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 Abstract - Electron Cryo-microscopy (cryo-EM) is an 

important biophysical technique that produces 3-

dimensional (3D) images at different resolutions. De novo 

folding is becoming a promising approach to derive the 

backbone of proteins from the cryo-EM 3D images at 

medium resolutions. We summarize our findings in major 

steps of de novo folding and the challenges from the 

inaccurate data.    

 
 Secondary structure, protein, graph, electron 

microscopy, algorithm, Sampling, image 

 

I.  INTRODUCTION 

Deriving atomic protein structures from 3-dimensional 

(3D) images, also called density maps, obtained using electron 

cryo-microscopy (cryo-EM) technique is a challenging 

problem. When the resolution of a 3D image is better than 4Å, 

the backbone of protein can be resolved and the structure can 

be derived [1]. When the resolution is lower than 5Å, amino 

acid features are not resolved and it is more challenging to 

derive structures from such images. The major approach 

available is to use an existing structure that is homologous to 

the target protein [2]. The homologous structure will be 

modified during fitting of the image. Although this approach 

has been successful in deriving many structures, it relies on a 

template structure. It is still challenging to find a suitable 

template for many proteins.  De novo folding aims to derive 

atomic protein structures from 3D images directly, applicable 

when a template structure is not available. It has been 

demonstrated as a promising method to derive the backbone 

from 3D images at about 4Å resolution [5]. At medium 

resolutions (5-10Å), major secondary structure elements such 

as α-helices and β-sheets can be detected in such 3D images 

[6-11]. Figure 1A shows an example of a 3D image, extracted 

from an experimentally-obtained cryo-EM density map. The 

location of helices (red lines) and β-sheet (purple density) 

was detected using SSETracer [3].  

Although it is possible to detect the location of major β-

sheets, it has been a challenging problem to detect β-strands 

from the β -sheet density. The spacing of β -strands is 

between 4.5Å and 5Å, which makes them almost impossible 

to be resolved in a 3D image with 5-10Å resolution. We will 

summarize our recent work tracing β-strands from β-sheet 

density in this paper.   

α-helices and β-strands can be detected as lines/traces (as 

in Figure 1B), but their order along the protein sequence needs 

to be determined. Topology of SSTs refers to the order of the 

SSTs and the direction of each SST (Figure 1C). The topology 

of SSTs can be inferred by combining two sources of 

information about secondary structures, one (Figure 1B) from 

the 3D image and the other (Figure 1D) from the protein 

sequence [12-16]. In addition to the position of secondary 

structures, skeleton that represents possible connection among 

the secondary structures can be extracted from the 3D image 

[17-19] . It provides constraints about how secondary 

structures are possibly connected. The length along the 

skeleton between two SSTs is an important constraint and is 

often compared with the corresponding loop length on the 

protein sequence to evaluate a topology. Additional 

constraints can also be included in the evaluation.  

 
 Even in an ideal situation in which SSTs are accurately 

detected from the 3D image and secondary structures are 

accurately predicted from the protein sequence, the 

determination of the topology is NP-hard [15]. The nature of 

 
 
Figure 1: Secondary structure traces (SST) detected from a 

3D image and the topology of secondary structures. (A) The 

3D image extracted from cryo-EM map (EMD-5030, 6.4Å 

resolution) is superimposed with the corresponding PDB 

(3FIN_R) structure. (B) The traces of α-helices (red lines) and 

the region of β-sheet (purple) were detected using SSETracer 

[3].  The traces of β-strands (black lines) were detected using 

StrandTwister [4]. (C) The 2
nd

 ranked topology using DP-

TOSS is the true topology. The order and the direction are 

indicated using arrows, dashed lines and rainbow color. (D) 

Illustration of the sequence segments of secondary structures 

obtained from the sequence of 3FIN_R (PDB ID). 

 



the problem makes earlier enumeration approaches [12, 20, 21]  

difficult to apply towards large proteins. A dynamic 

programming approach was developed to find the optimal 

topology as the constrained shortest path in O(N
2
2

N
) time [22]. 

We later demonstrated that DP-TOSS, a constrained K-

shortest path method, is effective finding the topology from 

large proteins such as those with 33 helices [14]. In reality, 

secondary structures are often not accurately identified, 

neither from the 3D image, nor from the protein sequence. The 

accuracy of secondary structure prediction from a protein 

sequence is often between 70% and 80% [23]. Current graph 

approaches face challenges in developing effective algorithms 

to take consideration of potential errors in the data. Monte 

Carlo approach [24] creates a new topology using operation 

add/delete, swap, flip, shrink/grow to sample the solution 

space. It is based on Monte Carlo Metropolis algorithm that 

randomly samples the solution space, but it is not clear if it is 

effective for this problem. The topology determination 

problem has two characters. (1) It is a highly combinatorial 

problem. All combinations of orders and directions may need 

to be sampled. (2). Different operations have different 

significance to the problem. For example, a shift to a helix will 

affect the topology less than a flip of the direction to the helix. 

More effective algorithms are needed to sample the possible 

topologies of the secondary structures. Once limited possible 

topologies are predicted, atomic models can be built for each 

topology [21, 24-26]. The models will be further selected 

using energy functions.  

 

 

Table 1: The Identified Secondary Structures from the 

Experimental Cryo-EM Density Maps 
EMD_PDB ID, 

Resolution (Å) 

H< 

=8a 

H> 

8b 
AA. Hc Shtd Stre AA. Sf 

1237_2GSY_A, 7.2 4/8 3/3 51/69 6/6 22/24 180/187 

1733_3C91_H, 6.8 0/0 5/5 70/86 2/3  10/12 51/62 
1740_3C92_A, 6.8 0/1 5/6 92/101 2/2 10/10 53/58 

1780_3IZ6_K, 5.5 0/1 2/2 27/37 1/1 4/5 25/29 

5030_3FIN_R, 6.4 0/0 4/4 57/59 1/1 3/3 12/14 
Totals 4/10 19/20 297/352 12/13 49/54 321/350 

a. The number of detected helices / the number of observed helices that have 

less than 8 amino acids on each;  

b. The number of detected helices / the number of observed helices that have 
more than 8 amino acids on each;  

c. The total number of detected amino acids / the total number of observed 

amino acids in helices;  
d. The number of detected sheets / the number of observed β-sheets;  

e. The number of detected strands in the best of top ten sets/ the number of 

observed strands;  
f. The total number of detected amino acids in the best of the top ten sets / 

the total number of observed amino acids in sheets. 

 

 

II.  TRACES OF ΒETA-STRANDS 

 The location of secondary structures such as helices and 

β-strands are critical in de novo folding of protein structures 

from 3D images at medium resolutions. However, β-strands 

are often not visible in cryo-EM density maps at medium 

resolutions, and therefore it is extremely hard to detect them 

even after β-sheets are detected. We recently developed a 

method, StrandTwister [4], that predicts the location of β-

strands from cryo-EM density maps at medium resolutions. 

The idea of StrandTwister is to analyze the twist of the β-

sheet. The foundation of the algorithm is the discovery of the 

relationship between the orientation of β-strands and the twist 

in the β-sheet. As an example, the locations of four helices in 

the image were detected using SSETracer ( red lines in Figure 

1B) as α-traces, representing the central lines of the helices. 

Three β-strands were detected using StrandTwister as β-traces 

that represent the central lines of β-strands (black lines in 

Figure 1B). Table 1 shows the accuracy of the detected 

locations of helices, β-sheets and β-traces using five 

experimentally-obtained cryo-EM density maps at 5.5Å-7.2Å 

resolutions. SSETracer was applied to detect the location of 

helices and β-sheets. It was able to detect most of the helices 

longer than three turns, but it missed most of the short helices. 

Twelve of the thirteen β-sheets were detected using 

SSETracer, among which eleven are β-sheets with more than 

two strands each. 2-stranded β-sheets are often hard to detect 

since they resemble helices in the images. StrandTwister uses 

the detected β-sheet density region as input and predicts 

possible sets of β-traces. The best of top ten predicted sets of 

β-traces are evaluated in Table 1 column 6 and 7. When the 

Cα atom of an amino acid on the secondary structure is within 

2.5Å from the detected line, we consider it as a detected amino 

acid. It appears that most β-strands can be traced for the major 

β-sheets detected from the image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2: Secondary structure errors. (A) The positions of 

secondary structures detected from 3D images are shown as 

red sticks, and the true structures are shown as blue ribbons. 

An observed helix on protein sequence is shown as a 

rectangle (red) above the line, and the predicted sequence 

fragment is shown as a red (helix) or blue (β-strand) rectangle 

below the line. (B) A possible graph hierarchy in topology 

determination for potential split errors. 

 



 

 

III. TOPOLOGY OF SECONDARY STRUCTURE TRACES USING 

COMPUTATIONALLY DETECTED ΒETA-TRACES 

 A protein sequence has a direction from N-terminal to C-

terminal. When the protein sequence is threaded in the 3D 

image, it visits the detected α-traces and β-traces in a unique 

order. For medium resolution cryo-EM density maps, current 

approaches in topology determination either restrict in α-

proteins that do not have β-sheets or use the true positions of 

β-strands from the PDB structure, due to the lack of 

computational methods to detect β-strands. We report 

preliminary data here to derive the topology using the α-traces 

and β-traces detected the 3D image extracted from cryo-EM 

map (EMD-5030). The α-traces and β-traces are fairly 

accurately detected (Figure 1B and Table 1 row 5). A topology 

graph was built by matching the detected traces with the 

sequence segments of the secondary structures. The correct 

topology (Figure 1C) was ranked as the 2
nd

 on the list using 

DP-TOSS [14], a dynamic programming approach searching 

for the shortest K paths in the graph. The true sequence 

fragments of the secondary structures were used in this test.  

This result suggests that it is possible to derive the correct 

topology from an α/β protein when secondary structures are 

traced fairly accurately.  

 

IV. DYNAMIC GRAPH FOR INACCURACY IN SECONDARY 

STRUCTURES 

 One of the major challenges in topology determination 

arises from the errors in secondary structure detection from the 

image and in secondary structure prediction from the protein 

sequence (Figure 2A). Short helices and small β-sheets are 

often missed in the detection obtained from the 3D image. The 

detected positions may be shifted from the true positions and 

the detected length may be shorter or longer than that of the 

true secondary structure. Similar types of errors exist in the 

secondary structure prediction from the protein sequence.  

 The nature of each error is different, and the frequency of 

each kind of errors is different too. Ideally different kinds of 

error may be handled differently. For example, split-error 

refers to the situation in which one helix is detected/predicted 

as two shorter helices. We observed that a split error is not as 

popular as a shift error. A potential solution is to consider both 

situations, one containing two separate secondary structures 

and the other containing one longer secondary structure. For 

example, three graphs may be considered if helix H1 and H2 

are close enough and H3 and H4 are also close enough (Figure 

2B). However, effective algorithms are needed to reduce the 

repetitive computation as much as possible.  

  

For simplicity in discussion of a dynamic graph, we assume 

there are no β-sheets in the protein. Ideally, the secondary 

structures are predicted accurately from the sequence, and we 

let                be an ordered list of sequence 

segments that form helices (Figure 1D). Let 

  {          } be a set of helix traces accurately detected 

from the density map. Then the topology of SSTs can be 

inferred from graph        . In reality however, shift 

error may exist in the predicted sequence segments, and 

therefore a few alternative positions may be used for each 

helix. Let a tuple    (   
     

       
 )            

           represent an ordered list of sequence 

segments. B is the maximum number of alternatives allowed. 

An example of a tuple (Figure 3) is (Helix 1, Helix 2’, 

Helix3’, Helix 3”, Helix 4’). Similarly for 3D image, let 

   (   
     

       
 )                           

BB is the maximum number of alternatives allowed for each 

secondary structures. Each tuple of sequence segments will be 

used to match with each tuple of helix sticks/traces detected 

from the image using a graph          . Realizing that 

most of the segments may remain the same between two 

tuples, we previously developed a dynamic graph method to 

reduce the computation in transforming one graph to another 

[27]. The approach only updates the tables associated with 

nodes as necessary during dynamic programming process.   

 

 Seven α-proteins were randomly chosen from the PDB 

and their 3D images were simulated to 10Ǻ resolution using 

EMAN [28]. The only requirement imposed is to choose 

proteins with medium to large sizes. The proteins contain 164 

to 501 amino acids with 5 to 26 helices. The positions of 

helices were detected using SSELearner [11]. As an example, 

it detected twenty-one of twenty-six helices from the 3D 

image of protein 2X79. The sequence of the protein was 

submitted to five prediction servers including SYMPRED 

[29], JPRED [30], PSIPRED [31], PREDATOR [32] and 

SABLE [33]. Fourteen of the twenty-six helices were detected 

at approximately correct locations of helices. After pre-

processing the predicted sequence segments, thirty-two tuples 

were generated (for details see [27]), each of which was 

Figure 3: Prediction errors for helices. The observed position of the helices (Helix 1, …, 
Helix 4), the predicted helices (Helix 2’, Helix 3’, Helix 3”, Helix 4’, Helix 2”) from 
multiple prediction methods, and the consensus prediction of the helices (shaded) are 
illustrated.  



matched to the twenty-one α-traces in the 3D image. Instead 

of computing the dynamic programming tables for thirty-two 

graphs from scratch, our dynamic graph method generates a 

new graph with reduced update from a previous graph. In this 

case, finding the optimal solution took 72.8% of the time if we 

were to compute all the thirty-two graphs naively from 

scratch. It appears that the dynamic graph method cut down 

about 35% of time from the naïve method.  

 

Table 2: Improved run-time using dynamic graph update 

in topology determination 

PDB 

ID 

#AA
a 

#P./O. 

Hlcsb 
#St.c 

Hlx 

Tup.d 

All 

Comb.e 

Naive 

Timef 
%g 

3FYQ 199 6/5 5 12 0.51 0.84 60.7 

2WVI 164 8/9 7 2 0.76 0.92 82.6 

1NG6 148 7/9 8 8 2.3 4.8 47.9 
3HFW 357 15/23 16 2 350.84 400.0 87.5 

2X79 501 14/26 21 32 20.5k 28.2k 72.8 

1TBF 347 16/22 16 24 6.8k 15.0k 45.6 
3L6A 364 18/25 19 16 13.3k 21.8k 60.8 

Average 65.45 

a: The number of  amino acids in the structure (PDB file); 

b: The number of helix regions in secondary structure predictions/The number 
    of observed helices in PDB file; 

c: The number of sticks (α-traces) detected from the 3D image; 
d: The number of tuples of helix sequence segments generated after pre-

processing; 

e: The time (in seconds) to update the graph for all helix tuples and to find the 
    shortest path; 

f: Brute force time to re-compute the entire graph for all the tuples and to 

    search for the shortest path; 
g:  Percentage of the total time for dynamic update g=e/f. 

 

V.  SUMMARY 

 Topology determination is a critical step in de novo 

folding for cryo-EM density maps at medium resolutions. This 

paper summarizes our recent advances in major steps of this 

problem (1) the detection of β-strands using StrandTwister 

about which details are under review in a separate paper; (2) 

the prediction of topologies using DP-TOSS. Many methods 

have been developed to detect the location of helices from 

cryo-EM density maps. However, there has not been any tool 

to detect β-strands from cryo-EM density maps at medium 

resolutions. We find that StrandTwister is able to detect most 

of β-strands from major β-sheets in such density maps. Using 

computationally detected α-traces and β-traces from the image 

and the exact sequence segments of the secondary structures, 

DP-TOSS was able to rank the true topology as the 2
nd

 in a test 

using the 3D image extracted from cryo-EM density map 

(EMD-5030). This result shows, for the first time, that it is 

possible to rank the true topology high in the list using 

computationally detected α-traces and β-traces from 

experimentally-obtained density maps at a medium resolution. 

In spite of recent advances in de novo folding, errors in the 

secondary structure detection present a challenging problem. 

Effective algorithms are needed to derive the topology in 

presence such errors. Our exploration of the shift error shows 

that dynamic graph is an option cutting down the computation 

about 35%. However, more effective methods are needed.  
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