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Abstract—Articulated bodies are commonly employed to model
complex physical systems, including robots, humanoid figures,
hair, animals, plants, molecules, nanosystems, etc. As a result,
Computer-Aided-Design (CAD) tools frequently allow users to
construct, edit and simulate articulated-body systems.

When an articulated-body system contains a large number of
degrees of freedom, however, manually editing its configuration
becomes tedious, since it becomes unclear how to effectively map
user interfaces with few degrees of freedom (e.g. a mouse or a
haptic device) to the space of possible articulated-body motions.

In this paper, we introduce a simple, efficient algorithm to
tunably smooth the acceleration of an articulated body, and
demonstrate how this smoothed acceleration may be used to edit
the configuration of complex molecular structures.

Our approach may be combined both with internal and external
force fields, so that editing an articulated-body system may
be performed while taking into account the system’s physics.
This helps the user design and analyze complex structures, and
produce well-formed configurations and trajectories. We demon-
strate our approach on several large-scale structural biology
examples containing up to a few thousands of degrees of freedom.

I. INTRODUCTION

Articulated bodies are commonly employed to model complex
physical systems, including robots, humanoid figures, hair,
animals, plants, molecules, nanosystems, etc. As a result,
Computer-Aided-Design (CAD) tool frequently allow users to
construct, edit and simulate articulated-body systems.

Among physical systems that may be modeled as articulated
bodies, perhaps some of the most computationally challenging
arise from structural biology and nanoscience, where molecu-
lar models may contain up to several thousands of degrees
of freedom. Despite significant recent progress, it is still
a challenging problem to easily perform complex structural
modifications on a large molecular system. This is unfortunate,
since it appears that such a capability would have many
applications, including protein structure analysis, simulations
and minimization setups, analysis of macromolecular motions
and transitions, analysis of signal transduction, hypothesis
building, corrections of invalid structural models, fitting cryo-
electron microscopy maps, etc.

To our knowledge, however, few methods have been proposed
to intuitively deal with large molecular systems which may
contain several thousands of degrees of freedom. Powerful
interactive molecular dynamics systems (e.g. [6]) enable the

Fig. 1. Recursive assembly of a tetra-alanine. The assembly tree describes
the sequence of assembly operations. a: the eight rigid bodies correspond to
the leaf nodes of the assembly tree. b: pairs of rigid bodies are formed. c:
two sub-articulated bodies with four rigid bodies each. d: the complete tetra-
alanine model. This recursive description can handle any acyclic, branched
molecule (see Sections II and IV).

user to act on a simulation and modify structures. However,
such modifications often have local effects, and it is not
clear how large-scale conformational changes may take place,
especially on the time scales typically accessible to molecular
dynamics simulations. Inverse kinematics may produce large
scale structural changes, but typically act on a limited number
of joints at any given time, and are not straightforwardly com-
patible with forward dynamics or quasi-statics (i.e. structure
minimization) [2]. Finally, although some earlier pioneering
methods have allowed multiresolution editing of molecular
structures via multilevel analysis [1], these methods were only
based on the geometry of the molecular structure, and not
on an underlying force field, which could lead to invalid
conformations (e.g. steric clashes) during modification of the
model.

Essentially, the difficulty lies in the mapping of user interfaces,
which typically have a few degrees of freedom only, to com-
plex dynamical systems, which may contain several thousands
of degrees of freedom, while retaining some of the underlying
quasi-statics or dynamics of the system.



Fig. 2. Progressive motion simplification. For a given assembly tree of depth D (here, D = 4), we define a series of D hybrid trees of degree d,
0 6 d 6 D − 1, mixing active and rigid joints. When d = 0, all joints are rigid, and the molecular system behaves like a floating rigid body. When
d = D − 1, all joints are active, and the motion of the molecular system is the original, unconstrained one (see Section III-A).

To address this problem, we introduce a simple but effective
multiresolution editing method, which allows a user to inter-
actively modify complex molecular structures. Our approach
enables both local and global, large-scale structural modifica-
tions. The user may finely tune the effects of applied forces
during the interaction to obtain the desired deformations.
Furthermore, our approach handles underlying molecular force
fields, so that the molecular system being modeled is continu-
ously being minimized. This helps the user design and analyze
complex molecular systems and transitions, and produce well-
formed configurations and trajectories. We demonstrate our
approach on several examples with up to a few thousands of
degrees of freedom.

II. DIVIDE-AND-CONQUER FORWARD DYNAMICS

Our algorithm is based on Featherstone’s Divide-and-Conquer
Algorithm [4, 5], which computes forward dynamics of articu-
lated bodies. For completeness, we begin by providing a brief
overview of this algorithm.

In the DCA, an articulated body is built by recursively
assembling sub-articulated bodies. The sequence of assembly
operations is described in a binary assembly tree, in which
leaf nodes represent rigid bodies, internal nodes represent both
sub-articulated bodies and the joint connecting them, and the
root node represents the complete articulated body. A joint
can have any number of degrees of freedom, so that this def-
inition may accommodate both torsion-angle representations
as well as more general representations (i.e. including varying
bond angles and bond lengths) and groups of molecules [9].
Furthermore, any acyclic, branched articulated structure can
be represented this way, so that we can model side-chain
mobility as well1. Figure 1 demonstrates this approach for
a tetra-alanine with eight degrees of freedom (the φ and ψ
torsion angles).

[4, 5] shows that the dynamics of any sub-articulated body
can be described by the following articulated-body equation:

a = Φf + b, (1)

1Note that the resulting assembly tree is not necessarily perfectly balanced,
but we attempt to make it as balanced as possible by recursively cutting the
kinematic graph of the molecular system in half, until we reach rigid bodies.

where a is the composite acceleration of the articulated body (a
vector which concatenates the bodies accelerations), Φ is the
composite inverse inertia of the articulated body, f is a com-
posite kinematic constraint force (which holds the articulated
body together), and b is a composite bias acceleration, due
to external forces and torques. In this work, external forces
and torques include all inter-atomic forces and torques (e.g.
van der Waals and electrostatic forces, as well as dihedral
torques, see Section IV). However, we assume that the user
edits the structure of the molecular system in a “quasi-statics”
mode (infinite friction assumption), so that we do not include
velocity-dependent (Coriolis) terms in the bias accelerations.
Featherstone’s algorithm computes the forward dynamics of
the articulated body in two passes over the complete assembly
tree. During the main pass, the inverse inertias and bias
accelerations of each node are computed from the bottom up.
The coefficients of the leaf nodes (the rigid bodies) are:

Φ = I−1 b = I−1fk, (2)

where I is the 6 × 6 spatial inertia of the rigid body, and
fk is the external force applied to the rigid body. Then the
articulated-body coefficients of non-leaf nodes are recursively
computed from those of their children. Precisely, if a sub-
articulated body C is formed by assembling two articulated
bodies A and B, then the dependencies between coefficients
are as follows:

ΦC = ΦC(ΦA,ΦB) bC = bC(bA,bB ,QC), (3)

where QC is a torque applied to the joint connecting A and B.
When all articulated-body coefficients have been computed,
a top-down back-substitution pass recursively computes the
kinematic constraint forces fA and fB (which hold A and B
together) and the acceleration q̈C of the joint connecting A
and B based on fC , ΦA and ΦB :

fA = fA(fC) fB = −fA q̈C = q̈C(ΦA,ΦB , fC),
(4)

starting with fC = 0 for the root node (since the full
articulated body is floating). The six-dimensional spatial accel-
eration ar of the root node is computed during this top-down
pass as well, so that the motion of the complete articulated
body (molecular system) is entirely known when the top-down
pass completes. For convenience, we denote this motion by
(ar, q̈), where q̈ concatenates all joint accelerations.



Fig. 3. Pure hybrid motions of a 20-alanine. A constant force is applied to the mid-residue of a 20-alanine for one thousand steps. The bottom row
shows the amount of rigidification depending on the depth of the hybrid body (one color per rigid body), while the top row shows the corresponding final
configuration of the 20-alanine after one thousand steps. Increasing the depth of the hybrid body results in a localized deformation, which unrolls the helix
(see Section III-A).

III. MULTIRESOLUTION EDITING

A. Hybrid motions

As mentioned above, applying a force on an atom of the
molecular system often results in local structural modifica-
tions, which makes it difficult to interactively perform large-
scale deformations. In order to allow the user to smoothly
adjust between local and global structural modifications, we
propose to combine hybrid motions, i.e. motions computed
when only part of the joints are allowed to move, and the
others are considered rigid.

Let hybrid body denote an articulated body in which some
joints have been rendered rigid. We have used hybrid bodies
in our work on adaptive torsion-angle quasi-statics [9]. In the
adaptive algorithm, the set of active joints in a hybrid body can
be any sub-tree of the assembly tree. In this work, however,
our goal is not to determine and focus on the most important
joint accelerations (i.e. determine the most appropriate sub-
tree), since this would result in local structural modifications
as well. Instead, we combine several levels of rigidification
at each time step to determine the motion of the molecular
system. Furthermore, we restrict ourselves to some types of
hybrid bodies only.

Let d denote the depth of the assembly tree, and assume the
levels of the assembly tree are indexed from 1 (the level
which only contains the root node) to D (the level which
only contains leaf nodes2). We call hybrid body of degree
d, for 0 6 d 6 D − 1, a hybrid body in which the active
joints are the joints at levels smaller than or equal to d.
When d = 0, all joints are rigid, and the molecular system
behaves like a floating rigid body. When d = D − 1, all
joints are active, and the motion of the molecular system is
the original, unconstrained one. Figure 2 shows the four hybrid
trees associated to the tetra-alanine model of Figure 1.

2When the assembly tree is not perfectly balanced, leaf nodes can belong
to lower levels as well.

The motion of a hybrid body of degree d can be easily
computed. In Featherstone’s DCA, a joint motion space is
described by a 6 × k matrix S, where k is the number of
degrees of freedom of the joint [4, 5]. The matrix S enters in
the computation of the articulated-body coefficients (bottom-
up pass) and the joint acceleration and forces (top-down pass).
In order to inactivate joints, we can simply set their S matrix
to zero. The bottom-up pass of the DCA is performed as usual,
but setting S = 0 in the articulated-body coefficients equations
(3). However, the top-down pass can be restricted to the active
joints, since the rigid ones cannot move.

Our approach to multiresolution editing relies on a fairly
simple observation: when more and more joints become rigid,
the effect of applied forces, be they van der Waals, electro-
static, or user-applied forces, tends to propagate throughout the
articulated body instead of locally modifying its configuration.
Precisely, whereas an active joint absorbs energy by changing
its configuration, a rigid joint can only transmit work, so that
the action of an applied force can be felt farther away from
its point of application.

Figure 3 shows the motion of a 20-alanine depending on the
depth of the hybrid body, when a constant force is applied
upwards during one thousand steps. As can be expected,
deeper hybrid bodies result in localized deformations, while
shallower ones tend to smooth the effect of the applied force.

Using pure hybrid motions may be too crude for precise
control, however. In order to allow the user to smoothly adjust
the effect of an applied force (as well as the effects of the force
field used in the quasi-statics minimization), we compute all
hybrid motions, and linearly combine them, at each time step.



Fig. 4. Weighing the hybrid motions. The weight attributed to each hybrid
motion depends on two user-defined parameters: the rigidification factor r,
and the power coefficient p (see Section III-B).

B. Multiresolution control

Let (ar
d, q̈d) denote the motion3 of the hybrid body of degree

d. Then the combined motion (ar, q̈) is simply:

ar =
∑D−1

d=0 wda
r
d

q̈ =
∑D−1

d=0 wdq̈d,
(5)

where the wd, 0 6 d 6 D − 1, are weights4.

In order to provide the user with a simple way to control
the effect of an applied force, we compute the weights wd as
follows. For a given depth d, 0 6 d 6 D − 1, let αd = d

D−1
denote the activation ratio of the hybrid body (0 6 αd 6 1).
Then we set

wd =
1

W
(r + (4r − 2)(αd − 1.5)α2

d)
p, (6)

where r and p are two user-defined parameters, and

W =

D−1∑
i=0

(r + (4r − 2)(αi − 1.5)α2
i )

p, (7)

is a normalization factor.

The parameter r is a rigidification factor, which can vary
continuously between 0 and 1. When r = 0, more weight
is given to deeper hybrid bodies (i.e. with more active joints),
which tends to lead to local deformations. On the opposite,
r = 1 gives more weight to hybrid bodies with smaller
depths, which are more rigid, which leads to larger-scale
deformations. The parameter p is a power coefficient, used

3Because part of the joints of a hybrid body are rigid, their corresponding
components in q̈d are equal to zero. However, all composite vectors q̈d have
the same dimension.

4Unlike conventional accelerations, spatial accelerations form a vector
space, so that we can linearly combine them [3].

Fig. 5. Multiresolution editing of a polyalanine. A constant force is applied
to a 20-alanine for one thousand steps. The parameters r and p allow the user
to finely tune the effect of a force applied to the structure, and continuously
choose between local or global deformations (see Section IV).

to control the “spread” of the weighing function and, thus, the
relative importance of intermediate levels.

Figure 4 plots the weighing function for various values of r
and p. Other weighing functions can of course be used, but we
have found this one, which provides smoothly varying control
with only two parameters, to suit our purpose well (see Section
IV).

C. Efficient computation of hybrid motions

All hybrid motions can be efficiently computed at each
time step, by taking advantage of the dependencies in the
articulated-body coefficients.

Assume the articulated-body coefficients Φ and b have been
computed for all nodes of a hybrid tree of degree d. According
to the definition of such a hybrid body, all joints whose depth
is smaller than or equal to d are active, while the others are
rigid.

Assume d > 1. In order to compute the articulated-body
coefficients of the hybrid body of degree d − 1, we have to
make the joints at level d rigid. As mentioned before, this is
done by setting the corresponding joint motions matrices S to
zero. Because of the coefficients dependencies in the DCA,
we then have to update the articulated-body coefficients of all
levels l 6 d. The coefficients of deeper levels do not have to
be updated, however. This suggests an efficient algorithm to
compute all hybrid motions, at each time step, assuming the
external forces are known (i.e. the underlying force model,
including for example van der Waals and electrostatic forces,
as well as forces applied by the user). Starting with d = D−1



Fig. 7. Modifying an ATPase model. Starting from a known structure of a Ca2+-ATPase (PDB code 1SU4), the user attempts to obtain the unbound form
of the ATPase (PDB code 1IW0). The arrows indicate the main regions where forces were applied during editing. The multiresolution approach allows the
user to displace helices or larger groups of atoms in a mostly rigid way, while the model is being minimized. The ability to tune the parameters during the
manipulation allows to adjust for atom groups of varied sizes. The range of parameters used in this example was 0.6 6 r 6 0.9 and 7 6 p 6 10. The model
contains 9305 atoms and 4103 degrees of freedom. The depth of the assembly tree is 14.

Fig. 6. Creating an open structure for an HIV protease. This example
shows how, starting from a closed structure of an HIV protease (a, pdb code
2AZ8), a user can easily create an open structure with a few mouse clicks (b).
The model contains two dimers, 1834 atoms, and 816 degrees of freedom.
The parameters used in this example are r = 0.5 and p = 10.

(corresponding to the fully articulated model), the articulated-
body coefficients of levels l 6 d+1 are computed (d+1, since
the coefficients of the leaf nodes have to be computed as well).
The spatial acceleration of the root of the hybrid body and its
joint accelerations can then be computed, for all levels l 6 d,
starting from the root. This produces the motion (ar

d−1, q̈d−1).
The remaining hybrid motions are then iteratively computed,
from d = D − 2 to d = 0. For each depth d, only part of the
assembly tree is processed: the levels l 6 d + 1. Assuming
the assembly tree is balanced, the complexity of the complete
algorithm is linear in the number of joints.

IV. IMPLEMENTATION AND RESULTS

We have implemented our algorithm in C++, and tested the
software on a 1.7GHz laptop computer with 1GB of RAM. The
underlying force fields are CHARMM19 [8] and CHARMM22
[7], adapted to our torsion-angle representation [9]. In this
section, we demonstrate our approach on several examples5.
As noted above, we assume the user edits the structure of the

5Please note that protein side chains are hidden in the renderings for clarity,
but they are present in the articulated bodies.

molecular system in a “quasi-statics” mode (infinite friction
assumption). Our experience with interactive modeling and
simulation sessions has indeed shown that it is typically
extremely difficult for a user to manipulate virtual structures
when inertia is present (and when objects continue to move
after having been acted on). We note, however, that the
smoothed acceleration could also be computed in the presence
of velocity-dependent terms, even though we feel that this
would be useful in other types of applications.

A. Poly-alanine

In order to demonstrate the influence of the user parameters
r and p, we first perform a simple non-interactive test. Figure
5 shows the motion of a 20-alanine when a constant force is
applied during one thousand steps, depending on the values
of r and p. This example shows that the two parameters
effectively allow the user to control the influence of an applied
force. Furthermore, in contrast with using pure hybrid motions
as in Figure 3, the user can smoothly combine them and finely
tune the influence of applied forces.

B. HIV protease

Figure 6 shows how a user can use our multiresolution editing
method to easily produce an open structure for a HIV protease
(Figure 6.b), starting from the closed structure (Figure 6.a
— pdb code 2AZ8). The model contains two dimers, 1834
atoms, and 816 degrees of freedom. The parameters used
in this example are r = 0.5 and p = 10. Note that the
underlying force model, which includes van der Waals and
electrostatic forces, helps the user produce valid, physically-
based structures with no steric clashes.

C. ATPase

This final example demonstrates large-scale structural defor-
mation of a Ca2+ATPase model (PDB code 1SU4). Figure



7 shows the main forces applied by the user during editing.
Despite the size of the model (9305 atoms and 4103 degrees of
freedom, for an assembly tree depth of 14), the multiresolution
approach allows the user to displace helices or larger groups
of atoms in a mostly rigid way, while the model is being
minimized. The ability to tune the parameters during the ma-
nipulation allows to adjust for atom groups of varied sizes (the
range of parameters used in this example was 0.6 6 r 6 0.9
and 7 6 p 6 10). Again, while the smoothing algorithm allows
the user to easily perform large modifications to the structure,
the underlying force field ensures that no steric clashes are
created.

V. CONCLUSION

We have introduced a novel algorithm to perform multireso-
lution editing of a molecular system. Our approach combines
hybrid motions, i.e. motions of partially rigidified instances of
the molecular system. Our approach allows a user to finely
tune the effect of an applied force, from local to more global,
large-scale structural deformations. We have tested our method
on several systems and shown how the multiresolution algo-
rithm allows a user to easily perform large-scale deformations
of complex systems.

In effect, our approach enables tunable mappings between user
interfaces with few degrees of freedom, such as a mouse,
and a complex dynamical system involving a few thousands
of degrees of freedom. This approach is general and can be
used with other types of user interfaces, including pressure
sensitive devices (pen-based interaction) and haptic interfaces.
Furthermore, we note that our algorithm may handle any
number of user forces, allowing for multi-finger, multi-hand
and multi-user interaction.

We have noted that our approach naturally handles molecular
force fields (CHARMM19 and CHARMM22 in our current
implementation, although other force fields can easily be
included). Editing a structure is thus physically-based: the
molecular system continuously attempts to reach the closest
energy (local) minimum, and thus avoids steric clashes. We
believe that such an integrated approach, combining the ability
to perform large-scale deformations with continuous mini-
mization, greatly helps the user model and analyze complex
molecular systems.

We believe that smoothing articulated-body accelerations may
have many more applications than interactive editing of large
molecular structures, though, and we would now like to ex-
plore such extensions. For example, producing large-amplitude
motions that preserve local structures could be used in energy
minimization (to rapidly explore low-energy regions). More-
over, we note that the smoothed articulated-body acceleration
produced by our algorithm could be used to smooth the
dynamics of a molecular system, which might help explore
phase space faster.

One limitation of our approach is its reliance on an assem-
bly tree, which introduces a bias in the smoothing of the
articulated-body acceleration. For example, the root joint is
made rigid in only one rigidification level: when the complete
articulated body is rigid. We have not yet attempted to address
this, but we believe it may be possible to choose smoothing
weights in a different way to compensate this bias.

It is also not clear how the user should choose the smoothing
parameters, and whether these parameters would need to be
changed for each molecule being deformed (in particular, the
parameters where empirically chosen for the demonstrated
tests). We believe that the user interface should thus make
these parameters readily accessible, such as when the “brush
size” is chosen in a painting software.
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