
Distance Metric Learning for RRT-Based
Motion Planning for Wheeled Mobile Robots

Luigi Palmieri Kai O. Arras

Abstract— The distance metric is a key component
in RRT-based motion planning that deeply affects
coverage of the state space, path quality and planning
time. With the goal to speed up planning time, we
introduce a learning approach to compute the dis-
tance metric for RRT-based planners. By exploiting
a novel extend function which solves the two-point
boundary value problem for wheeled mobile robots,
we train a nonlinear parametric model that achieves
good performances in regression and ranking tests.
We compare our approach to three baselines and show
that the new approach is faster by several factors with
negligible loss of path quality. We also show that the
approach covers the state space in the same way than
the true distance metric.

I. Introduction

Sampling-based methods have become a popular ap-
proach to motion planning particularly in high dimen-
sions or under complex constraints. Rapidly exploring
Random Trees (RRT) solve a single planning query by
growing and expanding a tree in the configuration space
towards newly sampled configurations. An optimal RRT
variant, named RRT* by Karaman and Frazzoli [1],
rewires the tree based on the notion of cost: under the
assumptions given in [2] for holonomic systems and in [3]
for nonholonomic systems the solution converges to the
optimum as the number of samples approaches infinity.

A key component in the extension of the tree in RRT is
the distance pseudo-metric, or cost-to-go pseudo-metric,
used to select the nearest vertex from where to grow the
tree. In RRT* this function has an even more important
role as it guides the rewiring of the tree. To do so, the
pseudo-metric has to be computed many times, as many
as there are vertices in the near-neighbour ball [2] or
near-neighbour box [3].

For kinodynamic systems having a distance metric
close to the optimal path cost makes the motion planner
be able to cover entirely the configuration space so allow-
ing to solve hard problems in an easy way [4]. It is well
known that to compute the optimal cost-to-go function
one needs to solve a two-points boundary problem, which
is as expensive as to solve a motion planning query.

Previous definitions of the pseudo-metrics in related
work include variants of the Euclidean distance [5], a
cost derived from the definition of a finite-horizon affine
quadratic regulator [6], pseudo-metrics which penalize
both the duration of the trajectory and the expended

L. Palmieri, K.O. Arras are with the Social Robotics Lab,
Dept. of Computer Science, University of Freiburg, Germany.
{palmieri,arras}@cs.uni-freiburg.de.

Fig. 1. An example tree and path generated with our learned
distance metric. The robot starts at the bottom-left and plans a
path to the goal region marked in red. The first-solution path is
shown in green.

control effort [7], pseudo-metric based on locally lineariz-
ing the domain dynamics and applying linear quadratic
regulation [8], and an approximated pseudo-metric based
on an offline learned graph built by using forward simu-
lation of the kinodynamic system [9].

In the original paper of RRT, LaValle and Kuffner
[10] suggest to use an approximation of the optimal cost-
to-go for a generic kinodynamic system that takes into
account the path length, the difference between initial
and final orientation, and the translational and rotational
velocities of the considered system.

For holonomic systems a commonly used metric is the
weighted Euclidean distance. Amato et al. [5] present a
comparative evaluation of distance metrics defined in the
configuration space. They show that for nonholonomic
systems, weighted Euclidean distance metrics are unable
to correctly cover the configuration space. Given a local
planner they include recommendations on how to select
the metrics based on efficiency and effectiveness.

Glassman and Tedrake [6] describe how the Voronoi
bias only applies when a proper metric is defined for
the case of an extend function that performs a forward
simulation of the dynamic system. They use an affine
quadratic regulator design and show that it can be
used to approximate the exact minimum-time distance
pseudo-metric at a reasonable computational cost. One
drawback of this method is linearization. The approxi-
mated pseudo-metric is valid only in a range where the
linearization is valid. With increasing non-linearity, the
accuracy of the pseudo-metric will further degrade.

Recently, Perez et al. [8] use an optimal infinite-
horizon LQR controller to connect pairs of states. The
method linearizes the domain dynamics locally which is
interesting from an efficiency point of view. In this case
the cost-to-go pseudo-metric is defined as the solution of

the Riccati equation used in the LQR extender.
Webb and van den Berg [7] use a finite-horizon optimal

controller as local planner. They can optimize a certain
class of cost functions that trades off time and control ef-
fort. Both methods are based on linearizing the dynamics
of the system, which causes the accuracy of the cost-to-
go metric to degrade as non-linearities increase. Further,
these metrics may suffer from high computational costs
and numerical issues that can make them unsuitable for
motion planning in real-time.

Li and Bekris [9] approximate the optimal cost-to-go
pseudo-metric by an offline learning method: the distance
between two states is approximated by the A* path
cost between their closest sampled states on a learned
graph. The graph is generated off-line by using forward
propagation of the system dynamics. To improve the
poor computational performances, they map the offline
samples into a higher-dimensional Euclidean space. The
method makes approximations on two levels: the graph
is built using a discretized set of controls – not solving
the two-point boundary value problem – and in the
additional mapping, which cause loses in coverage of the
state space.

Here, we learn the cost-to-go pseudo-metric in an
offline fashion and approximate it by a parametric non-
linear model. We consider the case of 2D motion planning
for differential drive robots although the same approach
can be easily extended to different systems with higher
dimensions. Our cost-to-go function uses local paths from
a novel extender called POSQ [11] which solves the
two-point boundary value problem for wheeled mobile
robots and optimizes the criteria path length and heading
changes. The extend function is able to connect any pair
of poses which allows the tree to cover the entire state
space over time. This property is not true for forward
propagation approaches of discretized sets of controls
(a.k.a. motion primitives), as discussed by Glassman and
Tedrake [6]. Furthermore, the POSQ extender makes no
linearization or approximation, is very efficient to imple-
ment and was shown to produce smoother paths than
motion primitives and a spline-based extender approach.
With the goal of making the planner even more efficient,
we make the following contributions:

• We show how the distance pseudo-metric for the case
of the POSQ extender can be learned offline using
a set of domain-specific features and a nonlinear
parametric model, achieving good performances in
terms of regression and ranking errors.

• The learned model is very fast to compute with
negligible loss of path quality. It is faster in extend-
ing the tree and finding a path also compared to
alternative baseline methods.

• Finally, we demonstrate that our learning approach
is able to cover the state space in the same way than
the ground truth function.

The paper is structured as follows: in Section II we
summarize the POSQ extender and in Section III we
describe how the distance metric is learned. In Section
IV we give details on the experiments and their results

Z
Yg

Xg

XR

YR

α

θ

φ
xnear

xrand

ρω v

Fig. 2. Robot and goal pose relations and notation

to evaluate the approach. Section V concludes the paper.

II. The POSQ Extender

We briefly summarize the POSQ extend function as
introduced in [11]. The function solves the two-point
boundary value problem for differential drive robots and
generates smooth trajectories between any two poses.
Adopting typical RRT notation, it connects, for example,
a randomly sampled pose, xrand, and its nearest pose in
the tree, xnear.

The method, which is an extension of the approach
by Astolfi [12], exploits a coordinate transformation from
Cartesian to polar which allows to describe the kinematic
model of a wheeled mobile robot by the open loop model

ρ̇ = − cosα v

α̇ =
sinα

ρ
v − ω

φ̇ = −ω

(1)

where ρ is the Euclidean distance between the xnear and
the xrand goal pose, φ denotes the angle between the
x-axis of the robot reference frame (XR) and the one
associated to the desired position (Xg), and α is the angle
between the y-axis of the robot reference frame (YR) and
the vector connecting the robot with the desired position
(Z), see Fig.2.

Considering the open loop model obtained by the
coordinate transform in Eq. (1), we define the nonlinear
feedback law

v = Kρ tanh(Kvρ)

ω = Kαα+Kφφ .
(2)

The law in Eq. (2) produces paths of quasi-constant
forward velocity as opposed to the original law that
causes the velocity to strongly drop towards the goal.
This law assures asymptotically heading convergence
and system’s local stability. Eq. (2) generates smooth
trajectories x(t) and controls u(t), t ∈ [0, T], T > 0, that
connect any given pair of 2D poses by computing closed-
loop forward simulations based on the kinematic model of
a non-holonomic wheeled mobile robot (see Fig. 3). The
tree is grown in the configuration space R2 × S1 where
each configuration x = (x, y, θ) consists of the (x, y)-
position of the robot and its orientation θ. Thanks to its
ability to solve the two-point boundary value problem in
this case, the function can be readily used as the distance
metric which we seek to learn hereafter.

Fig. 3. Trajectories of the POSQ controller when steering the robot
from the center to the poses on the circle

III. Our Approach

In RRT-based planning, a tree is grown by connecting
randomly sampled configurations xrand to their nearest
vertex xnear in the tree. For the selection of xnear, the
algorithm evaluates the distances from all or a subset
of tree vertices to xrand. The evaluation of this distance
metric (or cost-to-go function) is a frequent operation
deep within every RRT algorithm and a speed up at this
point would have a strong impact onto planning times.

The idea is, instead of computing an extension path
and then evaluating its cost, to learn a parametric re-
gression model that directly predicts the cost. This is fast
to compute and we can expect a speed up even though
the forward simulation by POSQ is already efficient to
implement. Formally, we have a regression model

y ≈ g(X , β) (3)

with X being the set of independent variables (features
or attributes) and β the parameters of g. In this section,
we first define the class of distance metrics considered
here, design a set of features, choose a regression model
and use Levenberg-Marquardt to fit its parameters.

A. The distance metric to be learned

Following [10], we consider a class of distance metrics
C(x1,x2) defined to be a linear combination of path
length and sum of heading changes between two states
x1 and x2,

C(x1,x2) =

Ne−1∑
i=0

wd||Pi+1 −Pi||+ wq (1− |qi+1 · qi|)2 .

Ne + 1 are the intermediate points Pi of the path and
qi the associated quaternions. Fig. 4 shows the cost
distribution for paths generated by the POSQ controller.
The time needed to compute the cost depends on the
distance between x1 and x2 and the integration time step
(leading to more or less intermediate points Pi).

−20

−10

0

10

20

−20

−10

0

10

20

−4

−2

0

2

4

x [m] y [m]

θ
 [
ra

d
]

2

4

6

8

10

12

14

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

x [m]

 y
 [
m

]

2

4

6

8

10

12

14

Fig. 4. The cost-to-go function C(0,x) for paths generated by the
POSQ controller. Top: all three dimensions are showed. Bottom:
the projection onto the (x, y)-Cartesian plane.

B. Features

Let the set of independent variables X be the vector
of features f that we define in this section. Naively, we
could directly use the inputs of the extend function, the
two poses x1 and x2, as features f = (x1, x2, y1, y2, θ1, θ2)
since they fully define the problem. However, this choice
encodes the relevant information only very implicitly and
we expect that there are interesting interactions between
those features.

Thus, we perform feature expansion to find more
meaningful inputs. But instead of an uninformed, generic
method such as quadratic expansion or kernel methods,
we can take advantage of our domain knowledge to
capture those interactions. For example, it is obvious
that the Euclidean distance

√
(y2 − y1)2 + (x2 − x1)2

will be a dominant feature for predicting the cost of paths
that connect x1 and x2. Finally, via multiple validation
iterations, we have found a set of fourteen features to
characterize the cost-to-go function. The features make
the geometric properties of connecting paths more ex-
plicit and facilitate the learning process (see Table I).

Training samples si = [fi, ci] are pairs of feature vec-
tors and ground truth costs. Here, we randomly generate
pose pairs (x1,x2) in the configuration space, compute
their 14-dimensional feature vector fi and determine the
corresponding ground truth cost from the POSQ extend
function, ci = C(x1,x2).

C. Learning

We choose a basis function model (BFM) for learning
to predict path costs, fitted to the training set S =
{si}Ni=1 using Levenberg-Marquardt [13]. The model is

Description Expression

Displacement in x ∆x = x2 − x1

Displacement in y ∆y = y2 − y1

Displacement in θ ∆θ = θ2 − θ1
Euclidean distance between poses d = ‖x2 − x1‖
x-projection of the orientation change cos ∆θ

y-projection of the orientation change sin ∆θ

Orientation change multiplied by Eu-
clidean distance

d∆θ

x-projection of the orientation change
multiplied by Euclidean distance

d cos ∆θ

y-projection of the orientation change
multiplied by Euclidean distance

d sin ∆θ

Angular difference between x1 and con-
necting line of the two poses

atan ∆y
∆x
− θ1

Angular difference between x2 and con-
necting line of the two poses

atan ∆y
∆x
− θ2

Ratio between the previous two features
atan(∆y/∆x)−θ1
atan(∆y/∆x)−θ2

Angular difference between x1 and con-
necting line multiplied by Euclidean dist.

d (atan ∆y
∆x
− θ1)

Angular difference between x2 and con-
necting line multiplied by Euclidean dist.

d (atan ∆y
∆x
− θ2)

TABLE I

Input features

defined as

y =

M∑
m=1

Φm(f , β) (4)

where M is the number of basis functions Φ. This choice
is motivated by the simplicity of basis models and their
fast inference. Concretely, we choose quadratic basis
functions given by

y =

Mf∑
m=1

βm1(fm − βm2)2 (5)

where Mf is the number of features.

IV. Experiments

In the experiments we analyze both, the prediction
accuracy of the model in terms of regression and ranking
metrics, and how the learned distance metrics impacts
planning time, path quality, and state space coverage.

A. Regression and ranking performance

To evaluate the prediction accuracy of the learned
model, we use the following regression error metrics: the
median of the residuals, the mean squared error normal-
ized by the residual’s variance (NMSE), and the coeffi-
cient of determination. Note, however, that although we
framed our task as a regression problem it is actually
a learning-to-rank problem. When searching the tree for
the nearest state xnear given a xrand, we are actually
interested in the correct ranking of the tree vertices under
the cost model rather than the predicted costs as such1.
The typical strategy is then to choose the best ranked
(lowest cost) vertex as xnear. Thus, we also evaluate

1It could be argued that approximating a learning-to-rank prob-
lem by a classification problem is easier than by a regression
problem but this discussion is left to future work.

the model with respect to its ability to correctly predict
the ranking of a set of states. To this end, we use the
following ranking metrics: Kendall τ coefficient, Kendall
τd distance and Spearman ρ coefficient [14]. Kendall
τ and Spearman ρ coefficients are both a measure of
correlation between two-ordinal level variables. τ and ρ
are equal to 1 if the two rankings agree perfectly, if they
disagree perfectly τ and ρ are equal to −1. Kendall τd
distance measures the number of disagreement between
two ordered lists: two ranks are equals if the distance is
0. We consider here the ranking of the 5 best vertices.

For training the distance metric, we used 50,000 sam-
ples and validated the results with 10,000 samples in
terms of regression performance. For the ranking perfor-
mance, we predict the cost and evaluate the metrics for a
grid of poses over the entire configuration space without
obstacles with a resolution of 0.1m in x, y and π/4 rad
in θ.

For both regression and ranking performances we
compare the basis function model to a neural network
regression model with two hidden layers, 30 neurons
in the first and 20 the second one. The architecture
of the neural network was found through 5-fold cross
validation. We train the neural network with the same
data used to train the basis function model. We also give
the regression and ranking results for the basis function
model using the naive feature selection in which we only
take the two poses x1 and x2 as input.

B. Planning performance

As our initial motivation was to speed up planning,
we investigate how the learned model impacts planning
time as well as path quality and coverage ability. To this
end, we compare the learned distance metric with three
baselines in three different environments. The baseline
are the ground truth function (the POSQ extender) with
the regular high-resolution integration time of 0.1 sec,
the ground truth function with a low integration time
of 0.5 sec, and the neural network regression model
before described. For each environment and method we
perform 100 runs and compute the average of all metrics.
We use uniform sampling in the entire state space. All
experiments were carried out in a C++ implementation
on a single core of an ordinary laptop with 2.70 GHz Intel
i5 and 12 GB RAM.

To quantify planning performance we compute the
averages of the following metrics: time for a single exten-
sion (Te), time to find a solution (Ts), and path length
in meters (lp). Smoothness, although being an intuitive
concept, is less straightforward to assess. We compute
three measures that are relevant in our context:

Let vmax be the maximum magnitude of the robot
velocity vector v, ṽ = v(t)

vmax
the normalized velocity,

and [t1, t2] the time interval over which the movement
is performed.

1) ηnmaJ , the average of the mean absolute jerk nor-
malized by vmax, for which the best value is zero:

ηnmaJ = − 1

vmax(t2 − t1)

∫ t2

t1

∣∣∣∣d2vdt2
∣∣∣∣ dt,

Regression Performances

Metric Basis fct.
model

NN
model

BFM naive
features

Median residuals 0.030 1.607 10−6 7.8376

NMSE 0.005 7.729 10−7 0.8843

Determination 0.999 1 0.8040

Ranking Performances

Metric Basis fct.
model

NN
model

BFM naive
features

τ 1 1 −0.2

τd 0 0 0.6

ρ 1 1 −0.3

TABLE II

Regression and ranking performances

2) average of the speed arc length ηspal, for which the
best value is zero

ηspal = −ln

∫ t2

t1

√(
1

t2 − t1

)2

+

(
dṽ

dt

)2

dt

 ,

3) average number of peaks ηpm

ηpm = −|Vpeaks |.

with Vpeaks = {v(t) : dvdt = 0, d
2v
dt2

< 0} being the set
of local velocity maxima.

Different distance metrics may lead to different cov-
erage of the state space [6]: we compare the ability of
our approach to cover the state space with the three
baselines in one environment. The entire state space has
been divided in a set of 3D grid cells. The state space
coverage is defined as the ratio of grid cells covered by
the tree. In this experiment we perform 100 runs of 5,000
iterations per each metric.

The three simulated test environments, shown in
Fig. 5, have been designed to stress different properties of
a planner. The open space scenario has no obstacles, it
serves to study the planner’s behaviour when the tree
can grow freely. The hallway scenario contains many
areas of open space, alternative paths to the goal and
local minima. The random map scenario contains 100
randomly placed square obstacles. There are many ho-
motopy classes, some require more or less maneuvers
along paths than others. The map size in all scenarios
is 50m × 30m. To test the state space coverage, we
considered the random map scenario.

C. Results

The results for the regression and ranking metrics are
reported in Table II. They demonstrate the necessity to
design informative features for this task given how clearly
the naive feature selection fails to properly learn the true
distance metric. The basis function model was chosen
despite lower regression accuracy because it is able to
achieve the same (perfect) results for the 5 best ranks
than the neural network approach while being faster to
compute.

POSQ 0.1 POSQ 0.5 Basis fct. model Neural Network
0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

0.3

Fig. 6. Means and standard deviations of the state space coverage
after 5000 iterations for all the distance metrics evaluated. To test
the state space coverage, we considered the random map scenario.

The path quality, efficiency and smoothness results are
given in Table III. They show that the learned distance
metric is able to improve the time for the single extension
by several factors and the time to find the first solution
while having a negligible effect on the smoothness met-
rics. An important result is the one reported in Table
III for the open space scenario where the impact of the
learned distance metric is fully visible because, without
obstacles, the other RRT heuristics that influence tree
growth (extend function, collision checking and random
state generation) have no effect. Therefore, the speed up
in planning time is most dramatic in this environment.
For the hallway scenario, the basis function model is still
able to find a solution more than two times as fast while
in the cluttered random map environment, the learning
method is on par with the regular approach. This insight
is that in cluttered environments a lot of time is spent
for collisions checking and short extensions for which the
acceleration by the learning approach is smaller. As we
can see the path quality remains largely unaffected, the
values are all within the same order of magnitude than
the original approach.

The coverage results are given in the Fig. 6. The
learned distance metric thanks to its good approxima-
tion abilities does not degrade in terms of state space
coverage: in average, its trees are able to cover the same
amount of grid cells than the baseline methods.

V. Conclusions

In this paper, we have presented a new approach to
learn the distance metric for RRT motion planning. In-
stead of computing local extension paths and evaluating
their cost when growing the tree, we learn a parametric
regression model that directly predicts the cost. With
the proper choice of informative features and a simple
regression model, we showed that this technique is very
fast and leads to a significant speed up in planning
time. The idea builds upon a novel RRT extend function
for wheeled mobile robots which solves the two-point
boundary value problem.

We compared our approach to three baseline methods
including a neural networks regression model that was
found through cross-validation. The learned model is
faster by several factors with negligible loss of path
quality and with the same state space coverage ability

Open space scenario

Method Te [s] Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 0.1 0.0101886 14.5215 47.6487 −7.32075 10−05 −0.802622 0.62

POSQ 0.5 0.00609328 5.3704 50.4071 −6.77003 10−05 −0.73929 0.38

Basis fct. model 0.00132488 1.0902 48.608 −6.44915 10−05 −0.759564 0.31

Neural Network 0.00355623 2.6722 48.2047 −6.71913 10−05 −0.777919 0.55

Hallway scenario

Method Te [s] Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 0.1 0.0108161 92.9419 54.6069 −7.44230 10−05 −0.844397 0.90

POSQ 0.5 0.0079751 70.6947 56.0821 −8.01868 10−05 −0.8833 3.23

Basis fct. model 0.00178928 29.0099 62.8529 −6.70743 10−05 −0.961323 8.2

Neural Network 0.00531763 65.2463 63.3869 −7.22698 10−05 −1.01336 0.39

Random map scenario

Method Te [s] Ts [s] lp [m] ηnmaJ ηspal ηpm

POSQ 0.1 0.0117979 37.7666 49.8373 −6.04633 10−05 −0.794841 0.45

POSQ 0.5 0.0108875 20.88 50.129 −6.12429 10−05 −0.795457 0.68

Basis fct. model 0.0039755 23.3264 53.2168 −6.85253 10−05 −0.844749 3.89

Neural Network 0.00378317 19.452 53.5202 −6.98598 10−05 −0.865452 0.33

TABLE III

Smoothness and efficiency results

Fig. 5. The three environments and example trees obtained using our approach. Left: the open space scenario. Middle: hallway scenario.
Right: random map scenario

than the true distance metric.
In future work, we aim for high dimensional spaces:

we believe that for complex systems such as humanoids
and mobile manipulators, our approach will lead to an
even more dramatic speed up of planning time. Clearly,
new features will be required and a two-point boundary
value problem solver is needed. We are also interested
to incorporate the learned model into RRT variants like
RRT* or T-RRT.

Acknowledgement
The authors thank Frank Hutter and Rudolph Triebel for valu-

able discussions. This work has been supported by the EC under
contract number FP7-ICT-600877 (SPENCER)

References
[1] S. Karaman and E. Frazzoli, “Incremental sampling-based

algorithms for optimal motion planning,” in Proc. of Robotics:
Science and Systems (RSS), 2010.

[2] ——, “Sampling-based algorithms for optimal motion plan-
ning,” in Int. Journal of Robotics Research (IJRR), vol. x,
no. x, 2011.

[3] ——, “Sampling-based optimal motion planning for non-
holonomic dynamical systems,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 5041–5047.

[4] P. Cheng and S. LaValle, “Reducing metric sensitivity in ran-
domized trajectory design,” in Intelligent Robots and Systems,
2001. Proceedings. 2001 IEEE/RSJ International Conference
on, vol. 1, 2001, pp. 43–48 vol.1.

[5] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo,
“Choosing good distance metrics and local planners for prob-

abilistic roadmap methods,” Robotics and Automation, IEEE
Transactions on, vol. 16, no. 4, pp. 442–447, Aug 2000.

[6] E. Glassman and R. Tedrake, “A quadratic regulator-based
heuristic for rapidly exploring state space,” in Robotics and
Automation (ICRA), 2010 IEEE International Conference on.
IEEE, 2010, pp. 5021–5028.

[7] D. Webb and J. van den Berg, “Kinodynamic RRT*: Asymp-
totically optimal motion planning for robots with linear dy-
namics,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on, May 2013.

[8] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-
Perez, “LQR-RRT*: Optimal sampling-based motion planning
with automatically derived extension heuristics,” in Robotics
and Automation (ICRA), 2012 IEEE International Confer-
ence on, May 2012.

[9] Y. Li and K. Bekris, “Learning approximate cost-to-go metrics
to improve sampling-based motion planning,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on,
May 2011, pp. 4196–4201.

[10] S. LaValle and J. Kuffner, J.J., “Randomized kinodynamic
planning,” in Int. Conf. on Robotics and Automation (ICRA),
vol. 1, 1999.

[11] L. Palmieri and K. O. Arras, “A novel RRT extend function
for efficient and smooth mobile robot motion planning,” in
Int. Conf. on Intelligent Robots and Systems (IROS), 2014.

[12] A. Astolfi, “Exponential stabilization of a wheeled mobile
robot via discontinuous control,” Journal of dynamic systems,
measurement, and control, vol. 121, no. 1, 1999.

[13] J. J. Moré, “The Levenberg-Marquardt algorithm: implemen-
tation and theory,” in Numerical analysis. Springer, 1978,
pp. 105–116.

[14] C. Spearman, “The proof and measurement of association
between two things,” International journal of epidemiology,
vol. 39, no. 5, pp. 1137–1150, 2010.

