) = V (D(x,u)) = .

dg
∑

i=1

θiFi(D(x,u)) (4)

Thus, we learn the approximation for the greedy policy

h(x) = argmax
u∈U

Q(x,u). (5)

IV. METHODS

The Least squares axial policy approximation(LSAPA)
policy extends the method of [11] to handle non-zero mean
disturbances. This is done by first learning feature weights
off-line without disturbances and then using those learned
weights for online trajectory planningwith disturbances.
LSAPA bridges the gap between learning without distur-
bances and planning with them. The method in [11] is appli-
cable to zero-mean disturbances due to the use of Lagrangian
interpolation to find an approximation to the maximalQ
value. The Lagrangian interpolation uses only three points
to interpolate the underlying quadratic function and this
compounds the error from the disturbances. In contrast, our
new method, LSAPA, uses least squares regression with
many sample points to compensate for the induced error.

Specifically the method in [11] describesan axial sum
policy. Consider a fixed arbitrary statex, in a control-affine

system (1) with state-value approximation (2), action-value
function,Q, is a quadratic function of the inputu [11]. Axial
sum policy approximation [11] finds an approximation for
the maximum localQ function for a fixed statex. It works
in two steps, first finding maxima on each axis independently
and then combining them together. To find a maximum on
an axis, the method uses Lagrangian interpolation to find
the coefficients of the quadratic polynomial representing the
Q function. Then, an action that maximizes theQ function
on each axis is found by zeroing the derivative. The final
policy is a piecewise maximum of a convex and simple vector
sums of the action maxima found on the axes. The method
is computationally-efficient, scaling linearly with the action
space dimensionalityO(du). It is also consistent, as the
maximum selections do not depend on the selected samples.

Because deterministic axial policies are sample indepen-
dent, they do not adapt to changing conditions or external
forces. We extend the deterministic axial policies to the
presence of disturbances via LSAPA. LSAPA uses least
squares regression, rather than Lagrangian interpolation, to
select the maximum on a single axis. This change allows
the LSAPA method to compensate for the error induced by
non-zero mean disturbances. We now present finding the
maximum on ith axis using the least squares linear regression
with polynomial features.

Definition Q-axial restriction on ith axis is a univariate
functionQx,i(u) = Q(x, uei).

Q-axial restriction onith axis is a quadratic function,

Qx,i(u) = pT
i [u

2 u 1]T ,

for some vectorpi = [p2,i p1,i p0,i]
T ∈ R

3 based on results
in [11]. Our goal is to findpi by sampling the input space
U at fixed state.

Suppose, we collectdn input samples in theith axis,Ui =
[u1,i ... udn,i]

T . The simulator returns state outcomes when
the input samples are applied to the fixed statex, Xi =
[x′

1,i ... x′

dn,i
]T , wherex′

j,i ← D(x, uj,i), j = 1, ..., dn.
Next, Q-estimates are calculated with (4),

Qi = [Qx,1(u1,i) ... Qx,dn
(udn,i)]

T ,

whereQx,j(uj,i) = θTF (x′

j,i), j = 1, ..., dn. Using the
supervised learning terminology the Q estimates,Qi, are the
labels that match the training samplesUi. Matrix,

Ci =







(u1,i)
2 u1,i 1

(u2,i)
2 u2,i 1

...
(udn,i)

2 udn,i 1






,

contains the training data projected onto the quadratic poly-
nomial space. The solution to the supervised machine learn-
ing problem,

Cipi = Qi (6)
fits pi into the training dataCi and labelsQi. The solution
to (6),

p̂i = argmin
pi

dn
∑

j=1

(Cj,ipi −Qx,j(uj,i))
2 (7)

is the coefficient estimate of theQ-axial restriction. Because
Q is quadratic, we obtain its critical point by zeroing the



first derivative,

û∗

i = −
p̂1,i
2p̂2,i

.

Lastly, we ensure that the action selection falls within the
allowed action limits,

ûi = min(max(û∗

i , u
l
i), u

u
i ), (8)

whereul anduu are lower and upper acceleration bound on
the ith axis, respectively.

Repeating the process of estimating the maxima on all
axes and obtaininĝui = [û1, ..., ûdu

], we calculate the final
policy with

ĥ(x) =







hQ
c (x), Q(x,hQ

c (x)) ≥ Q(x,hQ
n(x))

hQ
n(x), otherwise

(9)

where

hQ
n(x) =

du
∑

i=1

ûiei, (non-convex policy)

hQ
c (x) = d−1

u hQ
n(x) (convex policy)

The policy approximation (9) combines the simple vector
sum of the non-convex policies (8) with the convex sum
policy. The convex sum guarantees the system’s monotonic
progression towards the goal, but the simple vector sum (non-
convex policy) does not [11]. If, however, the vector sum
performs better than the convex sum policy, then (9) allows
us to use the better result.

V. RESULTS

To evaluate online trajectory planning using LSAPA, we
use two tasks, aerial cargo delivery and balancing a flying in-
verted pendulum. Both tasks are learned with a deterministic
CAFVI [11], and here we evaluate planning under varying
non-zero mean disturbances and compare it to the baseline
deterministic axial policy [11]. Due to space limitations,
full problem definitions are omitted and are the same as in
[11] for aerial cargo delivery and as in [12] for the flying
inverted pendulum. All learning and planning occurs at 50
Hz. All trajectory planning was performed on a single core of
Intel Core i7 system with 8GB of RAM, running the Linux
operating system using Matlab 2011.

A. Swing-free aerial cargo delivery

We first consider a swing-free aerial cargo delivery task.
The task requires a quadrotor carrying a load on a suspended
rigid cable, to deliver the cargo to a given location with
the minimal residual load oscillations [10]. The task has
applications in delivery supply and aerial transportationin
urban environments. The task is easily described. Yet, it
is difficult for human demonstration as it requires a care-
ful approach to avoid destabilizing the load. Although we
evaluate in simulation only, the fidelity of the simulator was
confirmed experimentally in [11], [10], [22]. The results of
the experimental studies show that the simulator’s predictions
of the load are within5◦ of the experimental observations,
while the simulator’s predictions of the quadrotor’s center of
mass are within1cm [11], [10], [22].

We use the same features as in [11]. Feature vectorF ,
consists of the position of the quadrotor relative to the goal

‖p‖2, the quadrotor’s speed‖v‖2, the position of the load
relative to the quadrotor‖η‖2, and the load’s speed‖η̇‖2

[10]. The state space is a 10 dimensional vector of the UAV’s
and load’s positions and velocities. The action space is the
three dimensional acceleration of the quadrotor’s center of
the mass with a maximum acceleration of 3 meters per
second squared. We learn the task using a deterministic
CAFVI, which results in the weightsθ = [−86290 −
350350 − 1430 − 1160]T .

To test the quality of planning under external disturbances,
we plan 100 trajectories starting 5m from the goal using
the learned weights,θ, and varying disturbance parameters.
The trajectories are 10 seconds long and start at (-2 , 2, 1)
meters from the origin. We compare the proposed LSAPA
planner to a deterministic Axial Sum [11]. Table I shows
the characteristics of the resulting trajectories. Due to the
constant presence of the disturbance, we consider the average
position of the quadrotor and the load over the last second,
rather than simply expecting to reach the goal region. Note
the accumulated squared error, typically used to measure
quality of tracking methods, is not appropriate for LSAPA
because of the lack of a reference trajectory. Thus, we
measure if the system arrives and stays near the goal. The
results in Table I show that planning time with LSAPA is
an order of magnitude smaller than the 10 second trajectory
duration, allowing ample time to plan the trajectory in a real-
time closed feedback loop. This is because we do not need
the entire trajectory preplanned in real-time, only the next
input. The planning time for the deterministic Axial Sum
policy is faster than planning with LSAPA. This is expected
because the deterministic policy uses 3 samples per input
dimension, while the stochastic policy in this case uses 300
samples. Next in Table I, we see that the stochastic policy
produces consistent residual distance to the goal. The larger
the variance of the disturbance, the larger the error. When
the mean is 2m/s2 and the standard deviation is 1, the
stochastic policy results start degrading. This is becausethe
upper limit on the action space is 3m/s2, and the drift starts
overwhelming the system. The deterministic policy, learning
and acting on the same data, fails to bring the system near
the goal. As expected, the two policies show similar behavior
only for the zero-mean noise with small (0.5) variance.

Figure 3 shows the trajectories planned with LSAPA and
a deterministic Axial Sum in environment withN (2, 0.52)
disturbance. Although both the quadrotor’s and the load’s
speeds are noisy (Figures 3a and 3b), the position changes
are smooth, and the quadrotor arrives near the goal position
where it remains. This is in contrast to trajectories planned
with a deterministic axial sum that never reach the origin.

B. Flying Inverted Pendulum

Another task we consider is a flying inverted pendulum. It
consists of a quadrotor-inverted pendulum system in a plane.
The goal is to stabilize the pendulum and keep it balanced as
the quadrotor hovers [12]. We split the task in two: the pole
stabilization and quadrotor slowdown. The features for the
first task are squares of the pendulum’s position and velocity
relative to the goal upright position. The second task has an



TABLE I

SUMMARY OF PLANNING RESULTS FOR SWING-FREE DELIVERY TASK AVERAGED OVER100 TRIALS. POLICY, INJECTED

DISTURBANCE PROCESS DISTRIBUTION, TIME TO PLAN A TRAJECTORY, AVERAGE DISTANCE FROM THE GOAL AND LOAD

DISPLACEMENT DURING THE LAST1 SECOND OF THE FLIGHT, AND MAXIMUM LOAD DISPLACEMENT .

Policy Dist. Planning Time (s) Distance (cm) Swing (◦) Max. Swing (◦)
µ σ µ σ µ σ µ σ µ σ

0.00 0.50 0.79 0.20 1.36 0.47 0.35 0.17 12.63 0.07
1.00 0.50 0.88 0.22 1.38 0.28 0.17 0.06 12.49 0.06

LSAPA 2.00 0.50 0.84 0.09 1.22 0.21 0.17 0.07 12.86 0.16
0.00 1.00 1.05 0.28 1.67 0.72 0.26 0.13 12.59 0.16
1.00 1.00 1.06 0.07 3.71 1.24 0.27 0.09 12.54 0.15
2.00 1.00 1.07 0.17 10.81 2.53 0.47 0.16 13.29 0.38
0.00 0.50 0.37 0.04 1.49 0.55 0.44 0.20 12.69 0.05
1.00 0.50 0.53 0.03 14.78 0.45 0.11 0.03 13.12 0.06

Determinisitc 2.00 0.50 0.53 0.01 29.36 0.45 0.11 0.04 13.84 0.07
Axial Sum 0.00 1.00 0.46 0.07 1.25 0.49 0.28 0.17 12.69 0.11

1.00 1.00 0.52 0.00 14.91 0.81 0.20 0.06 13.16 0.11
2.00 1.00 0.53 0.01 31.44 1.23 0.27 0.09 13.90 0.14

0 1 2 3 4 5 6 7
−2

−1

0

x 
(m

)

 

 

0 1 2 3 4 5 6 7
−2

−1

0

y 
(m

)

0 1 2 3 4 5 6 7
0

0.5

1

t (s)

z 
(m

)

0 1 2 3 4 5 6 7

0

0.5

1

v x (
m

/s
)

0 1 2 3 4 5 6 7

0

0.5

1

v y (
m

/s
)

0 1 2 3 4 5 6 7
−0.8
−0.6
−0.4
−0.2

0

t (s)

v z (
m

/s
)

LSCAFVI Deterministic CAFVI

(a) Quadrotor trajectory

0 1 2 3 4 5 6 7

−5

0

5

φ 
(d

e
g

)
 

 

0 1 2 3 4 5 6 7

−5

0

5

t (s)

θ 
(d

e
g

)
0 1 2 3 4 5 6 7

−40

−20

0

20

v φ (
d

e
g

/s
)

0 1 2 3 4 5 6 7
−40

−20

0

20

t (s)

v θ (
d

e
g

/s
)

LSCAFVI Deterministic CAFVI

(b) Load trajectory

Fig. 3. Cargo delivery task - trajectory created with LSAPA compared to a trajectory created with deterministic axial sum with disturbance ofN (2, 0.52)

additional feature of a square of the quadrotor’s velocity.
The state space is a vector of the quadrotor’s velocity, and
the pendulum’s position and velocity. The action space is
a two dimensional vector of quadrotor’s acceleration in a
plane horizontal to the ground. The maximum acceleration
is 5m/s2. The reward is one when the target zone is reached,
and zero otherwise. The simulator used is a linearized model
of the full dynamics of a planar flying inverted pendulum.
With the exception of the maximum acceleration, the set up
above is the same as in [12], and the policy used for learning
is the deterministic axial sum.

In the planning phase, we use a disturbance probability
density functionN (1, 12) and a pole initial displacement of
23◦. While the deterministic sum solves this problem and
balances the inverted pendulum in the absence of distur-
bances and small zero-mean disturbances (N (0, 0.52)), it
fails to balance the inverted pendulum for non-zero mean
disturbances. In contrast, LSAPA policy solves the task (Fig.
4). Fig. 4a shows the quadrotor’s trajectory, and Fig. 4b
displays pendulum position in Cartesian coordinates relative
to the target position above the quadrotor. The first subtask
brings the pole upright (0 to 5 seconds). Then the second
subtask slows down the quadrotor (after 5 seconds). The pole
is slightly disturbed during the initial moments of the second
subtask but returns to an upright position.

Figure 5 depicts the results of the trajectory characteristics

for increasing number of samples in LSAPA. The small-
est number of samples is three. The accumulated reward
(Fig. 5a) increases exponentially below 10 samples. The
gain decreases between 10 and 20 samples. Thus, the peak
performance is reached after 20 samples. Sampling beyond
that point brings no gain. We see the same trend with the
pole displacement (Fig. 5b) and speed magnitude (Fig. 5c).

VI. CONCLUSIONS

We presented a novel method for policy approximation
for robots performing preference-balancing tasks in envi-
ronments with external stochastic disturbances. This policy
allows the system to adapt to changing external disturbances
due to atmospheric changes or deteriorating hardware. Fea-
ture weights are learned off-line (without stochastic distur-
bances) and then the method uses least squares linear regres-
sion to find an optimal action on each axis (with stochastic
disturbances). The resulting action is a combination of the
axial maxima. This paper takes an empirical approach to
assess the safety of the policy. In the preliminary results,
we showed that the method is applicable for a non-trivial
practical problems.

REFERENCES

[1] P. Abbeel. Apprenticeship learning and reinforcement learning with
application to robotic control. PhD thesis, Stanford University,
Stanford, CA, USA, 2008.



0 5 10 15
−2

0

2

4

6

t (s)

x (
m)

0 5 10 15
−30

−20

−10

0

t (s)

y (
m)

0 5 10 15
−1

0

1

2

t (s)

v x (m
/s)

0 5 10 15
−6

−4

−2

0

t (s)

v y (m
/s)

(a) Quadrotor trajectory

0 5 10 15
−0.05

0

0.05

0.1

0.15

t (s)

a (
m)

0 5 10 15
−0.2

−0.1

0

0.1

0.2

t (s)

b (
m)

0 5 10 15
−0.4

−0.2

0

0.2

0.4

t (s)

v a (m
/s)

0 5 10 15
−0.2

0

0.2

0.4

0.6

t (s)

v b (m
/s)

(b) Inverted trajectory

Fig. 4. Flying inverted pendulum trajectory created with stochastic axial sum policy with distrubance ofN (1, 12).

0 10 20 30 40 50
−10

−5

0

5
x 10

30

A
cc

um
ul

at
ed

 re
w

ar
d

Number of samples

(a) Accumulated reward

0 10 20 30 40 50
−1

0

1

2

3

4

D
is

pl
ac

em
en

t (
cm

)

Number of samples

(b) Displacement

0 10 20 30 40 50
−20

0

20

40

60

80

S
pe

ed
 (k

m
/h

)

Number of samples

(c) Speed

Fig. 5. Trajectory characteristic per number of samples in flying pendulum with disturbanceN (1, 12), calculated LSAPA; mean and standard deviation
over 100 trials shown.

[2] K. Alexis, G. Nikolakopoulos, and A. Tzes. Constrained-control
of a quadrotor helicopter for trajectory tracking under wind-gust
disturbances. InMELECON 2010-2010 15th IEEE Mediterranean
Electrotechnical Conference, pages 1411–1416. IEEE, 2010.

[3] K. J. Astrom. Introduction to Stochastic Control Theory. Technology
& Engineering. Academic Press, 1970.

[4] D. Brescianini, M. Hehn, and R. D’Andrea. Quadrocopter pole
acrobatics. InIntelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, pages 3472–3479. IEEE, 2013.

[5] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. X-armed bandits.
J. Mach. Learn. Res., 12:1655–1695, July 2011.

[6] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst.Reinforcement
Learning and Dynamic Programming Using Function Approximators.
CRC Press, Boca Raton, Florida, 2010.

[7] L. Busoniu, A. Daniels, R. Munos, and R. Babuska. Optimistic plan-
ning for continuous-action deterministic systems. In2013 Symposium
on Adaptive Dynamic Programming and Reinforcement Learning, in
press 2013.

[8] J. A. DeCastro and H. Kress-Gazit. Guaranteeing reactive high-level
behaviors for robots with complex dynamics. InIntelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on, pages
749–756. IEEE, 2013.

[9] A. Faust. Reinforcement Learning and Planning for Preference
Balancing Tasks. PhD thesis, University of New Mexico, Albuquerque,
NM, July 2014.

[10] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia. Learning swing-
free trajectories for uavs with a suspended load. InIEEE International
Conference on Robotics and Automation (ICRA), Karlsruhe, Germany,
pages 4887–4894, May 2013.

[11] A. Faust, P. Ruymgaart, M. Salman, R. Fierro, and L. Tapia. Con-
tinuous action reinforcement learning for control-affine systems with
unknown dynamics.Acta Automatica Sinica, in press, 2014.

[12] R. Figueroa, A. Faust, P. Cruz, L. Tapia, and R. Fierro. Reinforcement
learning for balancing a flying inverted pendulum. InProc. The 11th
World Congress on Intelligent Control and Automation, July 2014.

[13] H. Hasselt. Reinforcement learning in continuous state and action
spaces. In M. Wiering and M. Otterlo, editors,Reinforcement Learn-
ing, volume 12 ofAdaptation, Learning, and Optimization, pages 207–
251. Springer Berlin Heidelberg, 2012.

[14] M. Hehn and R. D’Andrea. A flying inverted pendulum. InProc.
IEEE Int. Conf. Robot. Autom. (ICRA), pages 763–770. IEEE, 2011.

[15] H. Kawano. Study of path planning method for under-actuated blimp-
type uav in stochastic wind disturbance via augmented-mdp.In

Advanced Intelligent Mechatronics (AIM), 2011 IEEE/ASME Interna-
tional Conference on, pages 180–185, July 2011.

[16] H. Khalil. Nonlinear Systems. Prentice Hall, 1996.
[17] S. M. LaValle. Planning Algorithms. Cambridge University Press,

Cambridge, U.K., 2006.
[18] A. Majumdar and R. Tedrake. Robust online motion planning with

regions of finite time invariance. InAlgorithmic Foundations of
Robotics X, pages 543–558. Springer, 2013.

[19] C. Mansley, A. Weinstein, and M. Littman. Sample-basedplanning
for continuous action markov decision processes. InProc. of Int.
Conference on Automated Planning and Scheduling, 2011.

[20] A. A. Masoud. A harmonic potential field approach for planning
motion of a uav in a cluttered environment with a drift field, Orlando,
FL, USA. In 50th IEEE Conference on Decision and Control and
European Control Conference, pages 7665–7671, dec 2011.

[21] F. Mueller, A. Schoellig, and R. D’Andrea. Iterative learning of
feed-forward corrections for high-performance tracking.In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pages 3276–3281, Oct 2012.

[22] I. Palunko, P. Cruz, and R. Fierro. Agile load transportation : Safe
and efficient load manipulation with aerial robots.IEEE Robotics
Automation Magazine, 19(3):69 –79, sept. 2012.

[23] S. Shen, N. Michael, and V. Kumar. Stochastic differential equation-
based exploration algorithm for autonomous indoor 3d exploration
with a micro-aerial vehicle. I. J. Robotic Res., 31(12):1431–1444,
2012.

[24] R. Sutton and A. Barto.A Reinforcement Learning: an Introduction.
MIT Press, MIT, 1998.

[25] E. Todorov. Stochastic optimal control and estimationmethods adapted
to the noise characteristics of the sensorimotor system.Neural
Comput., 17(5):1084–1108, May 2005.

[26] T. J. Walsh, S. Goschin, and M. L. Littman. Integrating sample-based
planning and model-based reinforcement learning. In M. Foxand
D. Poole, editors,Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-
15, 2010, pages 612–617. AAAI Press, 2010.


