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Abstract—Evidence is emerging that the role of protein struc-
ture in disease needs to be rethought. While many proteinopathies
are caused by sequence mutations removing the ability of a
protein to assume a specific structure, some of the most complex
human diseases are not so easily explained. Mutations may not in-
validate structures populated by the wildtype protein but instead
affect the rate at which the protein switches between structures.
Modeling structural transitions and estimating transition rates
in wildtype and variants is central to a better understanding of
the molecular basis of disease. Building on seminal work on the
stochastic roadmap simulation framework, this paper investigates
an efficient algorithmic realization of this framework to model
structural transitions in wildtype and variants of an oncogene.
Our results indicate that the algorithm is able to extract useful
kinetic information and elucidates the role of structure in how
sequence mutations affect protein function.

I. INTRODUCTION

The increasingly accepted view of proteins as inherently
dynamic systems [16] is raising questions on the role of
protein structure in diseases that are proteinopathies. The
simplified view of proteins assuming a unique structure to
carry out their biological activity [1] allows explaining some
protein conformational diseases [32]. In these, the protein is
unable to assume its designated function-carrying structure
due to internal perturbations (sequence mutations) or external
ones in the environment (cellular stress). However, increasing
evidence is emerging on enzymes and other proteins making
use of a menu of stable or semi-stable structures to modulate
their function and participate in numerous complex chemical
processes in the cell [5]. Both experiment and computation
have shown that many proteins switch between structures,
undergoing productive structural displacements of less than
an angstrom or on the order of a few angstroms [6].

In light of this dynamic view of proteins, it is unclear how
mutations that cause or participate in disease affect structure,
which is the intermediate link in the relationship between
protein sequence and function. There is evidence that some
of the most complex human diseases, including cancer, do not
arise from the inability of a protein variant to occupy a specific
structure but rather from changes to the rate at which the
variant transitions between thermodynamically-stable or semi-
stable structures [11]. Due to such evidence and the inability
of wet-laboratory techniques to elucidate structural transitions,

it is central to explore computational techniques to model such
transitions and extract kinetic information, such as transition
rates. While typically kinetic data can be obtained with meth-
ods based on Molecular Dynamics (MD), such methods tend
to be prohibitively computationally expensive [13]. Many MD
simulations need to be launched to sample an ensemble of
trajectories over which to calculate statistics of interest.

Seminal work by Latombe and colleagues proposed the
employment of the probabilistic roadmap, a construct that
emerged in algorithmic robotics to plan robot motions and
was adapted to model molecular motions [29]. Soon after,
the stochastic roadmap simulation (SRS) framework [3] was
formulated to replace sampling numerous Monte Carlo (MC)
or MD trajectories with a graph or roadmap whose edges
capture transitions between sampled structures. Organizing
sampled structures into structural states and thus treating the
roadmap as a Markov model allowed calculating kinetic data
without launching a single MC or MD simulation [8].

Since its introduction, realizations of SRS have been pur-
sued primarily to model folding and unfolding events of small
proteins or RNA [31, 34, 35, 33]. Tree-based variations to
model other structural transitions have also been proposed, a
review of which can be found in [28]. More powerful Markov-
based approaches integrating short MD trajectories have been
investigated to improve accuracy of the modeled kinetics in
folding [30]. Realizations of SRS to approximate the kinetics
of general and potentially large structural transitions in dy-
namic proteins have been scarce [21] due to several challenges,
including efficient yet dense sampling in the space of interest.

In this paper we investigate an efficient algorithmic realiza-
tion of the SRS framework to model and then compare struc-
tural transitions in wildtype and variants of the Ras oncogene.
While the algorithm faithfully follows the SRS framework
for extracting statistics, its construction of the roadmap is
lazy, and its sampling of structures is performed a priori
through a powerful evolutionary algorithm (EA) sampling
energy basins in the energy landscape of a protein. Details
on the EA are provided elsewhere [10]. Here we focus on
the construction of the stochastic roadmap and the calculation
of interesting statistics, such as average number of transitions
to structural states of interest. Comparison of these statistics
between wildtype and variants of Ras demonstrate the ability



of the proposed SRS-based algorithm to elucidate changes
to structural transition rates upon sequence mutations and so
explain how mutation affects function in dynamic proteins.

II. METHODS

The proposed algorithm follows the SRS framework.
Briefly, it proceeds in three stages. The first stage samples
structures in the search space of interest. The second organizes
these structures into structural states. The third embeds a
roadmap over the states. We now proceed to relate details.

A. Stage I: Sampling

One of the key challenges with adaptations of roadmap-
based methods for molecular structure and motion computa-
tion lies in the sampling stage. Sampling needs to be dense
and focus on the relevant regions of the structure space. In this
paper, we employ an evolutionary algorithm (EA) to obtain a
dense ensemble of structures representing local energy minima
in the structure space of interest. Though a detailed description
of this EA is beyond the scope of this paper, we provide here a
brief summary, focusing on its salient algorithmic ingredients.

EAs are investigated in detail in our lab in diverse protein
modeling scenarios, including de novo structure prediction [22,
26] and protein-protein docking [15, 25]. The EA we employ
here has been recently proposed [10] to further populate the
structure space of a protein for which many experimental
structures already exist in the Protein Data Bank (PDB) [4].
Briefly, the EA leverages the abundance of experimentally-
available structures to define the structure space of interest in
a lower-dimensional embedding. The latter is obtained through
Principal Component Analysis of CA-traces (using only CA
atoms to represent structures) of available structures for a
protein. While PCA is generally not guaranteed to be effective,
the EA only proceeds if at least 50% of the variance can be
captured with the top two principal components (PCs). This is
the case with the protein system we have chosen to investigate
in this paper. The EA directly searches in the low-dimensional
PC map of m dimensions, ensuring that m PCs are sufficient
to capture 90% of the variance in the original structure data.

Starting with an initial population of p structures built on the
experimentally-available ones, reproductive operators are used
to generate child structures (in a CA trace representation) from
parents in the PC map, using sampled perturbations along the
available PCs. A multiscaling procedure maps a child structure
to an all-atom structure representative of a local energy min-
imum. The procedure first reconstructs a backbone from the
CA trace of a child, adds side chains, and minimizes the entire
resulting all-atom structure using the Rosetta relax protocol
(keeping backbone heavy atoms fixed). This procedure ensures
that structures obtained by the EA are minima of the all-atom
Rosetta score12 energy function [18]. The resulting minima
structures compete with neighboring parents based on their
energies, and p winners become parents of the next generation.
This proceeds for a certain number g of generations. It is
worth noting that searching in a PC-based embedding and
making use of multiscaling have been previously analyzed in

detail in the context of a robotics-inspired (tree-based) search
algorithm [9], and these components are integrated in the
recently proposed EA [10] we employ in the sampling stage
here. The ensemble Ω of structures fed to stage II of the SRS-
based algorithm in this paper consists of all the populations of
local minima obtained by the EA across all its g generations.

B. Stage II: Organizing Structures into Structural States

The ensemble Ω potentially contains many structures that
are geometrically similar to one another. Therefore, in this
stage, the structures in Ω are grouped into structural states both
to remove redundancy and to allow constructing a roadmap
over these states that can then be treated and analyzed as
a Markov state model. We employ a simple unsupervised
clustering algorithm, leader clustering [14], to efficiently group
structures into states. That is, a structural state is a cluster.

The leader clustering algorithm has the benefit of not having
to specify the number of clusters/states a priori. Its results are
dependent on the order in which the data is processed. In this
paper, we use a sorted order, ordering first all the structures
in the Ω ensemble by their Rosetta energies. This ordering
allows the first structure mapped to a new cluster to be the
lowest-energy structure over all others that will be mapped
to that same cluster. The algorithm proceeds in the sorted
order, mapping a structure to one of the existing clusters if
its distance to the cluster representative is below a specified
cluster radius. Otherwise, a new cluster is created with the
unmapped structure as its representative. The algorithm pro-
ceeds until all structures have been processed, resulting in a list
of C1, . . . , Cl clusters/states. The decision on what distance
function to use is important. Here we employ least Root Mean
Squared Deviation (lRMSD), which is a popular dissimilarity
measure to compare protein structures [20]. We do so over
only CA atoms of a structure; that is, we use CA lRMSD. We
experiment with different values of cluster radii, as presented
in the Results section.

C. Stage III: Roadmap Construction

Roadmap construction proceeds over the identified clus-
ters. The roadmap is encoded as a weighted directed graph
G = (V,E). A vertex v ∈ V is created for each of the clusters
identified in stage II; that is, vertices encode states over the
sampled structure space. Edges are added to the roadmap as
follows. Each vertex is connected to up to knn of its nearest
neighbors that are within an εnn CA lRMSD of v. Since
vertices correspond to structural states/clusters, the lRMSD
comparison is conducted between the cluster representatives.
When a vertex u is deemed to be a neighbor of v that passes
the knn and εnn criteria, two edges are added to the roadmap,
(u, v) and (v, u). To improve the connectivity of the roadmap,
a final pass across all connected components is performed,
adding an edge when the two components can be merged
(subject to the same εnn CA lRMSD constraint). Edges are
weighted based on the energetic difference between the states
the vertices they connect encode. For a directed edge (u, v), its
weight Puv measures the probability of a direct transition from



u to v. We assign edge weights following closely the original
formulation of the SRS in [3], per the following equations:

Puv =

{
(1/|Nu|) · e

−∆Euv
α if ∆Euv > 0

1/|Nu| otherwise

Puu = 1−
∑
u6=v

Puv

For each vertex v, |Nv| represents the number of outgoing
edges from v excluding the edge back to itself. The e

−∆Euv
α

factor mimics the Metropolis criterion for accepting the en-
ergetic transition from state u to state v. Note that ∆Euv =
E(v)−E(u). There are two important decisions that need to be
made. First, since vertices here encode structural states, how
is the energy of a state measured? Second, how is a reasonable
value for the α parameter estimated? Our specific choices for
these two design decisions can be considered adaptations of
the original SRS formulation on weighting direct transitions.

a) Energy of a State: Theoretically, if the states corre-
spond to energetic states, one should measure E(u) as the
free-energy F of the state u. This can be estimated, in theory,
as F (u) = 〈E〉u − α · ln(|Cu|), where 〈E〉u captures the
average energy over all structures in the state u, and |Cu|
measures the number of structures in u. However, in practice,
an accurate estimate requires a theoretically-sound definition
of a state and is the subject of our future research. In this paper,
we pursue two directions. One is to measure the energy of a
state as the average over energies of structures in the cluster
corresponding to that state. The other is to use the energy of
the cluster representative, which is the lowest-energy structure
in a cluster due to the energy-sorted order in which structures
are processed in the clustering algorithm described above.

b) Effective Temperature: The scaling parameter α is
our adaptation of the original equations appearing in [3]. We
introduce this parameter instead of the KBT factor in [3]
(where KB is the Boltzmann constant and T refers to physical
temperature) in order to capture an effective rather than a
physical temperature. This is necessary, as the energy function
employed in this paper is not physics-based but combines
physics-based terms with knowledge-based ones. Determining
the value for α is an important decision, and we employ
here a simple analysis based on statistical mechanics. We
measure the energetic variance over structures that the Rosetta
score12 energy function reports to be in the same energy basin.
We restrict our analysis over the distribution of structures
obtained by the Rosetta relax protocol when minimizing the
same crystal structure many times. The protocol is based on
simulated annealing, so different structures can be obtained,
thus providing a view of the basin where the Rosetta energy
function maps a given crystal structure. We conduct this
analysis various times, over different crystal structures (corre-
sponding to the on and off states described in the Experimental
Setup in the Results section) and observe a variance of 6−7
energy units on average. Based on a statistical mechanics
treatment, structures in the same basin should exchange into
one another with high probability. Let us refer to the latter
as a target probability tprob. Therefore, solving the equation

e−6/α = tprob for α provides us with a reasonable estimate
for the effective temperature. We note that the actual value for
α is dependent on the energy function employed and requires
that a target probability be specified, but the process is general.

Each edge in the stochastic roadmap G now encodes a
potential transition between two structural states. In this work,
we employ a “lazy” strategy that avoids the computation of
these transitions and instead focuses on the global connectivity.
This has some similarities to the Lazy PRM[7]. We note,
however, that foregoing a local planner is made possible here
because of the stringent criterion of structural proximity εnn
when considering connecting two vertices via an edge. This
in itself exploits the dense structural sampling afforded by the
EA employed in stage I.

We note that by construction G consists of a set of strongly
connected components (SCCs); when εnn = ∞, G consists
of a single SCC. As demonstrated in [3], a random walk
in G can be interpreted as a discretized version of a Monte
Carlo trajectory. More importantly, various analyses can be
conducted over the roadmap to obtain path-ensemble averages
without launching Monte Carlo simulations, as the roadmap
encodes multiple such trajectories.

D. Roadmap Analysis

Treating the constructed stochastic roadmap as a graph
allows using path search algorithms to obtain paths connecting
structural states of interest. Treating the roadmap as a Markov
state model allows using transition state theory to obtain
measurements approximating kinetic quantities of interest.

1) Querying the Roadmap: As demonstrated in the original
proposal of the PRM method in [19], the roadmap can be
queried given two states of interest. Dijkstra’s algorithm can
be used to obtain a shortest path. Here, edges are weighted by
probabilities of transition, but negatives of logarithms of these
probabilities can be employed to obtain a minimum-cost path.
In addition to such a path, more information can be obtained
by analyzing not just one path but several. Yen’s K-shortest
paths algorithm [27] can be employed for this purpose.

2) Treating the Roadmap as a Markov State Model:
The roadmap G can be treated as a Markov state model
encoding the stochastic behavior of the system being studied.
In this paper, we use the roadmap to model the structural
transitions between functionally-relevant states of a protein
and understand how these transitions are affected by sequence
mutations. For this purpose, the roadmap G is analyzed to
determine the expected number of transitions employed by a
protein system to switch from one structural state to another.

Recall that structural states are vertices in the vertex set V
in our roadmap G. For each vertex vi ∈ V , one can utilize
first-step analysis theory to measure the expected number of
transitions ti from vertex vi to some specific vertex of interest.
As demonstrated in[2], random walks need not be performed
to obtain such a measure, as a closed-form solution can be
computed via a linear solver. The formulation of ti is recursive.
Let us generalize and state that the goal is to measure the
expected number of transitions from some vertex vi to a set



of vertices vj ∈ A, where A is a subset of V that does not
include vi (A is in an SCC). Then, provided that vi and A are
in the same SCC:

ti = 1 +
∑
vj∈A Pij · 0 +

∑
vj /∈A Pij · tj ∀ vi /∈ A

This results in a system of equations that is the same order
as the number of vertices in the graph. Since clustering of
structures into structural states reduces the number of vertices
in the roadmap, an exact solver (as opposed to a slow-
converging iterative solver) can be afforded, and that is what
we employ in this paper to solve the linear system above
algebraically and obtain ti for all the vertices simultaneously.

In this paper, we are specifically interested in measuring
the expected number of transitions from an “on” to an “off”
state and vice versa, with these two states denoting specific
structural states critical to the ability of Ras to function
normally. By repeating the sampling, clustering, roadmap
construction, and its analysis on different sequence variants
of RAS, we then are able to compare the expected number of
transitions between these two states of interest in the wildtype
versus disease-participating variants of RAS.

a) Implementation Details: The algorithm is imple-
mented C++. The EA in the sampling stage runs for g=100
generations, with p=500 structures in a population. Thus, the
ensemble of structures Ω fed to the clustering stage contains
50, 000 structures. It takes 48 days of CPU time on a single
2.66 GHz Opteron processor with 24 GB of memory to obtain
this ensemble. Various cluster radii are investigated in the
clustering stage. For the results shown in this paper, a radius of
0.35Å is used, as it is observed that the number of clusters goes
down from 46, 193 to 37, 250, to 26, 461, and to 17, 547 when
the radius accordingly varies in {0.25, 0.3, 0.35, 0.4}Å. The
clustering stage takes approximately 7 hours of CPU time. Par-
allelizing reduces the run time to just under 45 minutes on a 64
core AMD Opteron processor with 542 GB of memory. This
same hardware is used to perform the roadmap construction
and analysis, which each execute in approximately 30 minutes.
While various values for knn and enn are investigated for how
they affect connectivity, the results related here are obtained
with knn=20 and εnn=0.66Å. In determining a reasonable
value for the effective temperature α per the process described
above, we err here on the conservative side and set tprob to
0.25 (we relate details with two different values, a conservative
one and a more permissive one).

III. RESULTS

A. Experimental Setup

Here we present results on the application of the proposed
algorithm on the wildtype and Q61L variant of the Ras
oncogene. Ras is a well-studied protein that regulates cell
proliferation and whose variants which deregulate activity are
involved in over 25% of human cancers [17]. The native
activity of Ras is to switch between an ON/reactant (GTP-
bound) and an OFF/product (GDP-bound) state. These two
states have been characterized in the wet laboratory and can
be found under structures with PDB ids 1qra and 4q21,

respectively. We show these structures side by side in Figure 1.
The CA lRMSD between these structures is 1.5Å, but changes
are largely localized on two loop regions, switch I and switch
II (which our previous analysis of PCA for Ras is able to
capture [9]). How variations in the Ras sequence affect its
capacity for switching between states is the focus of much
research and is the reason we apply our SRS-based algorithm
here.

Fig. 1. Left: A representative of the ON (GTP-bound) state of Ras (PDB
id: 1qra). Right: A representative of the OFF (GDP-bound) state (PDB id:
4q21). The reactant (GTP) and product (GDP) are shown, as well. The two
loop regions that undergo a structural change in the ON to OFF transition
and (reverse) are shown color-coded in red (left) and blue (right).

The reduced space over which the sampling stage operates
is obtained via PCA on 46 (wildtype and variant) structures
extracted for Ras from the PDB (details on the data collection
step can be found in [9]). The SRS-based algorithm is run
twice, once on the wildtype sequence and once on the disease-
participating variant (Q61L). It is important to note that, while
the PCs are the same in each setting, the EA algorithm
obtains different structural ensembles, as the initial structures
are threaded onto the sequence of study, and thus mapped by
the multiscaling procedure to minima of different sequence-
dependent energy surfaces. Thus, the results of the SRS-based
algorithm are dependent on the sequence used and can be
used to draw comparisons between the wildtype and variants
to determine how sequence mutations affect transitioning
between the ON and OFF states.

The structure in the PDB entry 1qra is considered a
representative of the ON state of Ras, whereas 4q21 is a
representative of the OFF state. These PDB-obtained structures
are each minimized 500 times with the Rosetta relax protocol
(the protocol is stochastic), and the resulting structures are
added to the Ω ensemble. After the clustering, the cluster
containing the most minimized structures of 1qra is labeled the
ON state, whereas the cluster containing the most minimized
structures of 4q21 is labeled the OFF state.

B. Roadmap Analysis on Wildtype and Q61L Variant
We apply the analysis techniques discussed in section II-D

to the roadmaps created for the wildtype and Q61L sequences.
The minimum cost paths between the ON and OFF states for
each sequence are computed and analyzed first. Column 3 in
Table I shows the total cost of each of these paths. Comparison
of these values shows that the ON→ OFF structural transition
is more costly than the OFF → ON one for both the wildtype
and Q61L. However, both transitions have higher cost in the
Q61L variant, indicating a significant change of the energy
landscape upon this mutation.

The minimum-cost paths for each of these transitions in the
wildtype are shown in Figure 2. For ease of visualization,



TABLE I
THE MINIMUM-COST PATHS AND THE EXPECTED NUMBER OF

TRANSITIONS ARE SHOWN FOR THE STRUCTURAL TRANSITIONS BETWEEN
THE ON AND OFF STATES IN BOTH THE WILDTYPE AND Q61L VARIANTS.

Sequence Transition Min Cost Exp. Nr. Trans

WT OFF → ON 12.9 3.4× 108

ON → OFF 16.5 3.9× 1010

Q61L OFF → ON 20.9 1.9× 1012

ON → OFF 24.3 3.8× 1014

the paths are mapped onto the top two PCs. The color
scheme follows the energy variance. Figure 2 shows that both
structural transitions go over an energy barrier, as also reflected
in the costs shown for the wildtype sequence in Table I.
Moreover, the ON→ OFF transition spends more time getting
out of a deeper and wider ON basin onto the OFF basin.
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Fig. 2. The minimum cost paths (in terms of energy) are shown for the
wildtype sequence between the OFF and ON states. This plot is rendered in
the PCA space created by our EA algorithm for sampling.

The detailed energetic profiles of the minimum-cost paths
for the ON→ OFF transition in the wildtype and Q61L variant
are shown in Figure 3. The Rosetta all-atom energy is shown
for each vertex in these paths, but the path lengths are normal-
ized to allow a direct comparison between the two sequences.
Figure 3 clearly shows that the Q61L mutation magnifies
the energy barrier that Ras has to cross in the ON → OFF
structural transition. These results are in qualitative agreement
with other studies [12] and allow concluding that the transition
from the ON to the OFF state is made substantially more
difficult upon the Q61L mutation in Ras. It is important to
note that the mutation does not affect the stability of the ON
and OFF structural states, since the potential energies of the
corresponding states remain the same between the wildtype
and variant.

Finally, the first-step analysis is applied to measure and
compare the expected number of transitions in each setting.
These results are related in column 4 in Table I. Comparison of
these results for the wildtype sequence shows that the expected
number of transitions to allow switching from the ON to the
OFF state is two orders of magnitude higher than from the
OFF to the ON state. This also holds for the Q61L variant,
though switching from ON to OFF and vice versa becomes
more difficult in the variant than in the wildtype.

0.0 0.2 0.4 0.6 0.8 1.0

Progress

400

350

300

250

200

150

R
o
se

tt
a
 E

n
e
rg

y
 (

sc
o
re

1
2
)

WT

Q61L

Fig. 3. The energetic profile of the minimum cost paths when transitions from
the ON state to the OFF state for the wild type and Q61L mutant sequences.

Taken altogether, these results suggest that a careful re-
alization of the SRS framework may allow a more detailed
understanding of the role of sequence mutations in misfunc-
tion. In our particular application to the wildtype and Q61L
variant of Ras, the results support the hypothesis that the Q61L
mutation does not remove the ON and OFF basins from the
energy landscape but instead slows down the switching of Ras
between these states.

IV. SUMMARY

This paper has proposed an efficient algorithmic realization
of the SRS framework to model structural transitions in dy-
namic proteins that are known to be conformational switchers
and are involved in proteinopathies. Application on sequence
variants of Ras shows promising results. Future work will
continue to investigate the algorithmic richness of the SRS
framework in order to improve both accuracy and efficiency
in protein structure modeling for the purpose of unraveling the
role of protein structure in proteinopathies. Possible directions
include incorporating estimates of free energies of structural
states in the calculation of transition probabilities, as well as
employing different energy functions in a comparative setting
to estimate the generalizability of the results.
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