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Abstract—Protein conformation space (CSpace) plays a funda-
mental role in the computational study of protein conformations.
With the large dimensions and complicated structures of protein
CSpaces, dimensionality reduction allows scientists to generate
lower dimensional embedding of CSpace data that can be used
for further analysis and information extraction. In this paper, we
discuss our puzzling dimensionally reduction results of β-hairpin
where the linear method PCA performed better than nonlinear
methods ISOMAP and LLE. We describe our findings and
show that nonlinear surfaces without certain specified properties
are not necessarily better suited for nonlinear dimensionality
reduction methods than linear methods. We define protein
CSpace represented by atom Cartesian coordinates formally as
the quotient space of its ambient Euclidean space by the group
of 3D rigid motions. We explain that PCA essentially uses an
explicit section (as defined mathematically) to represent protein
CSpace , while the RMSD-based ISOMAP and LLE essentially
use an implicit representation that poses additional challenges to
dimensionality reduction. We present an ISOMAP variant that
works like PCA on a section of protein CSpace and achieves
better results than the original ISOMAP for β-hairpin. We
also describe open problems on fundamental issues for protein
CSpace , motivated by dimensionality reduction but relevant to
general computational study of protein conformations.

I. INTRODUCTION

Conformation space(CSpace) is to protein folding what
configuration space (CSpace) to robotic motion planning. In
the past two decades or so, robotics researchers have developed
many innovative and successful methods for planning motions
and analyzing CSpaces, as partly reflected in the books
[15, 4, 16] and references therein. Among many families of
planning methods, Probabilistic Roadmap Methods (PRM )
[13] have had significant impacts in diverse fields; applications
in computational structural biology include protein folding and
drug design [20, 21, 18]. In protein folding studies, PRM
uses protein conformation samples to build a discrete graph
presentation of the inherently continuous protein CSpace,
then extracts biologically meaningful information like protein
folding pathways from the graph. Recently, PRM was also
incorporated into ISOMAP-based dimensionality reduction
study of protein conformation space [5, 22].

Mathematically, dimensionality reduction aims at mapping
a set in a high-dimensional ambient space to a lower dimen-
sional one while preserving the set’s structure. It is widely used
in fields dealing with data in high dimensional spaces. Reduc-
ing a data set to a lower dimensional space and working therein

provides many advantages such as reduced complexity and
improved efficiency for analysis and visualization. However,
the usefulness of information extracted from the reduced space
depends on whether the set has consistent properties in its
two ambient spaces. For protein conformations, in theory the
original data set is the continuous, high-dimensional protein
conformation space, but in practice it is a discrete (finite)
set of protein conformation samples. Dimensionality reduction
methods are commonly used to generate one or more 2D or
3D embeddings of the sample set. Scientists then observe and
analyze these embeddings to make inferences about properties
of the theoretical CSpace, such as the number of free energy
minima, their locations, and the energy barriers between them.

Dimensionality reduction methods can be classified as linear
or nonlinear. Principle Component Analysis (PCA) [11], an
important linear method, finds a low-dimensional embedding
of the sample data points that best preserves their variance. It
is well suited for data lying on or near a linear subspace of
the original ambient space. Multi-Dimensional Scaling (MDS)
[1] takes an input matrix giving distances (dissimilarities)
between pairs of points and outputs a coordinate matrix whose
configuration best preserves the distances. It is equivalent to
PCA when the distance between two points is their Euclidean
distance. ISOMAP (Isometric feature Mapping) is a nonlinear
method that “builds on top of classical MDS and seeks to
preserve the intrinsic geometry of the data, as captured in the
geodesic manifold distances between all pairs of data points”
[23]; in the spirit of PRM’s roadmap, ISOMAP creates a
graph reflecting the connectivity of CSpace, then uses the
graph-based all-pair shortest distances as the estimate of their
geodesic distances. Another nonlinear dimensionality reduc-
tion method, Locally Linear Embedding (LLE) [19], is for
data sets forming manifolds. It exploits the fact that no matter
how non-linear a manifold may be globally, it is covered by
approximately linear local neighborhoods. In effect, LLE does
a different linear dimensionality reduction near each point,
then combines them all with minimal discrepancy.

PCA, ISOMAP and LLE have all been adapted for the
study of protein conformations [10, 5, 14, 3, 22]. It is widely
assumed that the protein conformation spaces are nonlinear
and, thus, nonlinear dimensionality reductions methods can
get better results. This is indeed the case in the solid work
reported in [5, 14, 3, 22].



II. PUZZLING DATA

We recently applied dimensionality reduction in our study
and reported in the paper [6] our evaluation results of var-
ious methods to the second β-hairpin of the B1 domain of
streptococcal protein G, which has sequence G-E-W-T-Y-D-D-
A-T-K-T-F-T-V-T-E without blocking groups at the termini. A
total of 200,000 conformations were generated from molecular
dynamics simulation, each represented by a 480-dimensional
vector of atom Cartesian coordinates. We used the publicly
available dimensionality reduction code, with RMSD as the
distance metric, in computing the graph for ISOMAP and local
neighborhood for LLE. Our results were very puzzling: PCA
performed better than LLE and rmsdISOMAP, as measured in
the residual variance (Fig. 1) as well as other measures such
as free energy profile. Please refer to the paper [6] for more
information. (Note that residual variance is one commonly
used numerical measure for variance and similarity in inter-
point distances between two embeddings. The lower the resid-
ual variance, the more similar the inter-point distances, and
implicitly, the more similar the geometry of the embeddings.)

Fig. 1. Residual Variance of Embedding Results for β-Hairpin

Our β-hairpin results contradict the common understanding
that nonlinear dimensionality reduction methods generally
work better than linear methods for nonlinear manifolds, as
supported by the solid prior work. So we have conducted
a serious investigation into relevant issues, and developed
an explicit representation of the conformation space and an
ISOMAP variant called crISOMAP [7]. As shown in Fig. 1,
with respect to β-hairpin and residual variance, crISOMAP
performed better than rmsdISOMAP and LLE in the top 10
dimensions, and is better than PCA in dimensions 5 or lower
and comparable in dimensions 6 or above. In this paper,
we explain some subtle issues for dimensionality reduction
and protein conformation space. We also present our recent
theoretical findings and several open questions that aim at
helping us develop a better understanding of the mathematical
properties of protein conformation space and select as well as
adapt dimensionality reduction methods.

III. GEOMETRIC ISSUES

As we investigated several possible explanations for the
unexpected results for β-hairpin, we eventually rediscovered
what is clearly stated in the ISOMAP paper but had somehow
escaped our attention before.

Just as PCA and MDS are guaranteed, given suf-
ficient data, to recover the true structure of linear
manifolds, Isomap is guaranteed asymptotically to
recover the true dimensionality and geometric struc-
ture of a strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds whose
intrinsic geometry is that of a convex region
of Euclidean space, but whose ambient geometry
in the high-dimensional input space may be highly
folded, twisted, or curved. For non-Euclidean man-
ifolds, such as a hemisphere or the surface of a
doughnut, Isomap still produces a globally optimal
low dimensional Euclidean representation, as mea-
sured by Eq. 1. [23, p. 2321; our boldface emphasis]

So what about manifolds whose intrinsic geometry is not a
convex region of Euclidean space? How will the dimension-
ality reduction methods perform? To answer these questions
and more, we applied dimensionality reduction methods to
representative samples from several example surfaces; Figs. 2
and 3 illustrate our results for two variants of spherical
surfaces. Note that the spherical surfaces are simple and can
serve as good examples of manifolds since they don’t satisfy
the desired manifold properties for ISOMAP in various ways.
• A spherical surface, when using the Euclidean distance

and considered as a subset in the Euclidean ambient
space, is Euclidean but not convex. This is essentially
how a spherical surface is treated by PCA.

• A spherical surface, when using the spherical distance and
considered as a subset in the spherical ambient space,
is non-Euclidean but convex. This is essentially how a
spherical surface is treated by ISOMAP and LLE.

• A truncated sphere is not convex in Euclidean or spherical
geometry.

Fig. 2. Dimensionality Reduction Results of a Hemisphere by PCA, LLE
and ISOMAP

As Figs. 2 and 3 show, PCA and ISOMAP achieve similar
performances and better residual variance than LLE for both
examples. Thus, nonlinear surfaces without the properties
specified for ISOMAP are not necessarily better suited for
nonlinear dimensionality reduction methods than linear
methods.



Fig. 3. Dimensionality Reduction Results of a Zone (Truncated Hemisphere)
by PCA, LLE and ISOMAP

As for LLE, it has solid theoretical underpinnings in dif-
ferential geometry, based on the property that a manifold
resembles Euclidean space near each point. More precisely,
each point of an n-dimensional manifold has a neighborhood
homeomorphic to the Euclidean space of dimension n. Lines
and circles, but not figure 8 or letter X, are 1-dimensional
manifolds. Although near each point, a manifold resembles
Euclidean space, globally a manifold might not, as in the case
of spherical surfaces. The relatively poor performance of LLE
in the two hemisphere examples seems to be related to the non-
uniform distribution of points on the surface: the density of
the point samples is higher at the polar area (the bottom) than
at the equator. Also the region with more densely distributed
points seems to have a smaller ratio between its area and the
area of the overall surface after the reduction. This trend seems
similar to the observation in [17] that, if a data set has multiple
clusters of points connected by single straight lines between
clusters, then LLE compresses each cluster to a single point.
This suggests that LLE is better suited for embedding sur-
faces with one well-connected component instead of multiple
components with fewer connections between them. We are
continuing investigations of these issues.

We also want to point out that the intrinsic dimension and
the embedding dimension of a manifold are not necessarily the
same. For the Swiss roll, a benchmark surface widely used in
the evaluation of nonlinear dimensionality reduction methods,
these two dimensions are the same. On the other hand, a
spherical surface has intrinsic dimension 2 but can only be
embedded in Euclidean space of dimension 3 or larger; the
same is true for other surfaces like the torus and Klein bottle.
One well-known theorem in differential topology, the so-called
Strong Whitney Embedding Theorem, states that any smooth
real m-dimensional manifold (required also to be Hausdorff
and second-countable) can be smoothly embedded in the real
2m-space R2m. The practical implication is that, to achieve a
“good” embedding with “low” residual variance value, the m-
dimensional conformation space of a protein might need to be
embedded in an ambient Euclidean space higher than m. This
raises a question: are the intrinsic and embedding dimensions

of protein conformation space biologically meaningful?

IV. PROTEIN CONFORMATION SPACE

In the common setting for dimensionality reduction, there
is a data set S and an ambient Euclidean space E, generally
with each point in S represented by one coordinate vector in
E. So the data set S starts with an explicit representation in
E. However, this is not the case for protein conformations
represented by atom Cartesian coordinates. For a protein with
n atoms, the Cartesian coordinate based approach uses 3n-
dimensional vectors to represent conformations and thus puts
the protein conformation space in an ambient Euclidean space
R3n. But each conformation is represented by all the different
3n coordinates that are related to it through rigid motions of
R3, the ambient physical space of the protein. Unless one
and only one 3n-vector for each conformation is explicitly
used, conformation space is only implicitly represented as a
subset in R3n. This implicit nature of the Cartesian coordinate
representation of protein conformations and the wide use of
3n-vectors in conformation-related computation makes the
protein conformation space fundamentally different from the
explicit point representation of data sets used in the common
setting of dimensionality reduction, and may blur the differ-
ence between protein conformation space and the ambient
space R3n. To clarify this and related points, we introduce
some useful mathematical formalism.

A. Formal Mathematical Definition

Given a set S and an equivalence relation ≡, the quotient
set S/ ≡ consists of equivalence classes in S with respect
to the equivalence relation ≡. In other words, each element
s of S determines one element of S/ ≡, namely, the set of
all points in S equivalent by ≡ to s. If S has an additional
structure, such as a topology or a geometry, S/ ≡ can usually
be equipped with a structure of the same kind.

For protein conformations, S is the set of possible place-
ments of the given protein in physical space R3. We call such a
placement a pose of the protein. Two poses are equivalent if a
rigid motion of R3 carries one to the other. A conformation of
the protein is an equivalence class of poses. In these terms, the
protein conformation space CSpace is formally defined as the
quotient space of pose space by 3D rigid motion equivalence.

protein CSpace = PoseSpace/3DRigidMotion (1)

This is conceptually identical to the definition of robot de-
formation space [9]: in both cases, rigid motions are factored
out from the (protein or robot) pose space, creating a quotient
space that is the natural arena for formulating and analyzing
those properties of (protein or robot) configurations which are
intrinsic, i.e., independent of rigid motions.

To apply dimensional reduction methods, protein CSpace
must be equipped with a metric (which then gives it a topology
and a geometry). There is more than one way to do this.
For example, so-called internal coordinates represent protein
CSpace as a subset of Sk,`,m = Rk×(S1)`×(S1)m, where S1

is a 1-dimensional circle and a conformation is fully specified



by k bond lengths, ` bond angles, and m torsion angles; similar
coordinates are used in robotics to represent CSpace of an
open or closed chain with spherical joints (see [24]). The
metric that CSpace inherits from Sk,`,m generally has globally
curved geometry. By contrast, an alternative set of “interpoint
distance coordinates” that has proved useful in robotics [8]
often gives CSpace a global metric that is piecewise flat (these
coordinates have not yet been applied to proteins).

In this paper we focus on the atom Cartesian coordinate
representation of poses, so that for a protein with n atoms,
pose space is R3n and

proteinCSpace = R3n/3DRigidMotion (2)

as illustrated schematically in Fig. 4. In subsection IV-C we
address the question of equipping protein CSpace, in this
representation, with a metric.

Fig. 4. (a) Six Poses Representing Three Conformations. (b) Schematic
representation of CSpace as R3n/G.

B. Dimensionality Reduction Issues

We briefly describe how we applied the dimensionality
reduction methods to our model system β-hairpin and then
discuss challenging issues with dimensionality reduction of
protein conformation space. Please refer to papers [6, 7] for
more information including discussions of the choice and
effects of parameter values.

[Conformation Data] CHARMM [2] (version c31b1) was
used in the 4 µs equilibrium folding-unfolding simulation
of β-haripin at 360K, with parm19 polar hydrogen potential
function and EEF1 implicit solvation model22. Snapshots were
saved every 20 ps and a total of 200,000 conformations were
generated. The atom coordinate vectors have 480 dimensions.

[PCA] For each atom coordinate vector, we computed its
best alignment with the native fold and used all such best
aligned coordinate vectors to form a matrix of the original
points and submit the matrix to the standard PCA computation
(ptraj module in AmberTools (v9.0)).

[rsmdISOMAP] We computed RMSD between every pair
of atom coordinate vectors and chose 20 closest neighbors for
each conformation to build a graph, with RMSD values as
edge weights. To reduce the computation amount, we used
the landmark idea given in [5] and picked 5000 landmarks,
one in every 800 ps of the simulation trajectory. We also

computed the largest connected-component of the graph, and
removed all conformations not in this component. We then
computed the shortest path lengths from each of the remaining
179,774 conformations to all the remaining 4491 landmarks,
as an approximation of the geodesic distances, and used the
resulting distance matrix in the ISOMAP computation.

[LLE] We used a RMSD cutoff value of 3.0Å as a neighbor-
ing criterion and only kept the conformations having at least
20 neighbors for embedding. This led to a total of 179,629
conformations for LLE, and the computation was done by the
publicly available LLE code.

[Issues] We now elaborate on the issues related to the
implicit representation of protein CSpace and challenges for
dimensionality reduction. With pairwise RMSD-based compu-
tation, each conformation is generally represented by multiple
poses of the same conformation. Consider the example shown
in Fig. 4, and assume that the best alignments for conformation
pairs (cfmA, cfmB), (cfmB, cfmC) and (cfmC, cfmA) are
(pose1, pose2), (pose6, pose4) and (pose4, pose1) respectively.
Then cfmB already uses two poses labeled pose 2 and pose6
in this small example. Intuitively, when using RMSD, each
conformation corresponds to a cloud of points in the ambient
space R3n. However, with dimensionality reduction, the clouds
of points in the ambient space need to be mapped to individual
points in the reduced space. This problem of having multiple
coordinates for each point is fundamentally different from the
original problem setting of having one coordinate for each
point setting. It also raises questions about whether the protein
conformation space is Euclidean, convex, or even a manifold.

C. (Mathematical Defined) Section of Protein CSpace

In contrast to rmsdISOMAP and LLE, our PCA process for
β-hairpin computed the best alignments for all conformations
with respect to the native fold and used the best aligned
conformations in the embedding computation. More precisely,
the native fold conformation was represented by one of its
poses (arbitrary, but fixed), and for each other conformation
that one of its poses which is best aligned to the fixed pose of
the native fold. Mathematically, selecting one point from each
equivalence class defines a section for the quotient space. So,
for PCA with a reference pose r, its computation is really
done in the corresponding section of CSpace, which we call
CSection(r) for short.

protein CSection(r) :

protein CSpace represented by a section wrt ref. cfm r

=
{
p ∈ R3n | best alignment matrix (p, r) = I

}
(3)

In words, the last line of definition (3) states that a 3n-vector
p is the best aligned pose of the corresponding conformation
with respect to the reference pose r of the reference confor-
mation if and only if the best alignment matrix for p and r is
the identity matrix I .

Since PCA worked well for β-hairpin and the CSection
representation follows the common setting for dimensionality
reduction (with one and only one coordinate vector for each



conformation), we also adapted the ISOAMP method for
CSection as follows and named the corresponding method
crISOMAP, short for common reference ISOMAP.

[crISOMAP] The process for crISOMAP was very similar
to that for rmsdISOMAP. The main difference was that we
initially computed the best alignments of all 200k conforma-
tions with respect to the native fold and then used the pairwise
Euclidean distances of these best aligned conformations as
their distances to identify 20 neighbors for each conformation.
We then built a graph with edge weights being the Euclidean
distances between neighboring conformations. We also just
kept the conformations and landmarks in the largest connected
component for the embedding computation.

As shown in Fig. 1 for residual variance of the embedding
results of β-hairpin, crISOMAP did better than rmsdISOMAP
in the first 10 embedding dimensions, better than PCA in the
first five (5) dimensions and comparably for dimensions 6
through 10. Recall that, from the computational perspective,
the only difference between crISOMAP and rmsdISOMAP is
that crISOMAP uses one 3n-vector for each conformation and
thus treats protein CSpace as an explicit subset in the ambient
space R3n. This difference is very likely a significant factor
leading to the improved ISOMAP performance, but thorough
investigation needs to be done to develop a better under-
standing of the protein conformation space and dimensionality
reduction methods. Here we present one result on the property
of the set of best aligned poses with respect to one reference
conformation.

Theorem 1: Given a point set of n points in d dimensions
and one reference pose r of a reference conformation, the
best aligned poses of other conformations that have the same
chirality as r form a linear set. In other words, if p and q have
the same chirality as r and are both best aligned wrt r, then
sp+ tq, with s, t ∈ R, is also best aligned wrt r.

Proof: Given a point set, aligning poses of conformations
based on point coordinates has a translation part and a rotation
part. The translation part is to put the centroid at the origin
of the coordinate system by subtracting the coordinates of the
respective centroid from the point coordinates. It is easy to
see that this is a linear constraint.

For the rotation part, denote the reference pose r as well as
the best aligned poses p and q as matrices of dimension d ×
n. The Kabsch Algorithm [12] computes the optimal rotation
matrix for p and r as follows.

Define the covariance matrix A = pr′, where r′ is the matrix
transpose of r. Denote its singular value decomposition as
A = VASW

′
A, where VA and WA are d×d orthogonal matrices

satisfying VAV ′A = Id, etc.
Then determine whether we need to modulate the rotation

matrix to deal with chirality (handedness) of point sets by
computing c = sign(det(WAV

′
A)), and finally, compute the

optimal rotation matrix UA as

UA = WA × diag(1, . . . , 1, c)× V ′A
where diag(1, . . . , 1, c) is the diagonal matrix with all diago-
nal elements except the last equal to 1, the last equal to c.

Since p and r are assumed to have the same chirality (c
is 1), the diagonal matrix in the equation above becomes the
identity. Further, since p is assumed to be best aligned wrt r,
this optimal rotation matrix is Id itself. So we have

UA = WA × V ′A = Id

From here, it is easy to prove that UA = Id if and only if
WA = VA and A is symmetric. The same property holds for
the best aligned coordinate sets q and r, with their covariance
matrix B = qr′ being symmetric. Thus the linear combination
sp+ tq also has a symmetric covariance matrix with r and an
identify matrix for rotation alignment. In other words, sp+ tq
is also best aligned with respect to r.

Note that Theorem1 is applicable to point sets in an arbitrary
dimension. In terms of protein conformations, it clears estab-
lishes that, if two poses p and q are best aligned with respect
to r, their convex combination λp+ (1− λ)q, with λ ∈ [0, 1],
is also best aligned. This means that protein CSection(r)
as defined in equation 3 is convex in its ambient space
R3n, so long as we disregard constraints on bond lengths,
bond angles and torsion angles. These bond constraints are not
necessarily satisfied since we don’t know that, given p and q
satisfying these constraints, whether λp+(1−λ)q also satisfies
the constraints. In other words, it is not clear that, given two
valid conformations best aligned to a common reference, their
convex combinations produce valid conformations. If this turns
our to be true, it would give the nice property of convexity to
protein CSection(r) in its ambient space R3n, even with the
bond constraints considered. Such a property would be useful
for the analysis and sampling of protein conformation space.

While the properties of CSection(r) in the ambient space
might contribute to the better than expected performance
of PCA over the nonlinear methods, we need to have a
better understanding of the intrinsic geometry of protein
conformation space and its section representation. This is
important for computational study of protein conformations in
general, including the applicability and adaptation of nonlinear
dimensionality reduction methods, since these methods mainly
rely on the intrinsic geometry, or more precisely, discrete
approximation of the intrinsic geometry, in their computation.
Questions related to the intrinsic topology and geometry of
protein conformation space remain largely open.

V. SUMMARY

Protein conformation spaces plays a similar role for protein
folding as robot configuration space for motion planning.
Mathematically, when described in atom Cartesian coordi-
nates, the CSpace of a protein with n atoms is the quotient
space of the ambient space R3n by the group of 3D rigid
motions, which is similar to the robot deformation space. This
quotient space definition formally and explicitly captures the
notion that the set of all 3n-vectors related to each other
through rigid motions corresponds to one conformation. It
clearly distinguishes the protein CSpace from its ambient
Euclidean space and raises important questions about pro-
tein CSpace on its representation, topological and geomet-



rical properties. Considering the fundamental roles of protein
CSpace, the formal definition and progresses on related math-
ematical issues can be influential in a broad range of topics
arising in the computational study of protein conformations.

In this paper, we focused on the dimensionality reduction of
protein conformation space. We briefly described our puzzling
results with the linear dimensionality reduction method PCA
achieving better performance for our model system β-hairpin
than the nonlinear methods rmsdISOMAP and LLE. These
results are not consistent with the common belief that the
conformation space of a protein is generally a nonlinear hyper-
surface and nonlinear dimensionality reduction methods are
expected to do better than linear methods. We reported our
recent findings and showed that nonlinear surfaces without
certain specified properties are not necessarily better suited
for nonlinear dimensionality reduction methods than linear
methods. For protein conformation space, we explained that
PCA essentially uses an explicit section to represent the
protein CSpace, while the RMSD-based ISOMAP and LLE
essentially use an implicit representation, which poses ad-
ditional challenges to dimensionality reduction. We also de-
scribed an ISOMAP variant that works on a section of protein
CSpace like PCA and achieved better results than the original
rmsdISOMAP for β-hairpin.
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