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Abstract— Probabilistic Roadmap Methods (PRMs) have which produce feasible paths in the modeled environment
been shown to work well at solving high Degree of Freedom put lead to collisions in the actual world.
(DoF) motion planning problems. They work by construct-
ing a roadmap that approximates the topology of collision-
free configuration space. However, this requires an accurate
model of the robot's workspace in order to test if a sampled
configuration is in collision or not. In this paper, we present
a method for roadmap construction that can be used in
workspaces with uncertainty in the model. For example, these
can be inaccuracies that are caused by sensor error when
an environment model was constructed. The uncertainty is
encoded into the roadmap directly through the incorporation
of non-binary collision detection values, e.g., a probability
of collision. We refer to this new roadmap as a Safety-
PRM because it allows tunability between the expected safety
of the robot and the distance along a path. We compare
the computational cost of Safety-PRM against two planning i . ; ;
methods for environments without modeling errors, basic PRM Fig. 1:Whole Arm Manipulator (WAWM) feeling an obstacle boundary.
and Medial Axis PRM (MAPRM), known for low computational
cost and maximizing clearance, respectively. We demonstrate - . _ .
that in most cases, Safety-PRM produces high quality paths _ Dlst|_ngwsh|ng. between collision and chI|S|on—free con-
maximized for clearance and safety with the least amount figurations requires a model of the planning space. These
of computational cost. We show that these paths are tunable models are often manually constructed, have well defined
for both robot safety and clearance. Finally, we demonstrate ghstacle boundaries, and can be easily tested for robot-

the applicability of Safety-PRM on an experimental system, a i ; ;
Barrett Whole Arm Manipulator (WAM). On the WAM, we obstacle collision. Advancing technologies are produ@bg

demonstrate the mapping of expected collision to robot speeds €Nvironment models at lower costs than ever before [29].
to enable the robot to physically test the safety of the roadmap These models are constructed using technology such as sen-

and use torque estimation to make roadmap modifications. sors [29] and cameras [13]. However, all these technologies
are prone to modeling error. Therefore, unlike the manually
. INTRODUCTION modeled environment, obstacle boundaries can be fuzzy or

approximated thus making collision tests error-prone.

The motion planning problem consists of finding a valid |, his paper, we introduce Safety-PRM that accounts
(collision-free) path from a start state to a goal state. Ong modeling uncertainty in the roadmap. This new method
solution to this problem is to define a roadmap that capture$cyjates and incorporates a probability of collisioninigr
the topology of the collision-free portion of configuration oagmap construction. These probabilities reflect the amou
space. However, the complexity of the workspace and robg} certainty in the collision-state of a node or edge in the

can make this process chaIIenging_. Probabilistic Roadmf?‘Badmap, thus allowing the robot to have an expectation of
Methods (PRMs) have addressed this challenge by construgery from an obstacle’s surface. The certainty can also be
ing a roadmap of randomly sampled robot configurationgseqto weigh roadmap edges, thus allowing robots to easily
and testing each configuration for collision [19]. ConneCyransition between being safer (higher expected cleajace

tions are .'i“ade between two samples when a ;ollism@ake shorter paths (lower regard to expected clearance).
free transition can be made. These samples (vertices) anc‘N

connections (edges) define a roadmap that the robot can e(rai:se(r;:‘c:annsvtirr%tr?rrt]g?\tipv?/!;ﬁat?cl)ltlayr(i)fiiihgzg ng\r,]v drgfttirélodd;:n
safely traverse. Recently, PRMs have been extended to Gi g y

adaptable [25] [4]. These new methods can deform pat |% age robots. We show that in most rigid body cases and i_n
[17], update roadmaps due to moving obstacles [14] [26 linkage cases, Safety-PRM can generate roadmaps with

map both collision and collision-free states [9], and deithw €ss computational cost than basic PRM and MAPRM. These

uncertainty in the motion model [6] [2] [1] [24]. However, MEthods are known for their low computational cost and
despite all these advances, PRMs require that the modelcdgarance maX|m|zat.|on, re.spect|vely. )

the problem must be accurate, e.g., there must be a cleaiSafety-PRM also is particularly relevant to experimental
delineation between collision and collision-free stasor-  fobot systems. In this paper, we demonstrate Safety-PRM on

prone collision detection can lead to erroneous roadma@sBarrett Whole Arm Manipulator (WAM). In this experi-
ment, we show how expected safety can be mapped directly

L ) L to robot speed in order to allow the robot to manually test the
Department of Computer Science, University of New — .~ . . . . .
Mexico, Albuquerque, NM 87131, {nmal one, kazaz,  Vvalidity of configurations and then using torque estimation
tapi a}@s. unm edu, jw@unm.edu make roadmap modifications.



II. PRELIMINARIES on the medial axis o’,.. to increase clearance and visi-

We define arobot as a movable object whose pOSSi_bility. Here, ranldom _samples are generated and retracted to
ble states are encoded by parameters, its DOFs, eachWwards the medial axis.However, in both methods a complete
corresponding to an attribute of the objeetg, position, and accurate model of the environment is needed. Earlier
orientation) or object componeng.g. joint angle, link dis- Methods related to MAPRM such as Generalized Voronoi
placement, component orientation). Thenfigurationof a Diagram and Hierarchical Generalized Voronoi Graph, were
robot is a point(zy, zs, ..., x,) in an dimensional space, "estricted to workspace clearance [11] [7] [8]. _
where z; is the ith DOF of the robot. This space, called PRMs have also been adapted to handle changes in the
configuration spacéClpac.), consists of all possible robot €nvironment due to moving obstacles. The work in [14]
configurations, regardiess of the feasibility of the configueXPands PRMs to work under both kinodynamic constraints
rations [21]. Free Cipace (Crec) is the subset of feasible and with moving obstacles. However, uncertainty is not
configurations in C-space, whitdockedC.pace (Cobstacies) built into the roadmaps, directly. Sensmg errors are hg_hdl
is the subset of infeasible configurations. In this contaet t By growing the obstacles. The work in [26] also utilizes
MP problem is that of finding a series of continuous changddRMs with moving obstacles. In this method, a first-stage
to a robot's DOFs that take it between initial and goafPProximate dynamic global roadmap about the connectivity
configurations without ever enteringopstacies. Although 1S maln_talned and a second-stage path is extracted from the
computing explicitCyysaee boundaries is, in the general dynamic global roadmap to locally plan. o
case, an intractable problem, it is often possible to efittye ~ 109gle PRM [9] maps boths,.c. andCopstacie- Similar to
determine if a configuration is feasible or not by performin%ur method, it does not throw out the in collision _mformatlo
a collision detection(CD) test in the robot's environment. however Toggle PRM us&Sy,... andCopstacie t0 aid sample

PRMs approach randomized motion planning by buildingfficiency in narrow passages.
a graph in a subset af’s,.., the roadmap[19]. Roadmap  Modifiable Roadmap Methods
vertices are added durimgpde generationwhereCpqce IS . .
sampled and collision-free configurations are inserted int Modifying a roadmap is a means to construct tunable
the roadmap. Duringiode connectionk neighboring nodes road.map paths, handle invalid paths. .and to accommodate
selected by alistance metriare evaluated by a deterministic M0Ving obstacles. One type of modifiable roadmap, [27],
local planner if the local planner is successful, an edgeconstructs a coarse roadmap which is refined in the areas

connecting the neighboring nodes is added to the roadmap. : . . = ;
pproximate roadmap, postponing detailed validationl unti

[1l. RELATED WORK query time where query preferences are applied to customize
The work in this paper builds on the work of Clearancethe roadmap. [12] takes an initial roadmap and query salutio
informed PRM methods, modifiable roadmaps and planningd adds nodes and edges to improve the query solution.
with uncertainty in order to work in environments that have Deformable roadmaps such as [32] replan online paths by

been modeled with noisy sensors. using deformation to fix invalid parts ofa path If a portidn (0]
. . a path is found to be in collision, the midpoint of the invalid
A. Modeling Environments With Sensors portion is pushed a specified distance away from the obstacle

Modeling an environment is one of the most challenging\ similar approach in [17] looks at the path homotopy class,
tasks in robotics [29]. Some common technologies useslhich relies on the notion of path deformability. This metho
for modeling include: GPS, radar, laser, sonar and cameragly looks at homotopy classification and the possibility of
However, every technology is subject to error, measuremedeforming a given path to fit another.
noise, which is not statistically independent and thus mod- The approaches of [25] [4] address real-time obstacle
eling is subject to systematic correlated errors [29]. avoidance in dynamic environments. These methods start

Two commonly used techniques are RGB-D mapping andith an initial path that is collision free and incremenyall
Laser range finders. RGB-D mapping uses a RGB camenaodify the path to maintain a smooth, collision free path.
with distance values for every pixel in the image [13], [15],These methods only rely on workspace clearance by using
[10], [28]. Either active stereo [20] or time of flight sengin protective bubbles to deform the path.
is used [4]. The measurement noise from models creat Planning With :
with RGB-D mapping varies depending on the method used anning With Uncertainty
[13]. Laser range finders use lasers to scan and map anlhe two main types of uncertainty are model uncertainty
environment. For example, [30] proposes a SLAM solutio@nd motion uncertainty. [5] extends PRMs to work while
for mapping and a probabilistic method for localization bubuilding a workspace model and is used to guide exploration
maps are subject to cumulative error. In other work, 2D lasép areas that have not been sensed, but it does not deal
range finders are used to scan and map the environment [18]th measurement noise. [16] and [23] are concerned with

. localization error of the robot. [22] is concerned with mbde
B. Clearance-informed Roadmaps error, but it uses a probability of collision for rejection

Clearance-informed methods utilize obstacle informatiosampling of nodes in the roadmap.Furthermore the method
to create high quality paths, more efficient sampling or tis tailored to 2D environments where the model noise is
handle moving obstacles. Obstacle surfaces are critical quantifiable. In [6], the general PRM and RRT method is
methods such as Obstacle Based PRM (OBPRM) [3] arfdllowed, however, the cost of connecting two vertices is
Medial Axis PRM (MAPRM) [31]. In OBPRM, configura- evaluated through Monte Carlo simulations to deal with
tions are placed near the obstacle surfaces in order taseveuncertainty. The work in [2] instead samples local motions
narrow passages easier.In MAPRM, configurations are placatl each state to estimate the state transition probabdity f



each possible action. A roadmap and the state transition
probabilities are then used to formulate a Markov Decision
Process (MDP) which is then solved using Infinite Horizon

Dynamic Programming.

Motion uncertainty can also be handled by working in
belief space. In [1] the authors chose to model a 2D motion
planning problem as a Partially Observable Markov Decision
Process (POMDP). Belief space and POMDPs are also used
to solve the uncertainty problem in [24]. Here the belief
space is used to approximate the solution to the POMDP
on a 2D motion planning problem. T cebeneaion

Probability

IV. METHODS Fig. 2: Probability of a configuration being in collision based ore th

In order to handle environment models with inaccuracie§!earance/penetration of the configuration. Based on kmuat
the PRM method must be modified. In previous PRM work,
collision checking of the robot to the environment is often ) .
done as a binary check (either free or in collision). In otger Petween two nodes). However, since the collision status of
handle an environment with noise, a probability of collisio the configuration is only partially known, the definition of
is stored with each configuration. These probabilities e a Nearest neighbor considers the probability of collisionug,
used to guide connection and to find feasible paths. Therd® define a function that combines the neighbor’s probgbilit
fore, the Safety-PRM provides flexible methods for tuning?f .CO||ISIOI’1 an_d its distance. This causes the best carglidat
between planning goals (expected clearance and path )engfheighbors to likely be free and proximal.
works on many robot types (rigid bodies and linkages), and Equation 2 provides a calculation of the distance between

is inexpensive to compute. two cqnfiguratior_\s,ci and ¢;. In this equation)x is a
weighting termg; is the vertex,P, (c;) is the probability that
A. Node Generation ¢; is in collision, anddist(c;, ¢;) is the Euclidean distance

The first step in PRM methods is generating a set dif ¢; from vertexc;. This metric will provide smaller scores
samples that approximateS;,... In an environment mod- to neighbors which are close and have a low probability of
eled with noise, the boundary betweéh, .. and Copsrqce being in collision. Thek closest neighbors are then chosen
is fuzzy. Thus, unlike a standard PRM method, we do ndPr connection.P,(c;) is evaluated by using Equation 1
discard nodes in collision. Rather, we associate a prababil Where the input to equation 1 is the clearance/penetration
of validity to each node that is dependent on its expectedf configurationc;.
distance from the obstacle surface. This ensures that hot al
nodes are weighted with an equal measure of quality. d(ci,cj) = (W Py(cs) + (1 — Ndist(ci, c;) 2)

x In the results shown, edges are computed between neigh-
Py(X) = —1xatan(D(X)—1)+ 5 (1) bors¢; and ¢; by using a straight-line inCypecc. The
™ weight for the edgee;; = (c;,c;) is a function of the
A probability of collision is stored with each node basedrobability of collision, P.(e;;), and the length of an
on the amount of perceived clearance/penetration. The-clegdge. The probability of collision of an edgg,(e;;), is a
ance/penetration probability?,(X), of configuration X is function of the intermediate conformations along the edge
calculated in Equation 1D(X) is the distance of config- ¢; = co,c1,¢2,...,¢n—1,¢n = c¢;, Where the number of
uration X to the nearest obstacle surface in the noisy modehtermediate conformations depends on the resolution, a
This is just one example to produce a collision probabilitpparameter of the method. In the results shouf(e;;) =
due to noisy obstacle boundaries. Theshifts the equation max (P, (co), Py(c1), Po(c2), -y Po(cn-1), Pu(cn)). Pulc:)
so that being close to the obstacle, but not necessarily i®evaluated using Equation 1 where the input to the equation
collision, has a high collision probability. This providesis the clearance/penetration for eaghalong the edge.
an extra buffer around obstacle surfaces and causes the
algorithm to favor higher clearance vertices. Figure 2 show . N N B
a plot of the probability function defined in Equation 1. Weight(ei;) = (v)Pe(ei;) + (1 = y)nlen(es;) — (3)
Since the introduction of the first PRM method [19], there Equation 3 shows the weight calculation for the edgg,
have been many PRM variants introduced [3], [31]. Sinc&om ¢; to ¢;. They value allows for customizable scaling
we are keeping and associating a probability to all samplesf clearance to edge length. This is particularly important
we opted to generate configurations using a uniform randobecause modeling errors can be highly variahlen(e;;) is
distribution. This method is able to produce many samples normalized length of an edge. In the results shown, these
quickly at a low computational cost. However, many PRMalues are normalized by the maximum edge length in order

variants could be used for sample generation. to provide intuitive scaling between probabilities of cgithn
i and edge length.
B. Node Connection Queries are then done using the standard Dijkstra’s algo-

For each node in the map, we attempt to connect fithm on the weighted roadmap. Since the roadmap edge
with its k£ nearest neighbors with a straight-line @,..c weights capture the uncertainty, Dijkstra’s algorithm Iwil
(other methods could be used to define a local transitiochoose paths with the least uncertainty to the goal.



V. EXPERIMENTS path length and clearance. Unfortunately, in certain pteqn

We explore Safety-PRM with rigid body and articulatedProblems these two parameters can be at odds with each

linkage robots in two environments. Figure 3 depicts th@ther. Paths with high clearance can have longer path lsngth
environments. In each environment the query is designed &4d short paths can have lower clearance because of the
show the trade-off in paths with high collision-free prolhab obstacles in the environment. Performance is determined
ity (clearance) versus path length by varyingn the edge Primarily by execution time which is directly related to the
weighting function. number of nodes, edges and collisions detection calls.

« Narrow: consists of an elongated environment with Figure 4a shows the path clearances+or [0, 1.0] with
three boxes dividing the space. The first and secorl step size of 0.1 on a roadmap of 500 nodes. Figure 4f
boxes produce a narrow corridor while the second anghows the path lengths for the correspondingalues. The
third box produce a wide corridor. The query is built sographs indicate they values under 0.7 produce very poor
that the narrow corridor has a shorter path to the gog@aths. However;y values above 0.7 produce significantly
but higher probability of being in collision, while the different paths. Figure 4d shows the Safety-PRM paths for
wide corridor has a low probability of being in collision v = 0.0,0.6,0.7,0.8,0.9,1.0. Figures 4a and 4d directly
but a longer path length. show the tunability asy = 0.7 goes through the shortest

« Plank: The plank environment has several long plankgath and as the value increases beyond 0.7 the paths have
running the same direction but with minor offsets inslightly higher clearance. Note that for> 0.7 all the paths
their angles. This produces several narrow corridorgo through the higher clearance section of the environment.
through which the robot must navigate length wise and However, the tunability is not the primary contribution
transverse across. of this work. Primarily, we are concerned with an efficient

Each environment is run with three different rigid bodyway to produce high clearance paths in an inaccurate model

robots, however, results are only shown for one robot in ea@heaply. Figure 4e shows tunable MAPRM paths. This
environment. The results for each robot in each environmegtaph shows the shortest path produced by MAPRM and
are comparable. These robots are designed to have varyting highest clearance path for a roadmap of 500 nodes.
difficulty for Safety-PRM, MAPRM and Uniform PRM. These paths are comparable to the paths produced by Safety-

« Stick: is a long thin object. Its long side is too long to fit PRM in figure 4d. In this particular experiment, Safety-
through most of the paths, but when oriented correctli?RM produces slightly higher clearance paths but more
it can pass through most of the passages with ease. importantly Safety-PRM often produces these paths at lower

« Big Arrow: The Big Arrow is a pyramid and will just cost. In sampling methods the number of Collision Detection
narrowly fit through many of the passages. calls is the primary factor in performance as most of the

« Linkage: The Linkage is a serial three link robot. Eachcomputational time is spent determining the collision estat
joint can be moved independently for a total of nineof a configuration. Table | for the Big Arrow robot at 500
degrees of freedom. nodes shows that Safety-PRM makex), fewer collision

The value ofy in Equation 3 determines the trade-offdetection (CD) calls than MAPRM. For the Big Arrow in

between short paths and paths with high clearance. Thi§€ narrow environment Safety-PRM makes at walsto
we will show experiments with varying. Each value ofy fewer CD calls and at best5% fewer CD calls. In this
is shown for 10 runs with 10 different random seeds. Th&nvironment Safety-PRM is able to produce a comparably
parameter used to identify neighbors in all environment8igh clearance path to MAPRM but at a cheaper cost. We
is fixed at A = 0.75. This value was emperically found @S0 show MAPRM run to completion in Table I, however,
to make well connected roadmaps At = 5, k being this is just shown for convenience. Our goal is to produce
the number of neighbors each node has. Safety-PRM wascheap reusable roadmap which well approximates the C-
implemented within the Parasol Motion Planning LibrarySpace of the inaccurately modeled environment, so we can
(PMPL) developed at Texas A&M University. Experimentsfind high expected clearance paths. Running MAPRM to
were run on a single core of an Intel 3.40 GHz CORE i7eompletion produces roadmaps which solve the query but are
2600 CPU and 8 GB of RAM. not necessarily general. For example, Table | shows MAPRM
In order to demonstrate modeling error, we chose to ug¥oducing at most 33 nodes for any robot environment
a simple error model in our simulations. Error is introduce@ombination.
into every collision detection test. The error is modeled as For the slightly more complex plank environment, Safety-
+ 5% of the maximum length of the robot to scale thePRM performs slightly worse than on the narrow environ-
problem with the robot. The error model we use most closelnent. In the plank environment for 100 nodes in Table |
matches a sensor that would produce uniform errors. Whiafety-PRM requires4% more CD calls than MAPRM.
this simplified model does not exactly match the error onelowever, for the rest of node values Safety-PRM does better
would see from sensed environments, it approximates thiean MAPRM. For more than 100 nodes Safety-PRM does at
error enough to demonstrate our approach. However, the ga@brst 18% fewer CD calls than MAPRM (500 nodes) and at
of Safety-PRM is to create a roadmap which can compensaiest40% fewer CD calls (2000 nodes). For the one instance
for many types of sensor error models. where Safety-PRM does worse this is due to MAPRM on
VI, RESULTS rigid bodies being able to use workspace clearance and
o ) ’ the fact that on 100 nodes MAPRM hd8% fewer edges
A. Rigid Bodies than Safety-PRM while for the other node values MAPRM

Path quality and performance are the two metrics whas betweer24% to 14% fewer edges. Furthermore, since

use to evaluate Safety-PRM. Path quality is determined BMAPRM is using this workspace clearance it is able to
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Fig. 4: Narrow Environment with the Big Arrow robot and 500 nodes. Taths have been normalized to the rangé0ofl] so that multiple runs can
be compared) is the start of the query whilé is the goal configuration of the query. The shaded regiongaie the standard deviation over 10 runs for
each experiment. For 4d and 4e Each Color indicates a diff@ah based on clearance. Red is the highest clearance mathlwe is the shortest path.
For MAPRM the shortest and highest clearance paths are shown

push nodes to the medial axis in a single step and thposition is relative to the first joint in the linkage. Thekage
environment essentially has three hallways thus favoringxperiments are run in the narrow and plank environments
MAPRM’s medial axis solution as the solution path lieswith the same starting position and goal position as thel rigi
along the medial axes of the hallways. Also, this is nobody experiments. The only exception is that the joints are
using inflated obstacles. If these were sensed obstackes, et to be slightly offset from straight.

standard way of using MAPRM would be to inflate the similar to the rigid bodies Safety-PRM produces com-
obstacle boundaries, however, doing so could potentiedig | parable if not better clearance paths than MAPRM. Figure
the narrow passageways. It is important to note that fodrigisa shows the clearances for Safety-PRM and 5b shows the
bodies and roadmaps greater than 500 nodes Safety-PRMgarances for MAPRM for a roadmap of 500 nodes. These

always cheaper than Uniform PRM. two graphs show that Safety-PRM produces paths that are
. comparable to MAPRM. However, Table | shows that Safety-
B. Linkages PRM makes betwee®5% to 98% fewer CD calls than

Now we increase the difficulty of the problem by movingMAPRM. Similarly, to demonstrgte the tunability Figure 5g
to linkage robots. In order for MAPRM to push accuratelyshows the path lengths for varyingvalues. Asy increases
it must use an approximate ray casting solution [31]. Ouhe path lengths become longer and Figure 5a shows that as
method does not need to use such a technique as we arécreases the path clearance become higher.
using a probabilistic encoding of the clearance. Figures 5d, 5e and 5f show the paths for Safety-
In this experiment, we use a 3 link planar robot. Each linlPRM, MAPRM and Uniform PRM. The MAPRM and
is connected via parallel revolute joints, to form a simpléJniform graphs show the shortest path and the highest
planar linkage. Thus, the robot has 9 Degrees of Freedowigarance path in the roadmap, while Safety-PRM shows
3 position, 3 orientation and 3 joint angles. Orientationl any = 0.6,0.7,0.8,0.9,1.0. These graphs show that Uniform



produces more angular paths than either MAPRM or Safetgtarting location for the node and the time it will take todlea
PRM. Similarly, it shows that the paths produced by Safetythe next node in the path. For this path the edge probabkilitie
PRM are comparable to the paths produced by MAPRMare [0.31, 0.33, 0.19, 0.62, 0.80]. Thus, Figure 6a has a move
however, at a cheaper computation cost. It is important tiime of 3.71 seconds to Figure 6b, which has move time of
note that while we show results for MAPRM to completion3.76 to Figure 6c. Figure 6g shows 6a to 6f labeled, which
we are not not simply trying to solve one query. We areorrespond to the nodes in the simulation path.
attempting to produce a cheap map with high expected clear-Another useful application of the Safety-PRM roadmap
ance, which approximates the C-space of the environmentamd the WAM is to utilize the torque estimation of the WAM
order to solve multiple queries in an inaccurate model of thi® refine the uncertain roadmap. The Safety-PRM method
environment. only produces expected clearance paths. Collision are stil
The rigid body and linkage experiments show that Safetypossible. As such we propose a method to dynamically
PRM is comparable to MAPRM and significantly cheapeupdate the roadmap if a collision occurs on the real hardware
than MAPRM in the linkage environments. However, unliken this experiment, the stiffness of the WAM is reduced
MAPRM and Uniform PRM, Safety-PRM is built to take to allow the WAM to safely bump into obstacles. Torque
inaccurate models into account. This means that given astimation is then used to determine when the WAM has
inaccurate model, Safety-PRM will produce cheap expectamllided with an obstacle and to immediately stop the arm
clearance paths better than MAPRM or Uniform PRM. Bottirom damaging itself. If the arm collides with an obstacle
Safety-PRM and MAPRM are more expensive than uniforrand sends a stop signal the algorithm knows the edge that is

but Safety-PRM provides higher quality paths. being traversed is actually in collision. This informatitn
. then used to remove the in collision edge from the roadmap.
C. Whole Arm Manipulator The WAM is backed up to the last known safe node in the

As a final test of Safety-PRM, we created a roadmap ifP2dmap and the path is replanned in the pruned roadmap.
simulation for the Barrett Whole Arm Manipulator (WAM) This allows for intelligent refinement of the roadmap given
and then used this roadmap to drive the actual WAM. Thi€ €xpected clearance of the Safety-PRM method. Figure 7
WAM is a 7 DoF serial link manipulator as seen in Figure 1Sh0Ws a sequence of this process. In this experimenty the
It is a cable driven system controlled with position encsderv@lue is set to 0.5, so that the planner will choose a short
and torque sensors. For the experiments in this paper, tpath which collides with the obstacle. Figure 7c is when the
WAM has been connected to a GE Intelligent PlatformyVAM collides with the obstacle and Figure 7d shows the
reflective memory network in a spoke design that allowd/AM backing up. The remaining figures show the replanned
multiple computers to share memory at speeds ranging froffute to the goal.
43 MB/s to 170 MB/s. The reflective memory network VIl. CONCLUSIONS
allows remote computers to handle the planning and learning '
processing, while leaving a small and fast computer onéboar We have shown that the Safety-PRM roadmap offers

the WAM to handle simple motion control. several advantages over basic PRM roadmaps for real robots.
Using Safety-PRM with the WAM we demonstrate theUsing Safety-PRM allows for cheap tunable roadmaps to
following capabilities: be produced for complex robots and environments. Safety-

RM is computationally cheaper than MAPRM and it allows
r inaccurate environment models without the need to scale
obstacles, but still provides high expected clearantiespa

« Cheap method of finding high expected clearance pat
« Flexible tunability of expected clearance and path lengt

» Direct encoding of robot speed for safety near 0bs'taclélﬁese advantages of Safety-PRM allow it to be used on real

based on expected clearance . o
. P ' robotic hardware as demonstrated by the WAM applications.
To validate Safety-PRM on real robots we first create

a simulation of the WAM environment and run Safety- VIIl. ACKNOWLEDGMENTS
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Fig. 6: Sequence of the WAM Path, The move time is determine@ by (1 + P(Edge))? where P(Edge) is the probability of an edge being in
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(a) Start (b) Step 1 (c) Step 2 (d) Step 3

Fig. 7: Sequence of WAM Path using torque sensing, 7c is where the Wallitles with the obstacle and replans the path. The WAM tietarns to
configuration 7b and follows the same path as in Figure 6d, 6e6an
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Safety-PRM MAPRM Uniform Random PRM

Robot Env Nodes Edges CD’s | Nodes Edges CD’s | Nodes Edges CD’s

Comp N/A N/7A 33 122.0 8,385.7 25 100.4 2,437.4

100 1,173.4 15,255.5| 100 435.6 27,758.7| 100 570.6 12,171.5
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