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Abstract— Robots that operate in real-world conditions often  line with reinforcement learning while assuming stochas-
perform complex tasks in the presence of stochastic distur- tic disturbances. The learned state-value function apprax
bances. The source of the disturbances can be widely variel- o js then used to generate trajectories that compensate f

cluding but not limited to, hardware imperfections, atmospheric L .
changes, and measurement inaccuracies. These disturbasce NON-Z€ro mean stochastic disturbances. The method bridges

pose a great control challenge because stochastic drift indes the gap b_etween of‘f-lipe motion pI_gnning [17] f’;\nd Colntrols-
changes in the robot’s speed and direction. This paper presés  based trajectory tracking [3]. Traditionally, off-linegrning

an online trajectory generation method for robots to complée  produces either a reference path or trajectory assuming a
preference-balancing tasks under stochastic disturbances. Task stationary environment [17]. Trajectory tracking methetis

learning is done off-line assuming no disturbances, and the I . -
trajectories are planned online in the presence of disturbaces bilize the system around the reference trajectory by aidigist

using the current observed information. We model the robot for experienced disturbances [3]. For the standard plapnin
as a stochastic control-affine system with unknown dynamics tracking pipeline to work for PBTs, the reference trajegtor

impacted by a Gaussian process. This paper introduces a must complete the task, and the trajectory tracking must
supervised machine learning method in lieu of a traditional inimize the same task preferences used in the planning

greedy policy. We verify the method in simulation for an . . )
aerial vehicle cargo delivery and a flying inverted pendulum Phase. The method we propose combines trajectory planning

task. Results show the presented method works on a range and tracking into one stepnline trajectory planningOnline
of problems and outperforms the deterministic method in the trajectory planning has two advantages over the traditiona

presence of non-zero mean disturbances. planning-control pipeline. Firstonline trajectory planning
| INTRODUCTION does not req_uire replanning if th_e goal c_hanges. Second,
- ~ the method is model-free, meaning that it does not rely
Real-world conditions pose many challenges to physicgh the analytical knowledge of the system dynamics, and
robots. One such challenge is the introduction of stochasty generates trajectories without learning the system rode
disturbances that can cause positional drift. For examplg, contrast to learning-based MPC methods [21].
atmospheric changes, hardware wear-and-tear or measurerphotic systems are high-dimensional systems, most natu-
ment inaccuracies are possible sources of stochastic digjly represented with continuous states and actions., ere
turbances [3]. Disturbances, along with complex nonlinegnodel the system as an unknown control-affine system [16]
system dynamics, make traditional solutions (e.g., ad@ptiith continuous states and actions. The system is condrolle
and robust control modeling), which solve this problem gsintyrough acceleration. We assume that we are able to interact
full system dynamics knowledge, difficult or intractabl€[1 ith the unknown system dynamics through a simulator or
We are concerned with a specific class of robotic motiogyajlable samples. A Gaussian process, defined with its mean
plannings tasks described with set of preferenpeference- and variance, is used to model the disturbance of the input
balancing taskgPBT) [9]. PBTs have a single goal (desti-[3]. we also assume that the probability distribution can
nation) state, but the trajectory that completes the taskifie he measured outside of the planning algorithm [25]. This
to meet opposing preferences, such as speed and qualifyn be done, for example, by measuring true acceleration
As a motivational example, we consider a quadrotor withf the system with an accelerometer and estimating the
a suspended load task (Fig. 1a). The goal of this task igror, the difference between the observed and the input
to fly a quadrotor to a goal state while minimizing theacceleration. The system should perform a given task for
residual oscillations of the freely suspended load. Wigh ity range of initial conditions. The goal of this work is to be
complicated dynamics, this problem is difficult for a humarypje to take a task learned with deterministic assumptions,
to demonstrate, which renders impractical methods thgt rel,g adapt it to perform in real-time in the presence of
on expert demonstration [1]. This task is a PBT becausthanging disturbances. The deterministic learning dscide
it requires balancing opposite preferences, e.g., moVieg tthe priorities between the preferences in a deterministic
quadrotor and not agitating the cargo. - ~ environment. These learned priorities are then used in an
This paper presents a novel online trajectory generation fgpjine planning phase in the presence of disturbances. The
PBTs under stochastic disturbances. The method uses a staf€orities remain unchanged when disturbance are added to
value function approximation learned deterministicalff- 0 the system. The online planning phase uses another layer of
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(a) Quadrotor with suspended load (b) Inverted pendulum
Fig. 1. preference-balancing task examples. Path planning and obstacle avoidance in the presence
of stochastic wind for a blimp was solved using dynamic

imate value iteration method adapted for continuous actidyf °9ramming gnd augmented MD.PS [15]. Other. methods
Markov Decision Processes (MDP). Typically, approximatéo handle motion planning and trajectory generation under

value iteration-based methods leamn an approximationef ghincertainties use low-level controllers for stabilizatiof
state-value functionV’, off-line. Then in a separate phase’tra]ectorles within reach tubes [8], or trajectory libes{18].

: : : : : he flying inverted pendulum with zero-mean disturbances
they plan trajectories using a greedy policy with respect tg : X .
the learned state-value function approximation [6]. In ouYVa: solvedlusmngL [12]|_andbflrstdprlr?mpl_es [4]. [t1h4]a
case the state-value function is approximated with a linear New class of sampling based pianning methods op-

map of features that are selected to be squared preferen%@Stica”y narrows the search space [5], [7], [19], [26].

[9]. For instance, the features for the balancing inverte rad_ient descent methods for policy approxi_mation vyork
pendulum  task (Fig 1b) are squares of the pendulum ell in some convex cases. However, they require an estimate

displacement from the upright position, pendulum’s veigci of the gradient, can be stu_ck in local minima, and can.be
and vehicle’s velocity. These features are then weighted low to converge [13]. In this paper, we show_a fast p_oI|cy
CAFVI. In the planning phase, we used thgial Sumpolicy pproximation that works for near-linear objective fuoos.

to approximate a greedy policy by finding the best actions on
each axis and then combining them together. We showed that Ill. PRELIMINARIES

the planner based on tieial Sunpolicy leads the systemto  Our goal is to plan a preference-balancing task on a
the goal when CAFVI, applied to a control-affine system wittcontrol-affine system in the presence of an external stechas
a bounded drift and quadratic features, results in all megat tic disturbance. Figure 2 describes the planner’s flow. We
weights [11]. Although we showed that th&ial Sumcan assume that RL provides a feature vecforand weightsg,
compensate for some levels of zero-mean noise [11], [12karned with a method with no disturbances, such as CAFVI
the method stops working in the presence of external distwvith Axial Sum policy [11]. In the planning phase, we
bances. This is because, the external disturbance produessume that we have a black-box simulator of the system and
larger than the allowed drift onto the system. For #ladal  know the current probability distribution of the disturlzan
Sumplanner, Lagrangian interpolation finds the best actioRor instance, assuming the presence of an accelerometer,
on each axis. Here, we propose using supervised machile¢ M = [Z,_, @ r...2,1]" be a sequence of accel-
learning to find the best action with respect to the currergration observations, and = [&;_x @ k... % 1]7 be
disturbance. The key extension from [11] is the use of leagtput applied to the system by the planner at time steps
squares linear regression in lieu of interpolation to esten +—k,...,t—1. Then the mean of the disturbance at the time
near-optimal action on each axis. This extension allows usept can be estimated agt) = s — pp With variance as

to apply the method to non-zero mean disturbances with th€(¢) = Var(M — T') (the difference between the observed

Fig. 2. Flow diagram for learning and planning preferenakhcing tasks.

tinuous action fitted value iteration (CAFVI) [11], an appto

only limits being the system’s physical limits. and applied input). Another more precise method to estimate
the input error is using a Kalman filter [16].
Il. RELATED WORK The planner generates trajectories for a physical system.

. At every time stepf, the proposed method, Least Squares
. . d | th it differs f Kxial Policy Approximation (LSAPA), observes a state,

tion planning, and control theory. However, it differs from, ;) "y pile the simulator receives current disturbance levels,
the classical control methods such as LQR, perturbatidn tec

2 . . .
nigues, and adaptive controls which all require knowledgé\g[%gl’ %(;Lt)ﬁ?te)lmtgllggglr;et(s)lrtrLueIaStsgtle_ri/.APA finds a near

S/i?jéy:fﬁéti%; lfg":]‘mFeodr) e?<fz;1rt:§esypsiteecrgw(ijgen?rr?el(;srizaar'][gnitr?te- We model a robot as a discrete time, control-affine system
: N ; . with stochastic disturbancd) : X x U — X,
been used for quadrotor trajectory tracking under wind-gus
disturbances [2]. Another prior approach requires knogéed D: mpi1 = f(zr) + g(xr)(ur + nk)- 1)
of the system dynamics and uses harmonic potential fields fStatesz; € X C R?% belong to the position-velocity space
UAV motion planning in environments with a drift field [20]. and the control input is acceleration; € U C R%. The
Similarly, [23] solves the system’s dynamics. In contrast, input space is a compact set containing origing U. The
method is model-free. Lipschitz continuous functiog : X — R% x R% is regular



outside the origing, € X \ {0}. The drift f : X — R%, system (1) with state-value approximation (2), actiorueal
is bounded and Lipschitz continuous. The non-determiistfunction, ), is a quadratic function of the input[11]. Axial
term, ny, is a Gaussian process with with a known measum policy approximation [11] finds an approximation for
and diStribUtiOﬂN(#nk,G%k); it acts as an additional and the maximum local) function for a fixed stater. It works
unpredictable external force on the system. Time d¢tdp in two steps, first finding maxima on each axis independently
omitted from the notation when possible. and then combining them together. To find a maximum on
As in [11], our goal is to learn a preference-balancing tas&n axis, the method uses Lagrangian interpolation to find
that takes the system to the origin in a timely-manner whilthe coefficients of the quadratic polynomial representimgy t
reducing along the trajectory preferences given by matrig) function. Then, an action that maximizes t@efunction
Ax = [a1...aq,]. Each of the vectors; defines a task on each axis is found by zeroing the derivative. The final
preference. For instance, veciy that corresponds to pref- policy is a piecewise maximum of a convex and simple vector
erence to reduce the displacement of the inverted pendulisuams of the action maxima found on the axes. The method
on the quadrotor, will have components that correspond te computationally-efficient, scaling linearly with thetian
the position of the pendulum be set to one, while the rest space dimensionality)(d, ). It is also consistent, as the
the components will be equal to zero. maximum selections do not depend on the selected samples.
The state-value function approximation is Because deterministic axial policies are sample indepen-
dent, they do not adapt to changing conditions or external
dg forces. We extend the deterministic axial policies to the
V(z) = Z&Fi(w)- (2) presence of disturbances via LSAPA. LSAPA uses least
i=1 squares regression, rather than Lagrangian interpolatbon
Vector F(x) = [Fi(x), ..., Fy, (z)]" is a feature vector, and select the maximum on a single axis. This change allows
6 = [01,...,04,]" is the parametrization that we learn. Thethe LSAPA method to compensate for the error induced by
feature vector is selected with the task in mind, non-zero mean disturbances. We now present finding the
Fi(x) = HaszHQa i=1,..,d,. (3) maximum onf" axis using the least squares linear regression

Greedy policyh* (x) = argmax, .y V(D(x,u)) is optimal with polynomial features.

with respect to the state-value functidh The problem is Definition Q-axial restriction on i axis is a univariate
that in continuous action spaces greedy policy calculatiofunction Qg ;(u) = Q(x, ue;).
becomes an optimization problem over an unknown objective
functionV o D. o T
RL literature often works withaction-value function@ : Qz,i(u) =p; [u” ul]",
X x U — R, a measure of the discounted accumulatetbr some vectom; = [p2; p1. po.i]* € R® based on results
reward collected when actioa is taken at statec [24]. In  in [11]. Our goal is to findp; by sampling the input space
relation to state-value function, V (2), action-val@ecan be U at fixed state.
represented as Suppose, we colleet, input samples in th&” axis,U; =
dg [u1 ... udmi]T. The simulator returns state outcomes when
Q(z,u) = V(D(x,u)) = -ZHiFi(D(:B,U)) (4) the input samples are applied to the fixed stateX; =
=1 [}, :Bfimi]T, wherez’,; < D(z,u;;), j=1,..,dn.
Thus, we learn the approximation for the greedy policy Next, Q-estimates are calculated with (4),

Q-axial restriction oni™" axis is a quadratic function,

h(x) = argmax Q(x, u). (5) Qi = [Qu1(u1,) - Qu,a, (ua, )],
uct where Qu j(u;;) = 07F(x),;), j = 1,...,d,. Using the
IV. METHODS supervised learning terminology the Q estima®@s, are the

. . ) . labels that match the training samplés Matrix,
The Least squares axial policy approximatighSAPA)

policy extends the method of [11] to handle non-zero mean (uu)z ui 1
disturbances. This is done by first learning feature weights C; = (u2,0)* w1
off-line without disturbances and then using those learned 9 7

weights for online trajectory planningvith disturbances. . . (t,,.i) Ui 1 ,
LSAPA bridges the gap between learning without disturcOntains the training data projected onto the quadratig-pol
bances and planning with them. The method in [11] is appmomlal space. The solution to the supervised machine learn-
cable to zero-mean disturbances due to the use of Lagrangigfl Problem,

interpolation to find an approximation to the maximal Cipi = Qi (6)
value. The Lagrangian interpolation uses only three poinf§s p; into the training data’; and labelsR;. The solution

to interpolate the underlying quadratic function and thi$o (6),

)

compounds the error from the disturbances. In contrast, our dn
new method, LSAPA, uses least squares regression with pi = argminZ(Cg‘,mi = Quj(uji))? (7)
many sample points to compensate for the induced error. Pi i

Specifically the method in [11] describes axial sum is the coefficient estimate of thg-axial restriction. Because
policy. Consider a fixed arbitrary state in a control-affine (@ is quadratic, we obtain its critical point by zeroing the



first derivative, lp||?, the quadrotor’s speeflv||?, the position of the load

o= P relative to the quadrotofin||?, and the load’s speefl||?
2pa.; [10]. The state space is a 10 dimensional vector of the UAV’s
Lastly, we ensure that the action selection falls within thend load’s positions and velocities. The action space is the
allowed action limits, three dimensional acceleration of the quadrotor’'s center o
f; = min(max (4}, ul), u®), (8) the mgss with da \rlnvax:mum ﬁccelerstior! of 3 dmeter; per
! w ; econd squared. We learn the task using a deterministic
whereu' andu® are lower and upper acceleration bound o AFVI, which results in the weight® — [-86290 —

the i*" axis, respectively.
Repeating the process of estimating the maxima on
axes and obtaining; = [i1, ..., 44, ], we calculate the final

?"50350 — 1430 — 1160]7.

a ; . .

To test the quality of planning under external disturbances
we plan 100 trajectories starting 5m from the goal using

policy with Q Q 0 the learned weightd}, and varying disturbance parameters.
. he(z), Qz, he(z)) > Q= hy(2)) The trajectories are 10 seconds long and start at (-2 , 2, 1)
h(z) = o , ) meters from the origin. We compare the proposed LSAPA
hy; (), otherwise planner to a deterministic Axial Sum [11]. Table | shows
where the characteristics of the resulting trajectories. Dueht® t
0 u . _ constant presence of the disturbance, we consider thegw/era
hy(z) = Zui% (non-convex policy) position of the quadrotor and the load over the last second,
i=1 rather than simply expecting to reach the goal region. Note
h@(x) = d;'h& (x) (convex policy) the accumulated squared error, typically used to measure

The policy approximation (9) combines the simple vectofiuality of tracking methods, is not appropriate for LSAPA
sum of the non-convex policies (8) with the convex sunpecause of the lack of a reference trajectory. Thus, we
policy. The convex sum guarantees the system’s monotorigeasure if the system arrives and stays near the goal. The
progression towards the goal, but the simple vector sum-(nof¢sults in Table | show that planning time with LSAPA is
convex policy) does not [11]. If, however, the vector sunfn order of magnitude smaller than the 10 second trajectory

performs better than the convex sum policy, then (9) allowduration, allowing ample time to plan the trajectory in alvea
us to use the better result. time closed feedback loop. This is because we do not need

the entire trajectory preplanned in real-time, only thetnex

V. RESULTS input. The planning time for the deterministic Axial Sum

To evaluate online trajectory planning using LSAPA, wepolicy is faster than planning with LSAPA. This is expected
use two tasks, aerial cargo delivery and balancing a flying irbecause the deterministic policy uses 3 samples per input
verted pendulum. Both tasks are learned with a determinisiglimension, while the stochastic policy in this case uses 300
CAFVI [11], and here we evaluate planning under varyingamples. Next in Table |, we see that the stochastic policy
non-zero mean disturbances and compare it to the baselifd@duces consistent residual distance to the goal. Therarg
deterministic axial policy [11]. Due to space limitations,the variance of the disturbance, the larger the error. When
full problem definitions are omitted and are the same as ifhe mean is 2n/s> and the standard deviation is 1, the
[11] for aerial cargo delivery and as in [12] for the flying stochastic policy results start degrading. This is bectluse
inverted pendulum. All learning and planning occurs at 5@pper limit on the action space isi3/s, and the drift starts
Hz. All trajectory planning was performed on a single core opverwhelming the system. The deterministic policy, leagni
Intel Core i7 system with 8GB of RAM, running the Linux and acting on the same data, fails to bring the system near
operating system using Matlab 2011. the goal. As expected, the two policies show similar behavio
only for the zero-mean noise with small (0.5) variance.

A. Swing-free aerial cargo deliver
J g Y Figure 3 shows the trajectories planned with LSAPA and

We first consider a swing-free aerial cargo delivery tasldgi
di

. ; eterministic Axial Sum in environment wit'(2,0.5%)
The task requires a quadrotor carrying a load on a suspen , ,
L . . . .. disturbance. Although both the quadrotor's and the load’s
rigid cable, to deliver the cargo to a given location with

- . - speeds are noisy (Figures 3a and 3b), the position changes
the mln]mal .reS|dl_JaI load oscillations .[10]' The taslf ha%\re smooth, and the quadrotor arrives near the goal position
applications in delivery supply and aerial transportation

urban environments. The task is easily described. Yet, \ﬁ/_here i rema_m_s._Thls_ IS In contrast to trajectories plz_nh_ne
with a deterministic axial sum that never reach the origin.

is difficult for human demonstration as it requires a care-
ful approach to avoid destabilizing the load. Although w
evaluate in simulation only, the fidelity of the simulatorsva
confirmed experimentally in [11], [10], [22]. The results of Another task we consider is a flying inverted pendulum. It
the experimental studies show that the simulator’s primtist consists of a quadrotor-inverted pendulum system in a plane
of the load are withins° of the experimental observations, The goal is to stabilize the pendulum and keep it balanced as
while the simulator’s predictions of the quadrotor’'s certe  the quadrotor hovers [12]. We split the task in two: the pole
mass are withiniem [11], [10], [22]. stabilization and quadrotor slowdown. The features for the
We use the same features as in [11]. Feature veEtor first task are squares of the pendulum’s position and velocit
consists of the position of the quadrotor relative to thel goaelative to the goal upright position. The second task has an

B. Flying Inverted Pendulum



TABLE |
SUMMARY OF PLANNING RESULTS FOR SWINGFREE DELIVERY TASK AVERAGED OVER100TRIALS. POLICY, INJECTED
DISTURBANCE PROCESS DISTRIBUTIONTIME TO PLAN A TRAJECTORY, AVERAGE DISTANCE FROM THE GOAL AND LOAD
DISPLACEMENT DURING THE LAST1 SECOND OF THE FLIGHTAND MAXIMUM LOAD DISPLACEMENT .

Policy Dist. Planning Time (s)| Distance (cm)| Swing () Max. Swing €)
n o n o nw o n o nw o

0.00 0.50] 0.79 0.20| 1.36 0.47| 035 0.17] 12.63 0.07

1.00 0.50| 0.88 0.22| 1.38 0.28| 0.17 0.06| 12.49 0.06

LSAPA 2.00 0.50]| 0.84 0.09| 122 0.21| 0.17 0.07| 12.86 0.16
0.00 1.00| 1.05 0.28| 1.67 0.72| 0.26 0.13| 12.59 0.16

1.00 1.00| 1.06 0.07| 3.71 1.24| 0.27 0.09| 12.54 0.15

2.00 1.00| 1.07 0.17| 10.81 2.53| 0.47 0.16| 13.29 0.38

0.00 0.50| 0.37 0.04| 1.49 0.55| 0.44 0.20| 12.69 0.05

1.00 0.50| 0.53 0.03| 14.78 0.45| 0.11 0.03| 13.12 0.06

Determinisitc | 2.00 0.50| 0.53 0.01| 29.36 0.45| 0.11 0.04| 13.84 0.07
Axial Sum 0.00 1.00| 0.46 0.07| 125 0.49| 0.28 0.17| 12.69 0.11
1.00 1.00| 0.52 0.00| 14.91 0.81| 0.20 0.06| 13.16 0.11

2.00 1.00| 0.53 0.01| 31.44 1.23| 0.27 0.09| 13.90 0.14
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Fig. 3. Cargo delivery task - trajectory created with LSARAvpared to a trajectory created with deterministic axiah suth disturbance of\V'(2, 0.52)

additional feature of a square of the quadrotor’s velocityfor increasing number of samples in LSAPA. The small-
The state space is a vector of the quadrotor’s velocity, arest number of samples is three. The accumulated reward
the pendulum’s position and velocity. The action space ig-ig. 5a) increases exponentially below 10 samples. The
a two dimensional vector of quadrotor’s acceleration in gain decreases between 10 and 20 samples. Thus, the peak
plane horizontal to the ground. The maximum acceleratioperformance is reached after 20 samples. Sampling beyond
is 5m/s?. The reward is one when the target zone is reachethat point brings no gain. We see the same trend with the
and zero otherwise. The simulator used is a linearized modedle displacement (Fig. 5b) and speed magnitude (Fig. 5c).
of the full dynamics of a planar flying inverted pendulum.

With the exception of the maximum acceleration, the set up VI. CONCLUSIONS

above is the same as in [12], and the policy used for learningWe presented a novel method for policy approximation
is the deterministic axial sum. for robots performing preference-balancing tasks in envi-

In the planning phase, we use a disturbance probabilifpnments with external stochastic disturbances. Thiscpoli
density function\/(1,12) and a pole initial displacement of allows the system to adapt to changing external disturtence
23°. While the deterministic sum solves this problem andlue to atmospheric changes or deteriorating hardware. Fea-
balances the inverted pendulum in the absence of distdrre weights are learned off-line (without stochastic wtist
bances and small zero-mean disturbance%0(0.5%)), it bances) and then the method uses least squares linear-regres
fails to balance the inverted pendulum for non-zero mea$ion to find an optimal action on each axis (with stochastic
disturbances. In contrast, LSAPA policy solves the task.(Fi disturbances). The resulting action is a combination of the
4). Fig. 4a shows the quadrotor’s trajectory, and Fig. 4Bxial maxima. This paper takes an empirical approach to
displays pendulum position in Cartesian coordinatesivelat assess the safety of the policy. In the preliminary results,
to the target position above the quadrotor. The first subtayke showed that the method is applicable for a non-trivial
brings the pole upright (0 to 5 seconds). Then the secorfactical problems.
subtask slows down the quadrotor (after 5 seconds). The pole
is slightly disturbed during the initial moments of the sedo

subtask but returns to an upright position. [1] P. Abbeel. Apprenticeship learning and reinforcement learning with
application to robotic control PhD thesis, Stanford University,

Figure 5 depicts the results of the trajectory charactesist Stanford, CA, USA, 2008.
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