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Abstract—Predicting protein structures and simulating protein
folding are two of the most important problems in computational
biology today. Simulation methods rely on a scoring function to
distinguish the native structure (the most energetically stable)
from non-native structures. Decoy databases are collections of
non-native structures used to test and verify these functions.

We present a method to evaluate and improve the quality
of decoy databases by adding novel structures and removing
redundant structures. We test our approach on 17 different
decoy databases of varying size and type and show significant
improvement across a variety of metrics. We also test our
improved databases on a popular modern scoring function and
show that they contain a greater number of native-like structures
than the original databases, thereby producing a more rigorous
database for testing scoring functions.

I. INTRODUCTION

Two important problems in computational biology are

predicting protein structures and simulating protein folding

motions. The protein’s most energetically stable structure, the

native structure, determines its function and how it interacts

with other proteins. Because a protein’s structure and function

are so intimately related, predicting a protein’s structure is

of paramount importance. In addition, errors in the protein

folding process (i.e., folding from an unstructured chain of

amino acids to the native structure) cause a protein to fold

incorrectly thereby altering its functional ability and possibly

lead to many devastating diseases. Thus, the folding process

itself remains an important area of study.

Many computational tools have been developed to study

these problems because they are either too difficult or too

expensive to tackle experimentally. Protein structure predic-

tion [21] is a widely studied area. One notable method is

Rosetta [18] which uses a simplified model to predict the low-

resolution protein structure. In response to increased research

in protein structure prediction, the CASP [16] competition

emerged as a platform to test structure prediction methods.

Molecular dynamics [14] and Monte Carlo simulations [7]

have been widely used to simulate protein motion. All of

these methods rely on a scoring function, typically an energy

function. A scoring function attempts to distinguish between

native and non-native structures, ranking them in terms of

their energetic feasibility. Thus, the accuracy of these methods

largely depends on the accuracy of the scoring function used.

Decoy databases have been developed to test and verify

these scoring functions [19]. A decoy is a computer-generated

protein structure that is similar to the native structure. Decoys

test the ability of a scoring function to identify the protein’s

native structure from a set of incorrect protein structures. If

the scoring function can correctly identify the native structure,

the function is said to be correct. Such tests where decoys

attempt to “fool” the scoring function are commonly used to

test protein folding algorithms. Thus, if we can create higher

quality decoy databases, we can improve protein folding

algorithms by improving the scoring functions they rely on.

Many large decoy databases for specific proteins have al-

ready been compiled for the purpose of testing and improving

scoring functions [19, 16, 23]. However, there is not currently

a good way to take these existing databases and improve

them so that they are more effective at testing modern scoring

functions. Here, we strive to generate higher quality decoy sets

in order to more rigorously test these functions.

Contribution. This work presents a method for evaluating

the quality of decoy databases and improving them by adding

novel structures and removing redundant structures. Our spe-

cific contributions are as follows:

• We test on 17 different decoy databases and show that

we are able to generate higher quality decoy databases

across a variety of metrics.

• We find that most improvement stems from the addition

of structures by our sampling methods.

• We test our improved databases on QMEAN [3], a popu-

lar modern scoring function, and show that they contain

a great number of structures ranked more native-like than

the actual native state than the original databases.

II. RELATED WORK

In this section we discuss related work in the areas of protein

models, scoring functions, and existing decoy databases. We

also discuss existing methods for sampling conformations as

we will use these to add conformations to existing decoy sets.

A. Protein Models

A protein is composed of a chain of amino acids that

determine its function. Amino acids are distinguished by their

side chain. When hydrogen bonds form between atoms on the

protein backbone, secondary structures can develop. α helices

and β sheets make up the majority of secondary structures.

The most accurate protein model is the all-atoms model.

However, in many cases the all-atoms model is too computa-

tionally expensive, particularly for larger proteins. Therefore,

some coarse-grained models [17, 1, 9] have been developed



to ease the computational complexity by ignoring some de-

tail information. For example, the Gaussian Network Model

(GNM) [17] models amino acids as beads connected by elastic

strings. Lattice models [9] constrain the protein as a rigid

lattice and each amino acid is represented as a bead on the

lattice. Another coarser-grained approach models a protein

as a series of φ and ψ torsional angles. All other bond

angles and all bond lengths remain fixed. This is a common

modeling assumption as bond lengths and angles typically

only undergo small fluctuations [21]. In this φ − ψ model,

a protein conformation with n amino acids has 2n degrees of

freedom. Side chains are modeled as spheres with zero degrees

of freedom located at the Cβ position. This model has been

successfully used to simulate the correct order of large folding

events for several small proteins [1].

B. Energy Functions

The protein’s atoms interact with each other and with the

surrounding solvent through bonds and non-bond interactions

such as electrostatic interaction and van der Waals forces. A

potential energy function determines conformation validity by

taking into account these different atom interactions.

Generally, potential functions that compute all pairwise

interactions are called all-atoms functions, e.g., CHARMM [6]

and AMBER [24]. These are the most accurate since they

consider all possible interactions. However, they are compu-

tationally expensive and infeasible for many large proteins.

Instead of modeling all possible interactions, coarse-grained

functions only consider side chain contributions to approxi-

mate the potential energy. In the φ−ψ model, each side chain

is modeled as a sphere located at the Cβ atom. If two side

chains are too close (i.e., less than 2.4 Å, the conventional van

der Waals contact distance), the conformation is rejected [14].

Otherwise, the energy may be calculated as:

Utot =
∑

restraints

Kd{[(di − d0)
2 + d2c ]

1/2 − dc}+ Ehp, (1)

where Kd is 100 kJ/mol, di is the distance of a hydrogen or

disulphide bond in native structure, and d0 = dc = 2Å [14].

Ehp represents the hydrophobic effect. This energy function

has been shown to produce folding simulation results similar

to an all-atoms function in a fraction of the time [20] and is

the energy function used in these results.

C. Decoy Databases

Decoys are computer-generated protein structures. Decoy

databases have been used to improve the accuracy of scoring

functions [10, 22]. A scoring function is the component of a

protein folding algorithm that distinguishes between native and

non-native structures. Thus, the performance of the algorithm

is dependent on the accuracy of the scoring function. Decoy

databases attempt to “fool” a scoring function into choosing

a non-native structure as the native. Some existing decoy

databases include (i) the Decoys ‘R’ Us set [19], (ii) the

Rosetta set [23], and (iii) the Critical Assessment of Protein

Structure Prediction (CASP) set [16].

The Decoys ‘R’ Us set contains three subsets: the single

decoy set, the multiple decoy set, and the loop decoy set. The

single decoy set only contains the native structure and one

decoy structure. The purpose of this set is to test whether a

scoring function can distinguish between these two structures.

The multiple decoy set and the loop decoy set each contain

many decoy structures, and they are both used to verify that

a scoring function can select a conformation with low RMSD

to the native structure.

The Rosetta set is generated by the Rosetta protein structure

prediction method developed in the Baker Laboratory. It can

generate low-resolution structures by adding side chains and

making structure adjustments [5].

CASP is a protein structure prediction competition held

every other year. Competition submissions are collected as

a decoy database. Participants use their own approaches to

predict the three-dimensional structure of the given amino

acid sequence. In order to evaluate the results, the distances

between the Cα positions in the predicted model and the target

structure are calculated and a score is assigned showing how

similar the prediction is compared to the target [25].

Some work has been proposed to improve protein decoy

sets. For example, the Rosetta set has been improved by

adding back the side chains and running the structures through

an energy minimizer [23]. Other work uses a library of

short fragments to generate protein decoys by assembling

them together given the protein’s geometric constraints [12].

Most assembled proteins are 6Å from the native structure.

Fragments of varying lengths are used in [15] to refine near-

native protein decoy structures. While this multi-level ap-

proach produces decoy structures closer to the native structure,

this method is dependent on the quality of the input fragments.

D. Sampling Conformations

Algorithms in the field of motion planning and robotics

use sampling-based methods to generate valid robot config-

urations. Some examples include the Probabilistic Roadmap

(PRM) method [11] and Rapidly-Exploring Random Trees

(RRT) [13]. Both of these strategies rely on a sampling method

to find valid configurations for a robot in its environment.

In the context of protein folding, sampling methods generate

protein conformations by setting a value for each degree of

freedom in the protein model. Thus, for the φ − ψ protein

model, a conformation q is generated by assigning a value to

each φ and ψ angle. The conformation q is accepted based on

its potential energy E(q) with the following probability:

P (acceptq) =











1 if E(q) < Emin
Emax−E(q)
Emax−Emin

if Emin ≤ E(q) ≤ Emax

0 if E(q) > Emax

.

(2)

Values for each degree of freedom may be generated either

directly from the amino acid sequence or using an existing

conformation to bias generation. This existing conformation,

for example, may be the native structure or a decoy structure.



The simplest strategy is to sample each φ and ψ angle

uniformly at random. The resulting sample may be passed

through an energy minimization function to improve its ener-

getic feasibility. While this scheme has the ability to generate

samples all across the energy landscape, it does not provide

dense coverage around more interesting regions, e.g., the

native energy basin. Due to the high dimensionality of the

energy landscape, it would require an infeasible number of

samples to cover these areas well. Thus it should be used in

conjunction with other sampling methods.

To improve the coverage in the native energy basin, some

sampling strategies bias sampling around the known native

structure. Gaussian sampling [1] selects values for each φ and

ψ angle from a set of normal distributions centered around

the native structure. Iterative Gaussian sampling [2] applies

such perturbations iteratively. Instead of always sampling

from a set of normal distributions centered around the native

structure, the normal distributions are centered around sampled

conformations from prior iterations.

III. METHODS

In this section we describe our approach to evaluating and

improving the quality of decoy databases. We first discuss how

to evaluate a decoy set using various metrics. We then present

two types of improvement operations: adding novel structures

to the set and removing redundant structures from the set.

A. Decoy Set Evaluation

Because our methods improve existing decoy sets, we first

develop strategies for analyzing the quality of decoy sets.

These are used later to show what advantages the improved

set provides over the original. We present several quantitative

metrics to compare decoy sets and describe how their values

are calculated in the experiments.

Z-Score. The z-score (or standard score) indicates the

number of standard deviations between the native structure

energy and the average energy of a decoy set [23]. Researchers

frequently use z-score to determine the likelihood that a

scoring function would pick the native structure from the

other structures in the set. A positive z-score means the native

structure has a higher energy than the average energy of the

set, and a negative z-score means the native structure energy

is lower than the average energy. A z-score of zero indicates

the native structure energy is exactly the same as the average

energy of the decoys. The z-score of a decoy set D is:

ZSCORE(D) =
E(D.native)− Eavg(D)

Estd(D)
(3)

where E(d) is the energy of a structure d, Eavg(D) is the

average energy of D, and Estd(D) is the standard deviation

of the energies in D. A desirable decoy set has structures with

low energies close to the native structure. Thus, we would like

to see the z-score approach zero after improvement indicating

that it contains structures with similar energies to the native.

Improvement Score. Given an original decoy set D and

an improved decoy set D′, the improvement score returns

the change in z-score per sample between the two sets. The

improvement score between D and D′ is:

IMPROVEMENT(D,D′) =
ZSCORE(D′)

|D′|
−

ZSCORE(D)

|D|
(4)

Higher values indicate greater changes in z-score.

Minimum Distance. The minimum distance metric mea-

sures the average minimum distance from each decoy structure

to any other decoy structure in the set. In other words, it is

the average distance of each structure to its closest neighbor

measured by some distance metric δ.

This metric measures the diversity of structures in the set.

As the minimum distance increases, the diversity of structures

included in the set also increases. Possible distance functions

include Euclidean distance in φ− ψ-space and CαRMSD. In

this work, we use Euclidean distance.

B. Decoy Set Improvement

There are two main phases in the improvement of decoy

sets. First, samples are generated on the protein’s energy

landscape. This set may be generated in a variety of ways

and is discussed in further detail below in Section III-B1. In

the decoy selection phase, some structures are chosen from

the original set D to be removed and some are chosen from

the sample set S to be added. Decoy selection is discussed

below in Section III-B2. Algorithm 1 describes the approach.

Algorithm 1 IMPROVEDECOYSET(D,F, n,m)

Input. A decoy set D, a set of filters F , a number of samples

to generate n, and a number of attempts to generate a

single sample m.

Output. An improved decoy set D′.

1: S ← GENERATESAMPLES(n,m)

2: D′ ← SELECTDECOYS(D,D,F ) ∪
SELECTDECOYS(D,S, F )

3: return D′

1) Sample Set Generation: To improve decoy sets by

adding structures, we must first generate a set of samples

from which to select. GENERATESAMPLES(n,m) generates

n samples by trying the maximum m attempts for each single

sample. It uses one of the methods discussed below to generate

structures and only the ones that are energetically feasible as

given by Equation 2 will be retained.

Sampling Methods. We study the following methods:

• Uniform Sampling. Returns a structure at a random point

on the energy landscape by simply selecting values for

each φ and ψ angle uniformly at random. This will

generate many unwanted high-energy structures but pro-

vides good coverage of the landscape. Unlike the other

methods, it is not biased by any input structure.

• Sampling with Native Bias. Returns structures from iter-

ative Gaussian sampling [2]. This sampling approach has

been successfully applied to simulate the folding process

on larger proteins. It generates many low energy samples,

but they are usually confined to the native energy basin.



• Biased Sampling from Low-Energy Decoys. Instead of

starting from the native structure as iterative Gaussian

sampling [2], this approach begins the iteration from the

decoy structures with the lowest energy. To our knowl-

edge, this is a novel approach to generating low-energy

structures. As with native bias sampling, perturbations are

selected from a set of normal distributions. Here, gener-

ated structures have low energies and are not confined to

the native energy basin. However, it typically produces

samples near the energy basins of selected decoys.

These methods may be combined to form a hybrid sampler

that exploits the strengths of each method. Such a sampler

first adds the native structure to the set of seeds as in iterative

Gaussian sampling [2]. For the remaining seeds in the set, it

selects half from the lowest energy decoy structures and half

from uniform sampling. This ensures that there are plenty of

low-energy structures in the final set that are located through-

out the energy landscape in many different local minima. Such

structures are important to include because they are most likely

to confuse a scoring function.

Calculating Sample Set Size. For each sample set, we must

specify n, the number of sample structures to generate. We

would like to have an adequate sample set size which can

efficiently provide high quality decoy candidates. After some

preliminary experiments monitoring how n affects the z-score

rate of change, we found that doubling the original set size

provides informative structures efficiently.

2) Decoy Selection: Given an existing decoy set D and

a set of sample structures S, we would like to add viable

structures from S to D and remove redundant structures from

D. To select such structures, we apply a filter to each one. We

investigate the following filters:

• Energy Filter. This filter chooses all structures whose

energy is less than some threshold. For the results in this

work, we use the energy function in [20].

• Minimum Distance Filter. This filter selects structures

whose distance to their closest neighbor as determined

by some distance metric δ is greater than some threshold.

Here we use Euclidean distance.

SELECTDECOYS(D,S, F ) is performed on a decoy set D,

a sample set S, and a set of filters F . It first computes the

threshold for each filter f ∈ F by finding average values for

f over D and sets the threshold to be one standard deviation

below (minimum distance filter) or above (energy filter) the

average. Once a threshold is computed, structures are removed

if they fail to meet the threshold.

In the case where S is a generated sample set, new structures

will be chosen. In the case where S = D, only the viable

structures from D will be returned.

IV. RESULTS AND DISCUSSION

We apply our methods to existing decoy sets and show

that they are able to generate sets with lower energies and

more diverse structures that are more likely to “fool” protein

folding scoring functions. All decoy sets were obtained from

the existing Decoy ‘R’ Us databases [19] and CASP10 [16]

and are listed in Table I. We study both α and α/β mixed

proteins including larger proteins (e.g., 4fle with 192 residues)

and larger decoy sets (e.g., 1eh2 with 2413 conformations).

The original decoys are collected from different sets with

different features [8]: lmds is built and refined by known

secondary structure information and an all atom model,

lattice_ssfit is obtained from lattice models with all-

atom energy function, 4state_reduced sets have corre-

lation between energy and RMSD, fisa, fisa_casp, and

fisa_casp3 are collected by Baker’s group by simulated

annealing protocol, hg_structal is generated by homology

modeling for globins, and CASP10 is generated from the 2012

CASP submissions. All results are averaged over 10 runs.

TABLE I
DECOY SETS STUDIED FROM DECOYS ‘R’ US [19] AND CASP10 [16].

Original Improved Size
Type Protein Residue Set Name Size Avg. Std.

α/β

1fca 55 lattice_ssfit 2001 2024.90 21.19
4pti 58 lmds 334 361.80 23.12
1igd 61 lmds 501 512.30 9.53
1sn3 65 4state_reduced 660 630.50 4.03
1ctf 68 4state_reduced 630 604.50 6.25
4icb 76 fisa 500 579.70 8.01
1eh2 79 fisa_casp3 2413 2546.40 13.88
4fr9 141 CASP10 406 496.90 4.30
4gb5 148 CASP10 217 228.90 4.89
4f54 184 CASP10 322 310.90 3.67
4fle 192 CASP10 182 183.40 0.66

α

1r69 63 4state_reduced 676 744.70 9.59
2cro 65 lmds 501 619.20 9.11
1nkl 78 lattice_ssfit 1995 2293.80 21.41
1jwe 114 fisa_casp 1407 1452.40 29.27
1ash 147 hg_structal 30 36.00 1.41
lgdm 153 hg_structal 30 33.20 1.72

A. Decoy Selection

The original decoy set D and the sample set S can be broken

down into four subsets:

• redundant decoy structures DD from D,

• viable decoy structures DV from D,

• redundant sampled structures SD from S, and

• viable sampled structures SV from S.

Table I provides the resulting set sizes after improvement.

For all proteins, the resulting size is comparable to the original.

Figure 1 summarizes the resulting z-score, improvement

score, and minimum distance value for each protein. For

each metric, we show the contribution from each operation

(removing redundant decoys (DV ) and adding new samples

(D ∪ SV )) and from their combination (DV ∪ SV ).

When the z-score approaches zero, the native structure

energy is harder to distinguish among the other structures in

the set. For every protein in Figure 1(a), the z-scores of D and

DV are very similar. Hence, simply removing structures does

not greatly impact z-score. Once we add new structures from

our sampling approach (D∪SV ), the z-score drops drastically

with scores comparable to the final set (DV ∪ SV ). Thus, the

main contributors to z-score improvement are the structures

generated by our sampling approach.
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Fig. 1. Resulting metrics of improved decoy sets and their subsets, where
D is the original set, DV is after redundant structures are removed, and SV

is the set of sampled structures to be added.

Recall that the improvement score shows the change in z-

score per sample between two sets. A higher value indicates

that the change (either structure addition, removal, or both)

has a greater impact on the z-score. Figure 1(b) displays the

improvement scores across all tested proteins. We again see

that adding structures provides a decoy set with better quality

than simply removing redundant ones. Proteins 1ash and 1gdm

with the smallest original sets show the largest improvement

scores. Since the original set sizes are small, removing struc-

tures causes significant decrease in the improvement scores.

The last metric we examine is the minimum distance

between neighboring structures which indicates set diversity.

A larger distance signifies greater structural diversity and

implies a greater ability to “fool” different scoring functions.

Figure 1(c) shows how this metric changes for each operation.

As expected, when decoys are removed (DV ), the minimum

distance increases, and when adding decoys (D ∪ SV ), the

minimum distance decreases. For all proteins studied, the

minimum distance is not affected significantly by adding

decoys (D∪SV ) implying that they are informative structures.

B. Improved Decoy Sets in Practice

Here we assess the ability of our improved decoy sets

to “fool” a modern scoring function. In protein structure

prediction, scoring functions are often used to guide the

search for the native structure. Thus, they must be able to

accurately detect the native structure from a set of possible

candidates. Qualitative Model Energy ANalysis (QMEAN) [3]

is a composite scoring function incorporating several different

structural descriptors including local geometry features for dis-

criminating native-like torsional angles from others, secondary

structure features for long-range interactions, burial status,

and solvent accessibility. QMEAN showed a statistically sig-

nificant improvement over 5 other well-established scoring

functions on decoy sets compiled from molecular dynamics

simulations and CASP competition predictions.

Table II compares the number of structures QMEAN ranked

higher than the native state between the original decoy dataset

and our improved decoy dataset. The QMEAN webserver

was used to generate rankings [4]. In 7 out of 17 proteins

studied, our improved decoys sets were able to produce more

structures that “fooled” the scoring function than the original

set, sometimes finding a large number of new structures as in

1eh2. Thus, even on a sophisticated, modern scoring function,

our improved decoy sets are able to indicate areas of weakness

in the scoring function. Note that our improved sets are never

worse than the original sets. This means that their quality does

not decrease after we remove the structures in DD.

TABLE II
COMPARISON OF THE NUMBER OF STRUCTURES RANKED HIGHER THAN

THE NATIVE STATE BY THE QMEAN SCORING FUNCTION [3].

Type Protein
# Structures Ranked Higher than Native
Original Improved Impr. - Orig.

α/β

1fca 0 8 8
4pti 0 0 0
1igd 0 0 0
1sn3 0 10 10
1ctf 0 2 2
4icb 0 0 0
1eh2 0 45 45
4fr9 0 0 0
4gb5 0 0 0
4f54 0 1 1
4fle 0 0 0

α

1r69 0 0 0
2cro 0 0 0
1nkl 0 3 3
1jwe 7 13 6
1ash 0 0 0
1gdm 0 0 0

V. CONCLUSION

We describe a new method for evaluating and improving the

quality of decoy databases. Our method removes redundant

structures and generates new low energy structures in varied

locations on the energy landscape resulting in higher quality

decoy sets that are more likely to “fool” the scoring functions

of modern protein folding algorithms. We tested our approach



on 17 different decoy databases of varying size and type and

showed significant improvement over the original set. Interest-

ingly, most of the improvement came from adding structures

not originally covered by the set indicating a capacity to

“fool” more scoring functions. We also show that our improved

databases produced a greater number of structures ranked more

native-like by a popular modern scoring function than the

original databases for many of the proteins studied. In the

future, we plan to implement a web service to improve user-

submitted decoy databases. Our hope is that others can use

these improved databases to develop better protein folding

algorithms and more accurate folding simulations.
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