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Abstract— Probabilistic Roadmap Methods (PRMs) have
been shown to work well at solving high Degree of Freedom
(DoF) motion planning problems. They work by construct-
ing a roadmap that approximates the topology of collision-
free configuration space. However, this requires an accurate
model of the robot’s workspace in order to test if a sampled
configuration is in collision or not. In this paper, we present
a method for roadmap construction that can be used in
workspaces with uncertainty in the model. For example, these
can be inaccuracies that are caused by sensor error when
an environment model was constructed. The uncertainty is
encoded into the roadmap directly through the incorporation
of non-binary collision detection values, e.g., a probability
of collision. We refer to this new roadmap as a Safety-
PRM because it allows tunability between the expected safety
of the robot and the distance along a path. We compare
the computational cost of Safety-PRM against two planning
methods for environments without modeling errors, basic PRM
and Medial Axis PRM (MAPRM), known for low computational
cost and maximizing clearance, respectively. We demonstrate
that in most cases, Safety-PRM produces high quality paths
maximized for clearance and safety with the least amount
of computational cost. We show that these paths are tunable
for both robot safety and clearance. Finally, we demonstrate
the applicability of Safety-PRM on an experimental system, a
Barrett Whole Arm Manipulator (WAM). On the WAM, we
demonstrate the mapping of expected collision to robot speeds
to enable the robot to physically test the safety of the roadmap
and use torque estimation to make roadmap modifications.

I. I NTRODUCTION

The motion planning problem consists of finding a valid
(collision-free) path from a start state to a goal state. One
solution to this problem is to define a roadmap that captures
the topology of the collision-free portion of configuration
space. However, the complexity of the workspace and robot
can make this process challenging. Probabilistic Roadmap
Methods (PRMs) have addressed this challenge by construct-
ing a roadmap of randomly sampled robot configurations
and testing each configuration for collision [19]. Connec-
tions are made between two samples when a collision-
free transition can be made. These samples (vertices) and
connections (edges) define a roadmap that the robot can
safely traverse. Recently, PRMs have been extended to be
adaptable [25] [4]. These new methods can deform paths
[17], update roadmaps due to moving obstacles [14] [26],
map both collision and collision-free states [9], and deal with
uncertainty in the motion model [6] [2] [1] [24]. However,
despite all these advances, PRMs require that the model of
the problem must be accurate, e.g., there must be a clear
delineation between collision and collision-free states.Error-
prone collision detection can lead to erroneous roadmaps
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which produce feasible paths in the modeled environment
but lead to collisions in the actual world.

Fig. 1: Whole Arm Manipulator (WAM) feeling an obstacle boundary.

Distinguishing between collision and collision-free con-
figurations requires a model of the planning space. These
models are often manually constructed, have well defined
obstacle boundaries, and can be easily tested for robot-
obstacle collision. Advancing technologies are producing3D
environment models at lower costs than ever before [29].
These models are constructed using technology such as sen-
sors [29] and cameras [13]. However, all these technologies
are prone to modeling error. Therefore, unlike the manually
modeled environment, obstacle boundaries can be fuzzy or
approximated thus making collision tests error-prone.

In this paper, we introduce Safety-PRM that accounts
for modeling uncertainty in the roadmap. This new method
calculates and incorporates a probability of collision during
roadmap construction. These probabilities reflect the amount
of certainty in the collision-state of a node or edge in the
roadmap, thus allowing the robot to have an expectation of
safety from an obstacle’s surface. The certainty can also be
used to weigh roadmap edges, thus allowing robots to easily
transition between being safer (higher expected clearance) or
take shorter paths (lower regard to expected clearance).

We demonstrate the applicability of these new methods on
a series of environments with both rigid body and articulated
linkage robots. We show that in most rigid body cases and in
all linkage cases, Safety-PRM can generate roadmaps with
less computational cost than basic PRM and MAPRM. These
methods are known for their low computational cost and
clearance maximization, respectively.

Safety-PRM also is particularly relevant to experimental
robot systems. In this paper, we demonstrate Safety-PRM on
a Barrett Whole Arm Manipulator (WAM). In this experi-
ment, we show how expected safety can be mapped directly
to robot speed in order to allow the robot to manually test the
validity of configurations and then using torque estimation
make roadmap modifications.



II. PRELIMINARIES

We define arobot as a movable object whose possi-
ble states are encoded byn parameters, its DOFs, each
corresponding to an attribute of the object (e.g. position,
orientation) or object component (e.g. joint angle, link dis-
placement, component orientation). Theconfigurationof a
robot is a point(x1, x2, ..., xn) in a n dimensional space,
where xi is the ith DOF of the robot. This space, called
configuration space(Cspace), consists of all possible robot
configurations, regardless of the feasibility of the configu-
rations [21].Free Cspace (Cfree) is the subset of feasible
configurations in C-space, whileblockedCspace (Cobstacles)
is the subset of infeasible configurations. In this context the
MP problem is that of finding a series of continuous changes
to a robot’s DOFs that take it between initial and goal
configurations without ever enteringCobstacles. Although
computing explicitCobstacle boundaries is, in the general
case, an intractable problem, it is often possible to efficiently
determine if a configuration is feasible or not by performing
a collision detection(CD) test in the robot’s environment.

PRMs approach randomized motion planning by building
a graph in a subset ofCfree, the roadmap[19]. Roadmap
vertices are added duringnode generation, whereCspace is
sampled and collision-free configurations are inserted into
the roadmap. Duringnode connection, k neighboring nodes
selected by adistance metricare evaluated by a deterministic
local planner; if the local planner is successful, an edge
connecting the neighboring nodes is added to the roadmap.

III. R ELATED WORK

The work in this paper builds on the work of Clearance-
informed PRM methods, modifiable roadmaps and planning
with uncertainty in order to work in environments that have
been modeled with noisy sensors.

A. Modeling Environments With Sensors

Modeling an environment is one of the most challenging
tasks in robotics [29]. Some common technologies used
for modeling include: GPS, radar, laser, sonar and cameras.
However, every technology is subject to error, measurement
noise, which is not statistically independent and thus mod-
eling is subject to systematic correlated errors [29].

Two commonly used techniques are RGB-D mapping and
Laser range finders. RGB-D mapping uses a RGB camera
with distance values for every pixel in the image [13], [15],
[10], [28]. Either active stereo [20] or time of flight sensing
is used [4]. The measurement noise from models created
with RGB-D mapping varies depending on the method used
[13]. Laser range finders use lasers to scan and map an
environment. For example, [30] proposes a SLAM solution
for mapping and a probabilistic method for localization but
maps are subject to cumulative error. In other work, 2D laser
range finders are used to scan and map the environment [18].

B. Clearance-informed Roadmaps

Clearance-informed methods utilize obstacle information
to create high quality paths, more efficient sampling or to
handle moving obstacles. Obstacle surfaces are critical in
methods such as Obstacle Based PRM (OBPRM) [3] and
Medial Axis PRM (MAPRM) [31]. In OBPRM, configura-
tions are placed near the obstacle surfaces in order to traverse
narrow passages easier.In MAPRM, configurations are placed

on the medial axis ofCfree to increase clearance and visi-
bility. Here, random samples are generated and retracted to-
wards the medial axis.However, in both methods a complete
and accurate model of the environment is needed. Earlier
methods related to MAPRM such as Generalized Voronoi
Diagram and Hierarchical Generalized Voronoi Graph, were
restricted to workspace clearance [11] [7] [8].

PRMs have also been adapted to handle changes in the
environment due to moving obstacles. The work in [14]
expands PRMs to work under both kinodynamic constraints
and with moving obstacles. However, uncertainty is not
built into the roadmaps, directly. Sensing errors are handled
by growing the obstacles. The work in [26] also utilizes
PRMs with moving obstacles. In this method, a first-stage
approximate dynamic global roadmap about the connectivity
is maintained and a second-stage path is extracted from the
dynamic global roadmap to locally plan.

Toggle PRM [9] maps bothCfree andCobstacle. Similar to
our method, it does not throw out the in collision information,
however Toggle PRM usesCfree andCobstacle to aid sample
efficiency in narrow passages.

C. Modifiable Roadmap Methods

Modifying a roadmap is a means to construct tunable
roadmap paths, handle invalid paths and to accommodate
moving obstacles. One type of modifiable roadmap, [27],
constructs a coarse roadmap which is refined in the areas
of interest relative to a query. The approach generates an
approximate roadmap, postponing detailed validation until
query time where query preferences are applied to customize
the roadmap. [12] takes an initial roadmap and query solution
and adds nodes and edges to improve the query solution.

Deformable roadmaps such as [32] replan online paths by
using deformation to fix invalid parts of a path. If a portion of
a path is found to be in collision, the midpoint of the invalid
portion is pushed a specified distance away from the obstacle.
A similar approach in [17] looks at the path homotopy class,
which relies on the notion of path deformability. This method
only looks at homotopy classification and the possibility of
deforming a given path to fit another.

The approaches of [25] [4] address real-time obstacle
avoidance in dynamic environments. These methods start
with an initial path that is collision free and incrementally
modify the path to maintain a smooth, collision free path.
These methods only rely on workspace clearance by using
protective bubbles to deform the path.

D. Planning With Uncertainty

The two main types of uncertainty are model uncertainty
and motion uncertainty. [5] extends PRMs to work while
building a workspace model and is used to guide exploration
to areas that have not been sensed, but it does not deal
with measurement noise. [16] and [23] are concerned with
localization error of the robot. [22] is concerned with model
error, but it uses a probability of collision for rejection
sampling of nodes in the roadmap.Furthermore the method
is tailored to 2D environments where the model noise is
quantifiable. In [6], the general PRM and RRT method is
followed, however, the cost of connecting two vertices is
evaluated through Monte Carlo simulations to deal with
uncertainty. The work in [2] instead samples local motions
at each state to estimate the state transition probability for



each possible action. A roadmap and the state transition
probabilities are then used to formulate a Markov Decision
Process (MDP) which is then solved using Infinite Horizon
Dynamic Programming.

Motion uncertainty can also be handled by working in
belief space. In [1] the authors chose to model a 2D motion
planning problem as a Partially Observable Markov Decision
Process (POMDP). Belief space and POMDPs are also used
to solve the uncertainty problem in [24]. Here the belief
space is used to approximate the solution to the POMDP
on a 2D motion planning problem.

IV. M ETHODS

In order to handle environment models with inaccuracies,
the PRM method must be modified. In previous PRM work,
collision checking of the robot to the environment is often
done as a binary check (either free or in collision). In orderto
handle an environment with noise, a probability of collision
is stored with each configuration. These probabilities are also
used to guide connection and to find feasible paths. There-
fore, the Safety-PRM provides flexible methods for tuning
between planning goals (expected clearance and path length),
works on many robot types (rigid bodies and linkages), and
is inexpensive to compute.

A. Node Generation

The first step in PRM methods is generating a set of
samples that approximatesCfree. In an environment mod-
eled with noise, the boundary betweenCfree andCobstacle

is fuzzy. Thus, unlike a standard PRM method, we do not
discard nodes in collision. Rather, we associate a probability
of validity to each node that is dependent on its expected
distance from the obstacle surface. This ensures that not all
nodes are weighted with an equal measure of quality.

Pv(X) =
−1 ∗ atan(D(X)− 1) + π

2

π
(1)

A probability of collision is stored with each node based
on the amount of perceived clearance/penetration. The clear-
ance/penetration probability,Pv(X), of configuration X is
calculated in Equation 1.D(X) is the distance of config-
urationX to the nearest obstacle surface in the noisy model.
This is just one example to produce a collision probability
due to noisy obstacle boundaries. Theπ

2
shifts the equation

so that being close to the obstacle, but not necessarily in
collision, has a high collision probability. This provides
an extra buffer around obstacle surfaces and causes the
algorithm to favor higher clearance vertices. Figure 2 shows
a plot of the probability function defined in Equation 1.

Since the introduction of the first PRM method [19], there
have been many PRM variants introduced [3], [31]. Since
we are keeping and associating a probability to all samples,
we opted to generate configurations using a uniform random
distribution. This method is able to produce many samples
quickly at a low computational cost. However, many PRM
variants could be used for sample generation.

B. Node Connection

For each node in the map, we attempt to connect it
with its k nearest neighbors with a straight-line inCspace

(other methods could be used to define a local transition
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Fig. 2: Probability of a configuration being in collision based on the
clearance/penetration of the configuration. Based on Equation 1.

between two nodes). However, since the collision status of
the configuration is only partially known, the definition of
nearest neighbor considers the probability of collision. Thus,
we define a function that combines the neighbor’s probability
of collision and its distance. This causes the best candidate
neighbors to likely be free and proximal.

Equation 2 provides a calculation of the distance between
two configurations,ci and cj . In this equationλ is a
weighting term,ci is the vertex,Pv(cj) is the probability that
cj is in collision, anddist(ci, cj) is the Euclidean distance
of cj from vertexci. This metric will provide smaller scores
to neighbors which are close and have a low probability of
being in collision. Thek closest neighbors are then chosen
for connection.Pv(cj) is evaluated by using Equation 1
where the input to equation 1 is the clearance/penetration
of configurationcj .

d(ci, cj) = (λ)Pv(cj) + (1− λ)dist(ci, cj) (2)

In the results shown, edges are computed between neigh-
bors ci and cj by using a straight-line inCspace. The
weight for the edgeeij = (ci,cj) is a function of the
probability of collision, Pe(eij), and the length of an
edge. The probability of collision of an edge,Pe(eij), is a
function of the intermediate conformations along the edge
ci = c0, c1, c2, ..., cn−1, cn = cj , where the number of
intermediate conformations depends on the resolution, a
parameter of the method. In the results shown,Pe(eij) =
max(Pv(c0), Pv(c1), Pv(c2), ..., Pv(cn−1), Pv(cn)). Pv(ci)
is evaluated using Equation 1 where the input to the equation
is the clearance/penetration for eachci along the edge.

Weight(eij) = (γ)Pe(eij) + (1− γ)nlen(eij) (3)

Equation 3 shows the weight calculation for the edge,eij
from ci to cj . The γ value allows for customizable scaling
of clearance to edge length. This is particularly important
because modeling errors can be highly variable.nlen(eij) is
a normalized length of an edge. In the results shown, these
values are normalized by the maximum edge length in order
to provide intuitive scaling between probabilities of collision
and edge length.

Queries are then done using the standard Dijkstra’s algo-
rithm on the weighted roadmap. Since the roadmap edge
weights capture the uncertainty, Dijkstra’s algorithm will
choose paths with the least uncertainty to the goal.



V. EXPERIMENTS

We explore Safety-PRM with rigid body and articulated
linkage robots in two environments. Figure 3 depicts the
environments. In each environment the query is designed to
show the trade-off in paths with high collision-free probabil-
ity (clearance) versus path length by varyingγ in the edge
weighting function.

• Narrow: consists of an elongated environment with
three boxes dividing the space. The first and second
boxes produce a narrow corridor while the second and
third box produce a wide corridor. The query is built so
that the narrow corridor has a shorter path to the goal
but higher probability of being in collision, while the
wide corridor has a low probability of being in collision
but a longer path length.

• Plank: The plank environment has several long planks
running the same direction but with minor offsets in
their angles. This produces several narrow corridors
through which the robot must navigate length wise and
transverse across.

Each environment is run with three different rigid body
robots, however, results are only shown for one robot in each
environment. The results for each robot in each environment
are comparable. These robots are designed to have varying
difficulty for Safety-PRM, MAPRM and Uniform PRM.

• Stick: is a long thin object. Its long side is too long to fit
through most of the paths, but when oriented correctly
it can pass through most of the passages with ease.

• Big Arrow: The Big Arrow is a pyramid and will just
narrowly fit through many of the passages.

• Linkage: The Linkage is a serial three link robot. Each
joint can be moved independently for a total of nine
degrees of freedom.

The value ofγ in Equation 3 determines the trade-off
between short paths and paths with high clearance. Thus,
we will show experiments with varyingγ. Each value ofγ
is shown for 10 runs with 10 different random seeds. The
parameter used to identify neighbors in all environments
is fixed at λ = 0.75. This value was emperically found
to make well connected roadmaps atk = 5, k being
the number of neighbors each node has. Safety-PRM was
implemented within the Parasol Motion Planning Library
(PMPL) developed at Texas A&M University. Experiments
were run on a single core of an Intel 3.40 GHz CORE i7-
2600 CPU and 8 GB of RAM.

In order to demonstrate modeling error, we chose to use
a simple error model in our simulations. Error is introduced
into every collision detection test. The error is modeled as
± 5% of the maximum length of the robot to scale the
problem with the robot. The error model we use most closely
matches a sensor that would produce uniform errors. While
this simplified model does not exactly match the error one
would see from sensed environments, it approximates the
error enough to demonstrate our approach. However, the goal
of Safety-PRM is to create a roadmap which can compensate
for many types of sensor error models.

VI. RESULTS

A. Rigid Bodies

Path quality and performance are the two metrics we
use to evaluate Safety-PRM. Path quality is determined by

path length and clearance. Unfortunately, in certain planning
problems these two parameters can be at odds with each
other. Paths with high clearance can have longer path lengths
and short paths can have lower clearance because of the
obstacles in the environment. Performance is determined
primarily by execution time which is directly related to the
number of nodes, edges and collisions detection calls.

Figure 4a shows the path clearances forγ = [0, 1.0] with
a step size of 0.1 on a roadmap of 500 nodes. Figure 4f
shows the path lengths for the correspondingγ values. The
graphs indicate theγ values under 0.7 produce very poor
paths. However,γ values above 0.7 produce significantly
different paths. Figure 4d shows the Safety-PRM paths for
γ = 0.0, 0.6, 0.7, 0.8, 0.9, 1.0. Figures 4a and 4d directly
show the tunability asγ = 0.7 goes through the shortest
path and as theγ value increases beyond 0.7 the paths have
slightly higher clearance. Note that forγ > 0.7 all the paths
go through the higher clearance section of the environment.

However, the tunability is not the primary contribution
of this work. Primarily, we are concerned with an efficient
way to produce high clearance paths in an inaccurate model
cheaply. Figure 4e shows tunable MAPRM paths. This
graph shows the shortest path produced by MAPRM and
the highest clearance path for a roadmap of 500 nodes.
These paths are comparable to the paths produced by Safety-
PRM in figure 4d. In this particular experiment, Safety-
PRM produces slightly higher clearance paths but more
importantly Safety-PRM often produces these paths at lower
cost. In sampling methods the number of Collision Detection
calls is the primary factor in performance as most of the
computational time is spent determining the collision state
of a configuration. Table I for the Big Arrow robot at 500
nodes shows that Safety-PRM makes72% fewer collision
detection (CD) calls than MAPRM. For the Big Arrow in
the narrow environment Safety-PRM makes at worst45%
fewer CD calls and at best75% fewer CD calls. In this
environment Safety-PRM is able to produce a comparably
high clearance path to MAPRM but at a cheaper cost. We
also show MAPRM run to completion in Table I, however,
this is just shown for convenience. Our goal is to produce
a cheap reusable roadmap which well approximates the C-
Space of the inaccurately modeled environment, so we can
find high expected clearance paths. Running MAPRM to
completion produces roadmaps which solve the query but are
not necessarily general. For example, Table I shows MAPRM
producing at most 33 nodes for any robot environment
combination.

For the slightly more complex plank environment, Safety-
PRM performs slightly worse than on the narrow environ-
ment. In the plank environment for 100 nodes in Table I
Safety-PRM requires14% more CD calls than MAPRM.
However, for the rest of node values Safety-PRM does better
than MAPRM. For more than 100 nodes Safety-PRM does at
worst18% fewer CD calls than MAPRM (500 nodes) and at
best40% fewer CD calls (2000 nodes). For the one instance
where Safety-PRM does worse this is due to MAPRM on
rigid bodies being able to use workspace clearance and
the fact that on 100 nodes MAPRM has40% fewer edges
than Safety-PRM while for the other node values MAPRM
has between24% to 14% fewer edges. Furthermore, since
MAPRM is using this workspace clearance it is able to
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Fig. 3: Environments: (a) Narrow and (b) Plank and Robots (c) Stick, (d) Big Arrow, and (e) Linkage.
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(a) Safety-PRM Clearance
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Fig. 4: Narrow Environment with the Big Arrow robot and 500 nodes. Thepaths have been normalized to the range of[0, 1] so that multiple runs can
be compared.0 is the start of the query while1 is the goal configuration of the query. The shaded regions indicate the standard deviation over 10 runs for
each experiment. For 4d and 4e Each Color indicates a different path based on clearance. Red is the highest clearance path and blue is the shortest path.
For MAPRM the shortest and highest clearance paths are shown.

push nodes to the medial axis in a single step and this
environment essentially has three hallways thus favoring
MAPRM’s medial axis solution as the solution path lies
along the medial axes of the hallways. Also, this is not
using inflated obstacles. If these were sensed obstacles, the
standard way of using MAPRM would be to inflate the
obstacle boundaries, however, doing so could potentially lose
the narrow passageways. It is important to note that for rigid
bodies and roadmaps greater than 500 nodes Safety-PRM is
always cheaper than Uniform PRM.

B. Linkages

Now we increase the difficulty of the problem by moving
to linkage robots. In order for MAPRM to push accurately
it must use an approximate ray casting solution [31]. Our
method does not need to use such a technique as we are
using a probabilistic encoding of the clearance.

In this experiment, we use a 3 link planar robot. Each link
is connected via parallel revolute joints, to form a simple
planar linkage. Thus, the robot has 9 Degrees of Freedom,
3 position, 3 orientation and 3 joint angles. Orientation and

position is relative to the first joint in the linkage. The linkage
experiments are run in the narrow and plank environments
with the same starting position and goal position as the rigid
body experiments. The only exception is that the joints are
set to be slightly offset from straight.

Similar to the rigid bodies Safety-PRM produces com-
parable if not better clearance paths than MAPRM. Figure
5a shows the clearances for Safety-PRM and 5b shows the
clearances for MAPRM for a roadmap of 500 nodes. These
two graphs show that Safety-PRM produces paths that are
comparable to MAPRM. However, Table I shows that Safety-
PRM makes between95% to 98% fewer CD calls than
MAPRM. Similarly, to demonstrate the tunability Figure 5g
shows the path lengths for varyingγ values. Asγ increases
the path lengths become longer and Figure 5a shows that as
γ increases the path clearance become higher.

Figures 5d, 5e and 5f show the paths for Safety-
PRM, MAPRM and Uniform PRM. The MAPRM and
Uniform graphs show the shortest path and the highest
clearance path in the roadmap, while Safety-PRM shows
γ = 0.6, 0.7, 0.8, 0.9, 1.0. These graphs show that Uniform



produces more angular paths than either MAPRM or Safety-
PRM. Similarly, it shows that the paths produced by Safety-
PRM are comparable to the paths produced by MAPRM,
however, at a cheaper computation cost. It is important to
note that while we show results for MAPRM to completion
we are not not simply trying to solve one query. We are
attempting to produce a cheap map with high expected clear-
ance, which approximates the C-space of the environment in
order to solve multiple queries in an inaccurate model of the
environment.

The rigid body and linkage experiments show that Safety-
PRM is comparable to MAPRM and significantly cheaper
than MAPRM in the linkage environments. However, unlike
MAPRM and Uniform PRM, Safety-PRM is built to take
inaccurate models into account. This means that given an
inaccurate model, Safety-PRM will produce cheap expected
clearance paths better than MAPRM or Uniform PRM. Both
Safety-PRM and MAPRM are more expensive than uniform
but Safety-PRM provides higher quality paths.

C. Whole Arm Manipulator

As a final test of Safety-PRM, we created a roadmap in
simulation for the Barrett Whole Arm Manipulator (WAM)
and then used this roadmap to drive the actual WAM. The
WAM is a 7 DoF serial link manipulator as seen in Figure 1.
It is a cable driven system controlled with position encoders
and torque sensors. For the experiments in this paper, the
WAM has been connected to a GE Intelligent Platforms
reflective memory network in a spoke design that allows
multiple computers to share memory at speeds ranging from
43 MB/s to 170 MB/s. The reflective memory network
allows remote computers to handle the planning and learning
processing, while leaving a small and fast computer on-board
the WAM to handle simple motion control.

Using Safety-PRM with the WAM we demonstrate the
following capabilities:

• Cheap method of finding high expected clearance paths
• Flexible tunability of expected clearance and path length
• Direct encoding of robot speed for safety near obstacles

based on expected clearance
To validate Safety-PRM on real robots we first create

a simulation of the WAM environment and run Safety-
PRM. The roadmap and path produced in simulation is then
transferred to, and executed on the actual WAM hardware.
Figure 6g shows the WAM simulation path. There is a single
obstacle, a box, that the WAM must reach over. The path
chosen by Safety-PRM creates a high expected clearance
path despite requiring to navigate near the obstacle to reach
the goal. This roadmap and path were then transferred
to the actual WAM and used to navigate the WAM in a
similar query. The query is only similar because the box
is approximately placed in the same location as it is in
simulation. To increase the safety of the motion path we
use the clearance probability to determine the speed of the
robot. The speed of a move is determined in seconds by
2 + (1 + P (Edge))2 where P (Edge) is the probability
that an edge is in collision, however any function can be
used to determine the speed. The general form would be
c+f(P (Edge)) wherec is a constant andf is some function.
Figure 6 shows a snapshot sequence of the WAM executing
the path created in simulation. Each subfigure shows the

starting location for the node and the time it will take to reach
the next node in the path. For this path the edge probabilities
are [0.31, 0.33, 0.19, 0.62, 0.80]. Thus, Figure 6a has a move
time of 3.71 seconds to Figure 6b, which has move time of
3.76 to Figure 6c. Figure 6g shows 6a to 6f labeled, which
correspond to the nodes in the simulation path.

Another useful application of the Safety-PRM roadmap
and the WAM is to utilize the torque estimation of the WAM
to refine the uncertain roadmap. The Safety-PRM method
only produces expected clearance paths. Collision are still
possible. As such we propose a method to dynamically
update the roadmap if a collision occurs on the real hardware.
In this experiment, the stiffness of the WAM is reduced
to allow the WAM to safely bump into obstacles. Torque
estimation is then used to determine when the WAM has
collided with an obstacle and to immediately stop the arm
from damaging itself. If the arm collides with an obstacle
and sends a stop signal the algorithm knows the edge that is
being traversed is actually in collision. This informationis
then used to remove the in collision edge from the roadmap.
The WAM is backed up to the last known safe node in the
roadmap and the path is replanned in the pruned roadmap.
This allows for intelligent refinement of the roadmap given
the expected clearance of the Safety-PRM method. Figure 7
shows a sequence of this process. In this experiment, theγ
value is set to 0.5, so that the planner will choose a short
path which collides with the obstacle. Figure 7c is when the
WAM collides with the obstacle and Figure 7d shows the
WAM backing up. The remaining figures show the replanned
route to the goal.

VII. C ONCLUSIONS

We have shown that the Safety-PRM roadmap offers
several advantages over basic PRM roadmaps for real robots.
Using Safety-PRM allows for cheap tunable roadmaps to
be produced for complex robots and environments. Safety-
PRM is computationally cheaper than MAPRM and it allows
for inaccurate environment models without the need to scale
up obstacles, but still provides high expected clearance paths.
These advantages of Safety-PRM allow it to be used on real
robotic hardware as demonstrated by the WAM applications.

VIII. ACKNOWLEDGMENTS

This work was supported by Sandia National Laboratories
PO# 1074659. Tapia is supported in part by the National
Institutes of Health (NIH) Grant P20RR018754 to the Center
for Evolutionary and Theoretical Immunology.

REFERENCES

[1] AGHA-MOHAMMADI , A., CHAKRAVORTY, S., AND AMATO , N. On
the probabilistic completeness of the sampling-based feedback motion
planners in belief space. InRobotics and Automation (ICRA), 2012
IEEE International Conference on(2012), IEEE, pp. 3983–3990.
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