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Abstract—Up to 40% of the world’s population suffer from  resulting in the release of histamine and other allergipoase
allergies. A primary mediator for allergies is the aggregation mediators|[22]. The ability to predict the structures ofsee
of antigens and IgE antibodies bound to cell-surface receptors aggregates is key in determining how the spatial orgamizati

FceRI. Antibody/antigen aggregate formation causes stimulation f t | ffect t b . i
of mast cells and basophils, initiating cell degranulation and Of receptor complexes aniect transmembrane signaling.

resulting in the release of immune mediators which produce an ~ The geometric impacts of molecular aggregation have not
allergic or anaphylactic response. Understanding of the shape been well studied due to the fact that it is presently com-

and structure of aggregates can provide critical insights into putationally infeasible to model hundreds of large molesul
allergic response. However, due to the large size and number at an all-atom resolution. Methods such as ODEs or rule-

of molecules involved in aggregation, traditional techniques such b d deli imulate th fi d
as MD and coarse grained energetic models are computationally ased modeling can simulate the aggregation process, do

infeasible. Alternative methods such as ODEs and rule-based NOt provide any geometric details of aggregates. [5, 26]. To
models are able to simulate the process of aggregation, however,address this problem, we have previously presented methods

these methods exclude critical geometric details. _ in [14] to simulate and analyze receptor complex aggregatio
In our previous work, we presented methods to geometrically using polygon-based models. The geometric complexity is an

model, simulate and analyze antibody aggregation inspired by . .
rigid body robotic motion simulation. Our polygon-based models IMPortant feature of the molecular models. Lower complexit

of antibody-receptor complexes and antigens capture the 3-D translates into fewer polygon to polygon comparisons and
shape of molecular structures while reducing structural complex- faster run times. On the other hand, the reduction in gedenetr

ity. Due to our simulation techniques, the number of polygon detail impacts model realism. In this paper we explore the
interaction comparisons are directly impacted by geometric impacts model resolution has on our aggregation simulation

model complexity. This is similar to collision detection calls in Wi ¢ it thetic i d that h b
robotic motion planning, a primitive operation that has major € present resulls on one synthetic figan at has been

implications for run time. Recent advances in polygon reduction Studied experimentally and one natural allergen with some
techniques allows us to reduce the complexity of the models experimental analysis. These ligands greatly differ iresiz
involved in the simulation. However, reductions could translate structure and valency.

into qualitative changes in the molecules being simulated. In

this paper we analyze the impact of model resolution on our II. RELATED WORK

simulations of antibody aggregation. Our exploration is focused . L

on two antigens, a trivalent man-made antigen and a common  Design of Molecular Structures. Methods for designing
shrimp allergen. protein based assemblies come in two forms, stochastuglires

ing in irregular structures with probability-derived #ttrtes)
and deterministic (producing exactly specified geomeeit f
The ability to computationally design and predict largéures). Principles for the design of ordered protein assiemb
scale molecular structures and their components offer waysare discussed in_[12]. A majority of the computational desig
investigate nano-scale phenomena where experimental mettethods have focused on interface construction [7, 10], but
ods have difficulties. Methods developed to design moleculeewer methods go further and fully design self-assembling
focus on molecular cages and 2-D/3-D crystalline array$, [12nolecules |[11]. These methods are similar in that they gen-
whereas predicting large scale structures focus on prateinerally start out performing rigid body docking followed by
polymer aggregationl [2, 17]. Computational methods haverative design/minimization steps to refine the intezfac
been developed to design protein-protein interfaces [fa80 Molecular Aggregation Prediction. Many fields stand
well as self-assembling molecules [[11]. to benefit from the use of computational methods to deter
The human allergy immune response is caused by cell sunintended aggregation. Most of the methods developed use
face molecule aggregation. This immune responses is tedgelattice models with force fields and focus on the interaction
by a tyrosine kinase cascade initiated by the transmembrarigroteins with both denatured| [2] and native|[27] conforma
signalling caused by the crosslinking of IgEeRt (receptor tions. A coarse grained molecular dynamics based approach t
complexes) via antigen (ligand) binding. This crossligkinstudy polymer-drug aggregation was donelin [17]. We note all
stimulates mast cells and basophils and induces degramylatof these models have energetics included in their computati

I. INTRODUCTION



and would not be feasible to simulate a system of the size we
do.

IgE Aggregation Experiments. Studies using nanopatrticles
have shown ligand size and valency impact degranulation of
RBL mast cells |[8]. Spatiotemporal analysis of IgE aggre-
gation has been done using nanoscale imaging and motiol
tracking techniques. The locations of static gold nanagart
labeled IgE-FeRI have been imaged using transmission elec-
tron microscopy|[24]. Tracking of quantum dot labeled IgE-

FceRI has determined temporal information such as diffusioffig_ 2: The molecular structure of DF3 (tan), a synthetic

rates [1]. While_ these experimental methods_ have_bee_n a%%nd. The fibritin trimer has 3 DNP linkers (various colors
to measure attributes about receptor dynamics, neithainret

) _ e attached to the N-terminus of each subunit of the trimer.
information about the aggregate binding patterns. Becafise
this, distinguishing bound from simply proximal receptiss
challenging.

IgE Aggregation Models & Simulations. There have been

own generated models as well as contributed models. An all-
. . agtom structure of the receptor complex was used from [13].

many methods developed to model ligand-receptor interac- . ;

. " e IgE structure, composed of both heavy and light chains

tions. A majority of these methods focused on systems com-

prised of trivalent ligands and bivalent receptors. Onéahi are mode_led bound to the subunit .Of FGR.I' The r_eceptor
) oo .. complex is made up of 1,709 amino acids totaling 13,477
model was based on thermodynamic equilibrium, taking in
. . : atoms.
account interactions between free ligand and free receptor

and between crosslinking receptors via ligand [5]. An updat _ The Iigand DF3 Yvas genergtecé dt?y startingl.vY(ith the bhase
kinetics based version of this model was introduced_in [2 ritin trimer (PDB:1RFO) and adding DNP linkers to the

and was extended to consider steric constraints_in [16]. Siterrr!mus 92 the_tiai:r;ggntln SUbtu,?':' 2F3 'j (I:ort'npntsed fOf
Ligand Structure and Valency. There have been numerou amino acids wi ' atoms fotal. A model structure for

studies of natural allergens initiating degranulationeQhat Sﬁfnt 6}”1 Wg%z\éa':\?b(lje ;n#tzhge 4Str_:_1rc1:itur{a:l Dart:basi(ra] ?LAélelogv\(/anl
has been had particular interest is the common shrimp alterg oteins ( ode )- S ropomyos odel was

Pen a 1. The immune response to Pen a 1 is trigger%?mpose_d of 568 amino aC|ds_ totalling 4580 atoms.
by the shrimp tropomyosin molecule, a 40 nm coiled coil Since it would be computationally prohibitive to use these

structured, (Figur&l1), which crosslinks IgE. The allerges all-atom models at_the molecule coqnts we simulate, we
been predicted to have 5 binding regions| [19] and a total EtdUce the complexity of the model (Figdre 3). To construct
16-18 binding sites [g, 21]. our models, we begin with an all-atom structure. Using the

multiscale model extension of UCSF Chimera [4], we generate
isosurface models of the molecules at a variety of resaigfio
4A for DF3 and & for the receptor complex and Pen a 1. The
resulting model of the occupied volume, referred to hentiefo
20 as the base model, is considered to be the model with the
highest resolution, i.e., the most detailed model.
This base model can now be reduced in complexity using
standard polygon reduction techniques [3] Since the amount
Fig. 1: The molecular structure of Pen a 1, the common shrimp detail in the base model hinders performance, we want
allergen (tan). The binding sites (various colors) are tieta to observe the costs versus benefits of decreasing the model
in 5 regions on the coiled coil structure. resolution. We the polygon reduction algorithm in Maya
[15], a modeling software package, that allows the germrati

Alongside experimentation on natural antigen, synthetﬂf models with a specified reduction in the percentage of
ligands have been generated to provide insights into ayibd®°lygons.
aggregation[[18, 23, 25]. These synthetic ligands are gtime The ligand binding sites are unique to each ligand, and thus
with DNP, a linker used to bind to engineered antibodie§ad to be modeled accordingly. The model of DF3 with DNP
We explore the ligand DF3, a trivalent molecule with longinkers has very flexible binding sites [13]. The model has th

extended linkers protruding from the molecule (Figire 2). linkers compressed to half their length and has a bindirey sit
located at the end of the linker. We model a spherical binding

I1l. M ETHODS volume with a radius of half the DNP linker length (i\)Sthat
, is centered at the end of the compressed linker.
A. Model Construction The binding sites of Pen a 1 are located on its surface. The
Our method is based on simulating 3-D rigid body modelscation of binding sites were determined by surface amino
of the receptor complex and ligand molecules. We use oacids of the ligand epitopes [9]. Vertices located on thdaren




All Atorn [55-Stirface if and only if v; andv, are bound. Since ligands only bind to
receptors and vice versa, the graph is bipartite. Data aheut
overall aggregation process can be extracted from the graph

To gain further insights into the aggregate structures, we
take our modeled aggregate structures and generate aill-ato
structures. With these all-atom models we can take measure-
ments of the aggregate structure and analyze features of the
aggregate such as steric hindrance and can quantify model
construction quality.

IV. EXPERIMENTAL SETUP

We simulate a discrete patch of membrane 200 nm x 200
nm (40,000 nrR) with non-periodic boundaries. We simulate
24 receptors for all our experiment, resulting in a density
of ~600 receptorg/m? In two different experiments, we
simulate 12 DF3 and 1 Pen a 1 ligand molecules. We used the
diffusion constant 0.08m?/s of IgE-FeRI found in [1] for all
molecules. We use a time step of 46 and run experiments
500,000 time steps, long enough for the simulations to reach
a stable state. Association and disassociation rates of 1.0
and 0.01 s', from [25] were used for both ligands. As
aggregates get larger, they have been shown to slow down

lelg-létc?r-n -[:g dgsdggn%?gzgscsgl isrggsrizzesﬁgél? ;V:g tljgilll This is 'incorporated intp the simul'atio.n by diffgsing
- ’ . . ’ ggregates inversely proportional to their size. Rotatioh
applying polygon reductlon to the isosurface model to gateer large aggregates are limited by the diffusion rate of theefts

models with lower resolution. moving receptor of the aggregate. The receptor furthest fro
the center of the aggregate is limited by its diffusion canst

thus limiting the amount of rotation an aggregate can make.

of the gpitope; and on the exterior of the surfac-e were usd_ad Fimulation code was developed using the Parasol Motion
a binding radius of 8 was used. The same epitope Iocat'onﬁlanning Library (PMPL). Simulations were run on a super

were used regardless of the resolution since the locatiitig o computer housed at UNM utilizing single cores of Intel Xeon

binding sites on the original all-atom structure doesnarue. E5645 processors with 4 GB of ram per processor. Thirty (30)
B. Smulation Methods runs of each experiment were performed.

50% Reduced 75% Reduced 90% Reduced

As outlined in our previous publication [14], the simulatio V. RESULTS
begins with all molecules randomly placed on a grid in a )
collision free state with no molecules bound. At each time: Volume and Timing
step, every molecule gets an updated position and orientati We begin with analyzing the impact of polygon reduction
generated via random sampling. The updated positions amd the volume of the model. Tablé | shows the number of
orientations are generated with the consideration of biolopolygons and volume for each model. The polygon reduction
ical constraints, e.g., diffusion constants [1] and rotai algorithm works by specifying a percentage of the polygons
correlation times[[20]. Over the course of the simulation ® reduce, leading to the close correspondence between the
receptor binding site will end up within the binding volumeeduction percentage and the number of polygons. We find
of the ligand. The probability of a binding event occurrirsy ithat volumes decrease with increased reduction. Suchalaere
dependent on the association rates specified. Dissociaties is expected, and can be quite dramatic (nearly 50% for 90%
are specified as well, each bond at every time step is evdluateduced Pen a 1). We note that volume reduction does not
for dissociation. We note that DNP linkers have been watlecessarily mean less realistic results, “soft docking® ap
studied and have values for association/disassociatites.raproaches [6] allow a certain degree of inter-protein pextietn
These parameters are not known for Pen a 1, thus we can taoapproximate flexibility given rigid structures.
determine kinetics from our simulation, only possible pagk  As seen in Figure]4, the reduction in polygons has a

structures. clear effect on runtime. We see a linear increase in runtime
i vs. model polygon count. This is due in part to the nature
C. Aggregate Model and Analysis of the rigid body modeling, collision detection is a major

We define the state of the system as gréffi/, E} where factor in computation time and is highly dependent on model
V' is the set of molecules anf is the set of edges. Givencomplexity. We attribute binding site interaction caldida to
two vertices{v;, v} € V, an undirected edge{v;,v..} € E the difference in slope between the two lines.
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TABLE I: Model reduction statistics including polygon cdsn
and volumes of the molecular models generated at a variety a0l J
of resolutions.

N
@

Molecule Model Model Percent Reduction "
Name Property 0% 50% 75% 90% 320
Polygons (#) 4876 | 2438 | 1216 | 490 3
Receptor | Volume (nn?) | 234.98 | 227.90| 208.73| 162.31 5"
Volume (%) 100.00 | 96.99 | 88.83 | 69.07 10 ]
Polygons (#) 1208 604 302 120 [ B DF3 0% Redux |
DF3 Volume (nnt) 15.83 14.90 13.16 9.74 5 I DF3 50% Redux {
I DF3 75% Redux
Volume (%) 100.00| 94.13 | 83.13 | 61.53 I DF3 90% Redux
Polygons (#) 2328 1164 582 234 % 05 1 15 2 25 3 35 4 45 5
Penal Volume (nn?) 51.60 | 49.95 | 44.86 | 28.80 Time Steps 1
Volume (%) 100.00 | 96.80 | 86.94 | 55.81 Fig. 5: Thez-axis is simulation time step and theaxis is

the number of edges itr. DF3 connections do not seem to
be affected much by model resolution.
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T
——DF3
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Run Time (Hours)

Number of Edges

1 I Pen a 1 0% Redux -

. . . . . .
0 2 4 6 8 10 12 14
. P 150% Red!
Number of Polygons (Ligands + Receptors) x 10" 0 - P:: : y 75; R:d:i 1
o

. . . . I Pen a 1 90% Red
Fig. 4: Runtimes of the different resolutions of the same e
0 0.5 1 1.5 2 25 3 35 4 45 5

model. Thex-axis is the sum of the number of polygons used Time Steps 10°

to describe all of the models for any given experiment. Theig. 6: The z-axis is simulation time step and theaxis is

y-axis is the runtime in hours. the number of edges i&. Pen a 1 binding is affected by the
use of different resolutions, lower resolutions generateem
connections than higher resolutions.

B. Impact on Quality of Results

40

Simulations are run until a stable state is reached. Figure 5 B DF3 0% Redux
; [ DF3 50% Red
shows the number of edge.sdhfor DF3in bl.ue_. We see that 3s) I [ 3 757 Rodu |
for DF3, all of the reductions generate similar numbers of I DF3 90% Redux

w
=]

connections. The more reduced models produce slightly more
connections but all the values are very close. The mean of eac
reduction is contained in the overlap of the standard dieviat
of all reductions.

In Figure[® we see that Pen a 1 model resolution has more
of an impact on the number of connections that are made. The
90% reduced model made nearly 2 more connection than the

= n n
o =] o
T

Occurence (% of Aggregates)

o
T

unreduced model for a single ligand. This is one of the side s

effects of reducing model volume. With the reduction there

is more open volume around the binding site, reducing steric 0

hindrance of receptors trying to bind to sites in the same or Aggregate Size (# of Receptors)

adjacent regions. Fig. 7: Aggregate size vs. percentage of aggregates of that

To further analyze the implications of model reductiosize. The different resolutions do not affect the distiitutof

we plot a histogram of aggregate size versus percentageagfjyregate sizes for DF3.

occurrence. We see in Figuré 7 that there is minimal impact

on aggregate size distributions for the DF3 experiment. The

distribution for each model reduction seem to be the samedistribution has the two least reduced models peaking near
This is not the case for Pen a 1, seen in Figure 8. Thggregates of size 7 whereas the two most reduced models



peak near aggregates of size 8. This is attributed to theWe see that Pen a 1 model reduction generally has a higher
volume reduction of the model which in effect relaxes thpercentage of residues potential collision compared to DF3.
steric constraints. With a smaller volume, more free spaceTihis is attributed to the flexibility of the DF3 binding sitEhe
available for a molecule to pack into a tight space within BNP linker has a large, relatively open volume that can be
given aggregate. bound. The binding sites of Pen a 1 are smaller in volume since
they are on the molecular surface and are partially occupied
by the molecular volume. Therefore, the antibodies havesto b
closer to the allergen surface in Pen a 1.

We note that overall, the number of residuesputential
collision is minimal. Even at 90% reduced for the Pen a 1,
aggregates generated have about 0.2% of residuasténtial
collison. These interactions could be first addressed though
locally evaluated energetics and perturbations. An exampl
Pen a 1 all-atom aggregate is shown in Fiddre 9.
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Fig. 8: Aggregate size vs. percentage of aggregates ofiteat s
Aggregate size seems to be dependent on model resolutior =
lower resolution Pen a 1 models produce larger aggregates.

Finally, we investigate the impact of model reduction on

the aggregate structure. In order to evaluate this, after z?__g _ . .
gregates are constructed with low-resolution polygon rtipdeF9- 9: A resulting aggregate structure generated using our

we construct the corresponding all-atom structure. HowevE€thod. The 8 IgE-FI (light/medium blue) are bound to
since the polygon models are much simpler than the all atdhf Pen @ 1 ligand (tan) at various binding site on the antigen

structures, there may be unintended interactions. For pieam (Various colors)
when non-bonded atoms are too close, repulsion occurs due

to van der Waals interactions. In order to evaluate the ptessi

effects of transitioning between polygon and all-atom niede We investigated the impact of model resolution on sim-
we counted the number df,s and DNP linker carbon rings ulations of antibody aggregation. We generated models of
within 7A  for IgE-FceRI and DF3. For Pen a 1, distancedoth synthetic and natural allergens at a variety of resmiat
were calculated betweefl,,s for the aggregated moleculesand analyze the generated aggregates. We found that model
In order to indicate these proximal non-binding residues, weduction affects fundamental attributes such as the polyg
refer to them agotential collisions. Also, ligand binding site count, volume change, and simulation time in predictable
epitopes are not included in the enumeration. ways.

VI. CONCLUSION
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