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Abstract— Attaining autonomous flight is an important task
in aerial robotics. Often flight trajectories are not only sub-
ject to unknown system dynamics, but also to specific task
constraints. This paper presents a motion planning method
for generating trajectories with minimal residual oscillations
(swing-free) for rotorcraft carrying a suspended loads. We rely
on a finite-sampling, batch reinforcement learning algorithm
to train the system for a particular load. We find criteria
that allow the trained agent to be transferred to a variety
of models, state and action spaces and produce a number of
different trajectories. Through a combination of simulations
and experiments, we demonstrate that the inferred policy is
robust to noise and the unmodeled dynamics of the system.
The contributions of this work are 1) applying reinforcement
learning to solve the problem of finding swing-free trajectories
for rotorcraft, 2) designing a problem-specific feature vector
for value function approximation, 3) giving sufficient conditions
for successful learning transfer to different models, state and
action spaces, and 4) verification of the resulting trajectories
in both simulation and autonomous control of quadrotors with
suspended loads.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) play an increasing role
in a wide number of missions such as remote sensing,
transportation, and search and rescue missions. Often, part of
a UAV’s role is to carry loads vital to mission success. For
example, cargoes may consist of food and supply delivery
in disaster struck areas, patient transport, or spacecraft land-
ing. Planning motions for UAVs carrying loads is complex
because load swing is difficult to control. However, swing
control is necessary for the safety and success of the mission.

Helicopters and quadrotors are ideal candidates for au-
tonomous cargo delivery tasks because they are highly ma-
neuverable, holonomic vehicles capable of vertical takeoff
and landing and single-point hover. However, they are inher-
ently unstable systems with complicated nonlinear dynamics.
The added suspended load further complicates the dynamics
of such systems.

Motions with minimal residual oscillations also have ap-
plications in construction and manufacturing domains. They
are desired for cranes on construction sites and loading docks
[3], and for industrial robots carrying parts through plants
[20]. Swing-free trajectories for these systems are needed for
safety concerns for the payload and the environment. Further,
by not having to wait for the oscillation to naturally subside,
swing-free trajectories improve overall system throughput
and increase plant manufacturing capacity.
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Fig. 1. A quadrotor with a suspended load.

Our goal is to find fast trajectories with minimal residual
oscillations (swing-free) for rotorcraft aerial robots carrying
suspended loads as described in [15]. In addition, swing
control during flight is desired. We assume that we know the
goal state of the vehicle; the initial state may be arbitrary.
Furthermore, we assume that we have a black box simulator
(or a generative model) available, but our algorithm makes
no assumptions about the dynamics of this system.

We apply a machine learning approach to obtain swing-
free trajectories. We learn the task using an approximate
value iteration (AVI) reinforcement learning algorithm. The
value function is parametrized with problem-specific feature
vectors. Learning and trajectory generation are separated into
distinct phases. In the learning phase, we learn the value
function approximation for a particular load. Once the value
function is learned, we use it to generate any number of
trajectories. These trajectories may have different starting
and ending positions, and may use different (but compatible)
models (see Figure 2). We find sufficient criteria to allow
the transfer of the learned, inferred policy to a variety of
situations. We demonstrate that this approach produces a
swing-free trajectory to the desired state regardless of starting
position, that is robust to noise.

To verify our approach, we learn a value function ap-
proximation for swing-free flight using a generic holonomic
model of the aerial vehicle with a suspended load as a
simulator. We then generate trajectories using two models:
the same holonomic model used to learn parameters, and a
noisy holonomic model. We demonstrate that the trajectories



Fig. 2. Trajectory generation block diagram. The system learns a problem-
specific feature vector parametrization of the value function. It queries a
simulator, calculates feature vectors and receives a reward for a state. Once
learned, the value function approximation is passed to trajectory generation
to generate a number of different trajectories. The trajectory generation uses
the same feature vectors, but may rely on different simulators to find the
best action in any given state. The produced trajectory is sent to a robot.
The green blocks are external to the learning algorithm and are considered
to be unknown.

are feasible by using them for autonomous control of a
Hummingbird quadrotor, shown in Figure 1, flying single
and multi-waypoint flights in a cluttered environment.

The contributions of this work are 1) applying reinforce-
ment learning to solve the problem of finding swing-free
trajectories for rotorcraft, 2) designing a rotorcraft UAV
problem-specific feature vector for value function approxi-
mation, 3) giving sufficient conditions for successful learning
transfer to different models, state and action spaces, and 4)
verification of the resulting trajectories in both simulation
and autonomous control of quadrotors with suspended loads.

II. RELATED WORK

1) Quadrotor Trajectory Tracking: Schoellig et al. [16]
use an expectation-maximization learning algorithm to
achieve quadrotor trajectory tracking with a target trajectory
and simple linear model. Lupashin et al. [11] apply policy
gradient descent techniques to perform aggressive quadro-
tor multi-flips that improve over repeated iterations. They
improve upon it in [10] by segmenting the trajectory into
keyframes and learning the parameters for each segment
separately.

2) Quadrotor Swing-free Trajectory Creation: Palunko
et al. successfully applied dynamic programming to solve
swing-free trajectories for quadrotors [14], [15]. However,
dynamic programming requires that the dynamics of the
system are known ahead of time, and is sensitive to the
accuracy of the model, and to the start and goal states
used. A machine learning approach doesn’t require the white
box approach to system’s dynamics, and learning doesn’t
need to be repeated when the start state changes. Further,
the reinforcement learning approach is more suitable for
compensating for the accumulated error resulting from model
approximation. Lastly, while dynamic programming requires
pre-calculating each trajectory, the approach presented here
allows us to learn the problem once, and generate any number

of different trajectories with different starting positions using
same value function approximation.

3) Swing-free Trajectories in Manufacturing: Swing-free
trajectories have been studied outside of the UAV domain.
They are important in industrial robotics with applications
such as cranes in construction sites and for cargo loading
in ports [3], [20]. Residual oscillation reduction is applica-
ble to manufacturing environments where parts need to be
transported in a limited space. Zameroski et al. [21] applied
dynamic programming to reduce residual vibrations of a
freely suspended payload.

4) Reinforcement and Transfer Learning: To accomplish
swing-free trajectories for rotorcraft with suspended loads,
we rely on approximate value iteration [5], [7], [18] with
a specifically designed feature vector for value function
approximation. Taylor and Stone [19] propose value function
transfer between the tasks in different state and action spaces
using behavior transfer function to transfer the value function
to the new domain. In this work, we transfer the learned
value function to tasks with state and action space supersets
and changed dynamics. We find sufficient characteristics of
the target tasks for learning transfer to occur successfully.
We directly transfer the value function and perform no
further learning. Sherstov and Stone in [17] examine action
transfer between the tasks, learning the optimal policy and
transferring only the most relevant actions from the optimal
policy. We take the opposite approach. To save computational
time, we learn a sub-optimal policy on a subset of actions,
and transfer it to the expanded action space to produce a
more refined plan.

McMahan et al. [12] suggested learning a partial policy
for fixed start and goal states. Such partial policies manage
state space complexity by focusing on states that are more
likely to be encountered. We are interested in finding swing-
free trajectories from different start states, but we do have a
single goal state. Thus, all trajectories will pass near the goal
state, and we learn the partial policy only in the vicinity of
the goal state. Then, we may apply it to any start state.

III. METHODS

A. Reinforcement Learning for Swing-Free Trajectories
The approximate value iteration algorithm [5], [7], [18]

produces an approximate solution to a Markov Decision
Process (MDP) in continuous state spaces with a discrete
action set. We approximate the value function with a lin-
early parametrized feature vector. It is in an expectation-
maximization (EM) algorithm which relies on a sampling
of the state space transitions, an estimation of the state
value function using the Bellman equation [4], and a linear
regression to find the parameters that minimize the least
square error.

In our implementation, the state space is a 10-dimensional
vector s = [p v η η̇]T of the vehicle’s position p =
[x y z]T relative to the goal state, vehicles linear velocity
v = [ẋ ẏ ż]T , load displacement angles ηL = [φL θL]

T and
their respective angular velocities η̇L = [φ̇L θ̇L]

T relative to
the vehicles center of the mass (see Figure 3). L is the length
of the suspension cable. Since L is constant in this work, it
will be omitted.



The samples are uniformly, randomly drawn from a hyper-
cube centred in the goal state at equilibrium. The action space
is a linear acceleration vector a = [ẍ ÿ z̈]T discretized
using equidistant steps centered around zero acceleration.

The state value function V is approximated with a linear
combination of the feature vector F (s). The feature vector
chosen for this problem consists of four basis functions:
squares of vehicles distance to the goal, its velocity magni-
tude, and load displacement and velocity magnitude as shown
in (1):

V (s) = ψT ∗ F (s)
F (s) = [‖p‖2 ‖(v)‖2 ‖η‖2 ‖η̇‖2]T

(1)

where ψ ∈ R4.
The reward function penalizes the distance from the goal

state, and the size of the load displacement. It also penalizes
the negative z coordinate to provide a bounding box and
enforce that the vehicle must stay above the ground. Lastly,
the agent is rewarded when it reaches equilibrium. The
reward function R(s) = cT r(s) is a linear combination of
basis rewards r(s) = [r1(s) r2(s) r3(s)]

T , weighted with
vector c = [c1 c2 c3]

T , for some constants a1 and a2, where:

r1(s) = −‖p‖2

r2(s) =

{
a1 ‖F (s)‖ < ε

−‖η‖2 otherwise

r3(s) =

{
−a2 z < 0

0 z ≥ 0

To obtain the state transition function samples P (s0, a) =
s, we rely on a simplified model of the quadrotor-load
system, where the quadrotor is represented by a holonomic
model of a UAV widely used in the literature [9], [13]. The
simulator returns the next system state s = [p v η η̇] when an
action a is applied to a state s0 = [p0 v0 η0 η̇0]. Equations

Fig. 3. Load displacement angles for a quadrotor carrying a suspended
load.

(2) and (3) describe the simulator. g′ = [0 0 g]T is gravity
force, L is the length of the suspension cable, and τ is the
length of the time step:

v = v0 + τa; p = p0 + τv0 + 0.5τ2a

η̇ = η̇0 + τ η̈; η = η0 + τ η̇0 + 0.5τ2η̈
(2)

where

η̈ =

[
sin θ0 sinφ0 − cosφ0 cos θ0 sinφ0L

−1

− cos θ0 cosφ0 0 cosφ0 sin θ0L
−1

]
(a−g′)

(3)
To learn the approximation of the state value function, AVI

starts with an arbitrary vector ψ. In each iteration, the state
space is randomly sampled to produce a set of state samples
M. New estimate of the state value function is calculated
according to V (s) = r(s) + γmaxaψ

TF (P (s, a))) for all
samples s ∈ M . 0 < γ < 1 is discount factor. A linear
regression then finds a new value of ψ that fits the calculated
estimates V (s) into quadric form ψTF (s). The process
repeats until a maximum number of iterations is performed.
The full description of AVI can be found in [5].

B. Trajectory Generation
An approximated value function induces a greedy policy π

that is used to generate the trajectory and control the vehicle.
Given a state s, policy π(s) returns an action a. The policy
is determined by π(s) = argmaxa(ψ

TF (P (s, a))), where P
is the state transition function described in (2) and (3). When
applied to the system, the resulting action moves the system
to the state associated with the highest estimated value. The
algorithm starts with the initial state. Then it finds an action
according to the policy π. The action is used to transition to
the next state. The process repeats until the goal is reached
or the trajectory exceeds a maximum number of steps.

C. Analysis
The value function approximation does not necessarily

need to be numerically close to the true value function.
The Proposition III.1 gives sufficient conditions that the
value function approximation, action state space and system
dynamics need to meet to guarantee a plan that leads to the
goal state.

Proposition III.1. Let sg be the goal state. If vector ψ is
negative definite, and action space A maps state space such
that ∀s ∈ S \ {sg},∃a ∈ A that V (πA(s)) > ε + V (s), for
some ε > 0, then the system is asymptotically stable in the
sense of Lyapunov, and coincidently for an arbitrary start
state s ∈ S, greedy policy with respect to V leads to the
goal state sg. In other words, ∀s ∈ S, ∃n, πn

A(s) = sg .

The proof can be found in Appendix.
Proposition III.1 connects state value approximation with

Lyapunov stability theory. If V satisfies the critera, the
system is globally approximately stable. We empirically
show that the criteria is met. Proposition III.1 requires that
ψ need to be negative definite for the value function V
described in (1) to have a unique maximum. As we will
see in the IV-B, the empirical results show that is the case.
These observations lead to several practical properties of the
induced greedy policy that we will verify empirically:



1) The induced greedy policy is robust to some noise: as
long as there is a transition to a state with a higher value, an
action could be taken and the goal will be attained, although
not optimally. Section IV-B presents the empirical evidence
for this property.

2) The policy is agnostic to the simulator used: The
simulator defines the transition function and along with the
action space defines the set of reachable states. Thus, as
long as the conditions of Proposition III.1 are met, we can
switch the simulators we use. This means that we can train
on a simple simulator and generate a trajectory on a more
sophisticated model that would predict the system better.

3) Learning on the domain subset: As we will show
experimentally in Sections IV-B and IV-C, we can learn the
model on a small subset of the state space around the goal
state, and the resulting policy will work on the whole domain
where the criteria above hold, i.e., where the value function
doesn’t have other maxima. This property makes the method
a good choice for a local planner.

4) Changing action space: Lastly, the action space be-
tween learning and the trajectory generation can change, and
the algorithm will still produce a trajectory to the goal state.
For example, to save computational time, we can learn on
the smaller, more coarse discretization of the action space
to obtain the value function parameters, and generate a
trajectory on a more refined action space which produces a
smoother trajectory. We will demonstrate this property during
the multi-waypoint flight experiment.

Since we are using an approximation to represent a value
function and obtain an estimate iteratively, the question of
algorithm convergence is twofold. First, the parameters that
determine the value function must converge to a fixed point.
Second, the fixed point of the approximator must be close
to the true value function.

Convergence of the algorithm is not guaranteed in the
general case. Convergence is guaranteed if the value function
is a contraction [6]. In our case, the approximator function
is not a contraction. Thus, we will show empirically that the
approximator parameters stabilize. To show that the policy
derived from a stabilized approximator is sound, we will
examine the resulting trajectory. The trajectory needs to be
swing-free at the arrival at the goal state, and be suitable for
the system.

IV. RESULTS

In this section we empirically verify the convergence of the
proposed algorithm as well as its effectiveness in simulation
and experiment. Section IV-A assesses the approximate value
iteration convergence. Section IV-B shows the results of
trajectory generation in simulation for the expanded state
and action space. Lastly, Section IV-C presents results of
experiments with the quadrotor in expanded state and action
space. The experiments assess the discrepancy between the
simulation swing predictions and the actual swing encoun-
tered during the flight, and make a comparison between a
cubic trajectory (trajectory where position is a 3rd order
polynomial function of time) and our method.

TABLE I
APPROXIMATE VALUE ITERATION ALGORITHM HYPERPARAMETERS.

Parameter 3D Configuration 2D Configuration
γ 0.9
Min action (-3, -3, -3) (-3, -3, 0)
Max action (3, 3, 3) (3, 3, 0)
Action step 0.5 0.05

Min sampling space p = (−1,−1,−1), v = (−3,−3,−3)
η = (−10◦,−10◦), η̇ = (−10,−10)

MAX sampling space p = (1, 1, 1), v = (3, 3, 3)
η = (10◦, 10◦), η̇ = (10, 10)

Sampling Linear Constant (200)
Simulator Holonomic
Frequency 50Hz
Number of iterations 1000 800
Number of trials 100 40

Reward function c1 = 10000, c2 = 750, c3 = 1
a1 = 14, a2 = 10000, ε = 0.05

A. Value Function Approximation Learning Results
We run AVI in two configurations: 2D and 3D (see Table

I). Both configurations use the same discount parameter
γ < 1 to ensure that the value function is finite. The
configurations also share the simulator, described in (2) and
(3).

The 3D configuration trains the agent with a coarse
three-dimensional action vector. Each direction of the linear
acceleration is discretized in 13 steps, resulting in 133 total
actions. In this phase of the algorithm we are shaping the
value function, and this level of coarseness is sufficient.

Farahmand et al. in [8] showed that AVI’s approximation
error decays exponentially with the number of iterations, and
that gradually increasing the sampling with iterations yields
less error as the number of iterations increases. Thus, we
increase sampling linearly with the number of iterations in
the 3D configuration.

To assess the stability of the approximate value iteration,
we ran the AVI 100 times, for 1,000 iterations in the 3D
configuration. Figure 4 shows the trend of the norm of value
parameter vector ψ with respect to L2 norm. We can see that
the ‖ψ‖ stabilizes after about 200 iterations with the mean
of 361, 170. The empirical results show that the algorithm
is stable and produces a consistent policy over different
trials. The mean value of ψ = [−86, 290 − 350, 350 −
1, 430 − 1, 160]T is negative definite, which means that the
assumption for Proposition III.1 holds.

Figure 5 depicts trajectories with the start state in
(−2,−2, 1) over 100 trials. Although there are slight varia-
tions in duration, all the trajectories are similar in shape and
are consistent, giving us confidence that the AVI converges
to the optimal value. The load initially lags behind as the
vehicle accelerates, but then stabilizes to end in a minimal
swing. We can also see that the swing is controlled through-
out the trajectory, maintaining the swing under 10◦ for the
duration of the entire flight.

The 2D configuration uses a finer discretization of the
action space, although only in the x and y directions. There
are 121 actions in each direction, totalling to 1212 actions
in the discretized space. We will use this configuration in
the experiments on the quadrotor. This configuration uses a



fixed sampling methodology. Results in [8] show that the
approximation error stabilizes to a roughly constant level
after the parameters stabilize.

B. Simulation Results

We access the quality and robustness of a trained agent in
simulation by generating trajectories from different distances
for two different simulators. The first simulator is a generic
holonomic aerial vehicle with suspended load simulator, the
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Fig. 5. Trajectories starting at (-2, -2, 1) for each of the 100 trials of the (a)
vehicle and (b) its load using 3D configuration for training and holonomic
simulator with fine-grain action space for trajectory generation.

same simulator we used in the learning phase. The second
simulator is a noisy holonomic aerial vehicle simulator,
which adds up to 5% uniform noise to the predicted state.
Its intent is to simulate the inaccuracies and uncertainties of
the real hardware.

We compare the performance of our learned generated
trajectories with model-based dynamic programming (DP)
and cubic trajectories. The cubic and DP trajectories are
generated as described in [15] using the the dynamics model
in (2) and (3) and are of the same duration as corresponding
learned trajectories.

The agent is trained in 3D configuration (see Table I).
For trajectory generation, we use a fine-grain discretized 3D
action space A = (−3 : 0.05 : 3)3. This action space is ten
times per dimension finer and contains 1213 different actions.
The trajectories were generated at 50Hz with a maximum
duration of 15 seconds. All the trajectories were generated
and averaged over 100 trials.

To assess how well a policy adapts to different starting
positions, we choose two different fixed positions, (-2,-2, 1)
and (-20,-20,15), and two variable positions. The variable
positions are randomly drawn from between 4 and 5 meters,
and within 1 meter from the goal state. The last position
measures how well the agent performs within the sampling
box. The rest of the positions are well outside of the sampling
space used for the policy generation, and assess how well the
method works for trajectories outside of the sampling bounds
with an extended state space.

Table II presents the averaged results with their standard
deviations. We measure the end state and the time when the
agent reaches the goal, the percentage of trajectories that
reach the goal state within 15 seconds, and the maximum
swing experienced among all 100 trails. With the exception
of the noisy holonomic simulator at the starting position (-
20,-20,15), all experiments complete the trajectory within
4 cm of the goal, with a swing of less than 0.6◦. The
trajectories using the noisy simulator from a distance of 32
meters (-20,-20,15) don’t reach within 5 cm because 11% of
the trajectories exceed the 15-second time limit before the
agent reaches its destination. However, we still see that the
swing is controlled and minimal at the destination approach
even in that case.

The results show that trajectories generated under noisy
conditions take a bit longer to reach the goal state, and
the standard deviation associated with the results is a bit
larger. This is expected, given the random nature of the noise.
However, all of the noisy trajectories reach the goal with
about the same accuracy as the non-noisy trajectories. This
finding matches our prediction from Section III.

The maximum angle of the load during its entire trajectory
for all 100 trials inversely depends on the distance from the
initial state to the goal state. For short trajectories within the
sampling box, the swing always remains within 4◦, while for
the very long trajectories it could go up to 46◦. As seen in
Figure 5, the peak angle is reached at the beginning of the
trajectory during the initial acceleration, and as the trajectory
proceeds, the swing reduces. This makes sense, given that
the agent is minimizing the combination of the swing and
distance. When very far away from the goal, the agent will



move quickly towards the goal state and produce increased
swing. Once the agent is closer to the goal state, the swing
component becomes dominant in the value function, and the
swing reduces.

Figure 6 shows the comparison of the trajectories with
the same starting position (-2, -2, 1) and same ψ parameter,
generated using the models above (AVI trajectories) com-
pared to cubic and DP trajectories. First, we see that the
AVI trajectories share a similar velocity profile (Figure 6
(a)) with two velocity peaks, both occurring in the first half
of the flight. Velocities in DP and cubic trajectories have
a single maximum in the second half of the trajectory. The
resulting swing predictions (Figure 6 (b)) show that in the last
0.3 seconds of the trajectory, the cubic trajectory a exhibits
swing of 10◦, while the DP trajectory ends with a swing of
less than 5◦. Our trajectories are within 2◦ in the same time
period.

0 1 2 3
−2

−1

0
Position

t (s)

x 
(m

)

0 1 2 3
−2

−1

0

t (s)

y 
(m

)

0 1 2 3
0

0.5

1

1.5

t (s)

z 
(m

)

0 1 2 3
−1

0

1

Linear Velocity

t (s)

v x (
m

/s
)

0 1 2 3
−1

0

1

t (s)

v y (
m

/s
)

0 1 2 3
−1

0

1

t (s)

v z (
m

/s
)

 

 

AVI holonomic
AVI noisy
Dynamic programming
Cubic

(a)

0 1 2 3
−10

−5

0

5

10
Angular Position over Time

t (s)

φ 
(°

)

 

 

0 1 2 3
−10

−5

0

5

10

t (s)

θ 
(°

)

0 1 2 3
−50

0

50
Angular Speed over Time

t (s)

φ 
(°

/s
)

0 1 2 3
−50

0

50

t (s)

θ 
(°

/s
)

Linear Velocity

AVI holonomic
AVI noisy
Dynamic programming
Cubic

(b)
Fig. 6. Trajectories of the (a) vehicle and (b) its load where the training
was performed in 3D configuration and the trajectories were generated using
generic and noisy holonomic simulators compared to the cubic and dynamic
programming trajectories of the same duration.

C. Experimental Results

1) Setup: The experiments were performed using the
MARHES multi-aerial vehicle testbed. This testbed and its
real-time controller are described in detail in [14]. We first

trained an agent in 2D configuration (see Table I). Once
the agent was trained, we generated trajectories for two
experiments: flight with a single waypoint, and with a multi-
waypoint flight.

To generate trajectories, we used a fine-grain discretized
3D action space A = (−3 : 0.05 : 3)3. The trajectories were
generated at 50Hz using the generic holonomic aerial vehicle
carrying a suspended load simulator, the same simulator that
was used in the learning phase.

These trajectories were sent to the quadrotor with a sus-
pended load weighing 45 grams on a 62 cm-long suspension
cable. The vehicle and load positioning was tracked by the
Vicon Positioning System [2].

2) Single-waypoint experiment: In flight with a single
waypoint, the quadrotor flew from (-1,-1,1) to (1,1,1). Figure
9 compares the vehicle and load trajectories for a learned
trajectory as flown and in simulation, with cubic and DP
trajectories of the same length and duration. The vehicle
trajectories in Figure 9 (a) suggest a difference in the velocity
profile, with the learned trajectory producing a slightly
steeper acceleration between 1 and 2.5 seconds. The learned
trajectory also contains a 10 cm vertical move up toward the
end of the flight.

Comparison with Simulation: Looking at the load trajecto-
ries in Figure 9 (b), we notice the reduced swing, especially
in the second half of the load’s φ coordinate. The trajectory in
simulation never exceeds 10◦, and the actual flown trajectory
reaches the maximum at 12◦. Both learned load trajectories
follow the same profile with two distinct peaks around 0.5
seconds and 2.2 seconds into the flight, followed by a
rapid swing control and reduction to under 5◦. The actual
flown trajectory naturally contains more oscillations that the
simulator didn’t model. Despite that, the limits, boundaries,
and profiles of the load trajectories are close between the
simulation and flown trajectories. This verifies the validity
of the simulation results: the load trajectory predictions in
the simulator are reasonably accurate.

Comparison with Cubic: Comparing the flown learned
trajectory with a cubic trajectory, we see a different swing
profile. The cubic load trajectory has higher oscillation, four
peaks within 3.5 seconds of flight, compared to three peaks
for the learned trajectory. The maximum peak of the cubic
trajectory is 14

◦
at the beginning of the flight. The most

notable difference happens after the destination is reached
during the hover (after 3.5 seconds in Figure 9 (b)). In this
part of the trajectory, the cubic trajectory shows a load swing
of 5 − 12◦, while the learned trajectory controls the swing
to under 4◦.

Comparison with DP: Figure 9 (b) shows that the load
of the trajectory learned with reinforcement learning stays
within the load trajectory generated using dynamic program-
ming at all times: during the flight (the first 3.4 seconds) and
the residual oscillation after the flight.

3) Multi-waypoint experiment: In the second set of exper-
iments, the same agent was used to generate multiple trajec-
tories to perform a multi-waypoint flight and demonstrate the
ability to perform a more complex flight pattern in a cluttered
environment based on a single learning. The flight consists of
nine segments, covering different altitudes, see Figure 7. The



TABLE II
SUMMARY OF TRAJECTORY RESULTS FOR DIFFERENT STARTING POSITION AVERAGED OVER 100 TRIALS: PERCENT COMPLETED TRAJECTORIES

WITHIN 15 SECONDS, TIME TO REACH THE GOAL, FINAL DISTANCE TO GOAL, FINAL SWING, AND MAXIMUM SWING.

State Goal reached t (s) ‖ p ‖ (m) ‖ η ‖ (◦) max ‖ η ‖ (◦)
Location Simulator (%) µ σ µ σ µ σ µ σ

(-2,-2,1) Generic Holonomic 100 6.13 0.82 0.03 0.01 0.54 0.28 12.19 1.16
Noisy Holonomic 100 6.39 0.98 0.04 0.01 0.55 0.30 12.66 1.89

(-20,-20,15) Generic Holonomic 99 10.94 1.15 0.04 0.01 0.49 0.33 46.28 3.90
Noisy Holonomic 89 12.04 1.91 0.08 0.22 0.47 0.45 44.39 7.22

((4,5),(4,5),(4,5)) Generic Holonomic 100 7.89 0.87 0.04 0.01 0.36 0.31 26.51 2.84
Noisy Holonomic 100 7.96 1.11 0.04 0.01 0.44 0.29 27.70 3.94

((-1,1),(-1,1),(-1,1)) Generic Holonomic 100 4.55 0.89 0.04 0.01 0.33 0.30 3.36 1.39
Noisy Holonomic 100 4.55 1.03 0.04 0.01 0.38 0.29 3.46 1.52

clutter placed in the environment (Figure 8) deflects the rotor
wind and affects the load swing. High-resolution flight video
is available at [1]. Note that the trajectories generated for this
experiment used value approximator parameters learned on
a 2D action space, in the xy plane, and produced a viable
trajectory that changes altitude because trajectory generation
phase used 3D action space. This property was predicted by
Proposition III.1 since the extended 3D action space allows
transitions to the higher value states.

The experiment was performed three times and the result-
ing quadrotor and load trajectories are depicted in Figure
10. During the first 10 seconds of the flight, the quadrotor
hovers and the swing is within 5◦. At the very beginning of
the flight (seconds 10 to 20), the swing is maximal, staying
within 15◦. In the last phase of the flight, the swing reduces
to within 10◦, and at the very end of the trajectory (seconds
40 to 45) it reduces to the nominal swing within 5◦ although
the aircraft is still moving.
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Fig. 7. Trajectory of the multi-waypoint flight.

V. CONCLUSIONS

In this work, we presented a motion planning method for
producing trajectories with minimal residual oscillations for
rotorcraft UAVs with freely suspended loads. The frame-
work relies on reinforcement learning to learn the problem
characteristics for a particular load. We found conditions
for allowing the learned agent to be applied to produce a
wide variety of trajectories. We discussed the learning con-
vergence, assessed the produced motion plans in simulation,
and their robustness to noise. Lastly, we implemented the
proposed algorithm on a quadrotor type UAV in order to

Fig. 8. Quadrotor completing the multi-waypoint flight in the cluttered
environment.
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Fig. 9. Quadrotor (a) and load (b) trajectories as flown, created through
learning compared to cubic, dynamic programming, and simulated trajecto-
ries.



demonstrate its feasibility and to assess the accuracy of the
simulation results.
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APPENDIX

Proof of Proposition III.1

Proof. To show that the system is asymptotically stable,
we need to find a discrete time Lyapunov control function
W(s), such that W (s(k)) > 0, for ∀s(k) 6= 0, W (sg) = 0,
4W (s(k)) =W (s(k+1))−W (s(k)) < 0, and 4W (s0) =
0, for all k, where sg = [0 0 0 0 0 0 0 0 0 0]T .

Let W (s) = −V (s) = −ψT (‖p‖2, ‖(v)‖2, ‖η‖2, ‖η̇‖2)T .
Then W (0) = 0, and for all s 6= sg , W (s) > 0, since ψ < 0.
4W (s(k)) = −(V (s(k+ 1))− V (s(k))) < 0 because of

the assumption that for each state there an action to takes
the system to a state with a higher value.

Thus, W is a Lyapunov function with no constraints on s,
and is globally asymptotically stable. Therefore any policy
following function W (or V) will lead the system to the
unique equilibrium point.


