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Abstract—Up to 40% of the world’s population suffer from
allergies. A primary mediator for allergies is the aggregation
of antigens and IgE antibodies bound to cell-surface receptors
FcǫRI. Antibody/antigen aggregate formation causes stimulation
of mast cells and basophils, initiating cell degranulation and
resulting in the release of immune mediators which produce an
allergic or anaphylactic response. Understanding of the shape
and structure of aggregates can provide critical insights into
allergic response. However, due to the large size and number
of molecules involved in aggregation, traditional techniques such
as MD and coarse grained energetic models are computationally
infeasible. Alternative methods such as ODEs and rule-based
models are able to simulate the process of aggregation, however,
these methods exclude critical geometric details.

In our previous work, we presented methods to geometrically
model, simulate and analyze antibody aggregation inspired by
rigid body robotic motion simulation. Our polygon-based models
of antibody-receptor complexes and antigens capture the 3-D
shape of molecular structures while reducing structural complex-
ity. Due to our simulation techniques, the number of polygon
interaction comparisons are directly impacted by geometric
model complexity. This is similar to collision detection calls in
robotic motion planning, a primitive operation that has major
implications for run time. Recent advances in polygon reduction
techniques allows us to reduce the complexity of the models
involved in the simulation. However, reductions could translate
into qualitative changes in the molecules being simulated. In
this paper we analyze the impact of model resolution on our
simulations of antibody aggregation. Our exploration is focused
on two antigens, a trivalent man-made antigen and a common
shrimp allergen.

I. I NTRODUCTION

The ability to computationally design and predict large
scale molecular structures and their components offer waysto
investigate nano-scale phenomena where experimental meth-
ods have difficulties. Methods developed to design molecules
focus on molecular cages and 2-D/3-D crystalline arrays [12],
whereas predicting large scale structures focus on proteinor
polymer aggregation [2, 17]. Computational methods have
been developed to design protein-protein interfaces [7, 10] as
well as self-assembling molecules [11].

The human allergy immune response is caused by cell sur-
face molecule aggregation. This immune responses is triggered
by a tyrosine kinase cascade initiated by the transmembrane
signalling caused by the crosslinking of IgE-FcǫRI (receptor
complexes) via antigen (ligand) binding. This crosslinking
stimulates mast cells and basophils and induces degranulation,

resulting in the release of histamine and other allergic response
mediators [22]. The ability to predict the structures of these
aggregates is key in determining how the spatial organization
of receptor complexes affect transmembrane signaling.

The geometric impacts of molecular aggregation have not
been well studied due to the fact that it is presently com-
putationally infeasible to model hundreds of large molecules
at an all-atom resolution. Methods such as ODEs or rule-
based modeling can simulate the aggregation process, do
not provide any geometric details of aggregates [5, 26]. To
address this problem, we have previously presented methods
in [14] to simulate and analyze receptor complex aggregation
using polygon-based models. The geometric complexity is an
important feature of the molecular models. Lower complexity
translates into fewer polygon to polygon comparisons and
faster run times. On the other hand, the reduction in geometric
detail impacts model realism. In this paper we explore the
impacts model resolution has on our aggregation simulation.
We present results on one synthetic ligand that has been
studied experimentally and one natural allergen with some
experimental analysis. These ligands greatly differ in size,
structure and valency.

II. RELATED WORK

Design of Molecular Structures. Methods for designing
protein based assemblies come in two forms, stochastic (result-
ing in irregular structures with probability-derived attributes)
and deterministic (producing exactly specified geometric fea-
tures). Principles for the design of ordered protein assemblies
are discussed in [12]. A majority of the computational design
methods have focused on interface construction [7, 10], but
newer methods go further and fully design self-assembling
molecules [11]. These methods are similar in that they gen-
erally start out performing rigid body docking followed by
iterative design/minimization steps to refine the interface.

Molecular Aggregation Prediction. Many fields stand
to benefit from the use of computational methods to deter
unintended aggregation. Most of the methods developed use
lattice models with force fields and focus on the interactions
of proteins with both denatured [2] and native [27] conforma-
tions. A coarse grained molecular dynamics based approach to
study polymer-drug aggregation was done in [17]. We note all
of these models have energetics included in their computation



and would not be feasible to simulate a system of the size we
do.

IgE Aggregation Experiments.Studies using nanoparticles
have shown ligand size and valency impact degranulation of
RBL mast cells [8]. Spatiotemporal analysis of IgE aggre-
gation has been done using nanoscale imaging and motion
tracking techniques. The locations of static gold nanoparticle
labeled IgE-FcǫRI have been imaged using transmission elec-
tron microscopy [24]. Tracking of quantum dot labeled IgE-
FcǫRI has determined temporal information such as diffusion
rates [1]. While these experimental methods have been able
to measure attributes about receptor dynamics, neither retain
information about the aggregate binding patterns. Becauseof
this, distinguishing bound from simply proximal receptorsis
challenging.

IgE Aggregation Models & Simulations. There have been
many methods developed to model ligand-receptor interac-
tions. A majority of these methods focused on systems com-
prised of trivalent ligands and bivalent receptors. One initial
model was based on thermodynamic equilibrium, taking into
account interactions between free ligand and free receptors
and between crosslinking receptors via ligand [5]. An updated
kinetics based version of this model was introduced in [26]
and was extended to consider steric constraints in [16].

Ligand Structure and Valency. There have been numerous
studies of natural allergens initiating degranulation. One that
has been had particular interest is the common shrimp allergen,
Pen a 1. The immune response to Pen a 1 is triggered
by the shrimp tropomyosin molecule, a 40 nm coiled coil
structured, (Figure 1), which crosslinks IgE. The allergenhas
been predicted to have 5 binding regions [19] and a total of
16-18 binding sites [9, 21].

Fig. 1: The molecular structure of Pen a 1, the common shrimp
allergen (tan). The binding sites (various colors) are located
in 5 regions on the coiled coil structure.

Alongside experimentation on natural antigen, synthetic
ligands have been generated to provide insights into antibody
aggregation [18, 23, 25]. These synthetic ligands are primed
with DNP, a linker used to bind to engineered antibodies.
We explore the ligand DF3, a trivalent molecule with long,
extended linkers protruding from the molecule (Figure 2).

III. M ETHODS

A. Model Construction

Our method is based on simulating 3-D rigid body models
of the receptor complex and ligand molecules. We use our

Fig. 2: The molecular structure of DF3 (tan), a synthetic
ligand. The fibritin trimer has 3 DNP linkers (various colors)
attached to the N-terminus of each subunit of the trimer.

own generated models as well as contributed models. An all-
atom structure of the receptor complex was used from [13].
The IgE structure, composed of both heavy and light chains
are modeled bound to theα subunit of FcǫRI. The receptor
complex is made up of 1,709 amino acids totaling 13,477
atoms.

The ligand DF3 was generated by starting with the base
fibritin trimer (PDB:1RFO) and adding DNP linkers to the
N-terminus of the each fibritin subunit. DF3 is comprised of
81 amino acids with 1,365 atoms total. A model structure for
Pen a 1 was available in the Structural Database of Allergenic
Proteins (SDAP Model #284). This tropomyosin model was
composed of 568 amino acids totalling 4,580 atoms.

Since it would be computationally prohibitive to use these
all-atom models at the molecule counts we simulate, we
reduce the complexity of the model (Figure 3). To construct
our models, we begin with an all-atom structure. Using the
multiscale model extension of UCSF Chimera [4], we generate
isosurface models of the molecules at a variety of resolutions,
4Å for DF3 and 6̊A for the receptor complex and Pen a 1. The
resulting model of the occupied volume, referred to henceforth
as the base model, is considered to be the model with the
highest resolution, i.e., the most detailed model.

This base model can now be reduced in complexity using
standard polygon reduction techniques [3] Since the amount
of detail in the base model hinders performance, we want
to observe the costs versus benefits of decreasing the model
resolution. We the polygon reduction algorithm in Maya
[15], a modeling software package, that allows the generation
of models with a specified reduction in the percentage of
polygons.

The ligand binding sites are unique to each ligand, and thus
had to be modeled accordingly. The model of DF3 with DNP
linkers has very flexible binding sites [13]. The model has the
linkers compressed to half their length and has a binding site
located at the end of the linker. We model a spherical binding
volume with a radius of half the DNP linker length (7.5Å) that
is centered at the end of the compressed linker.

The binding sites of Pen a 1 are located on its surface. The
location of binding sites were determined by surface amino
acids of the ligand epitopes [9]. Vertices located on the center



Fig. 3: The model construction process starting with an
all-atom models, generating the isosurface model, and then
applying polygon reduction to the isosurface model to generate
models with lower resolution.

of the epitopes and on the exterior of the surface were used and
a binding radius of 3̊A was used. The same epitope locations
were used regardless of the resolution since the locations of the
binding sites on the original all-atom structure doesn’t change.

B. Simulation Methods

As outlined in our previous publication [14], the simulation
begins with all molecules randomly placed on a grid in a
collision free state with no molecules bound. At each time
step, every molecule gets an updated position and orientation
generated via random sampling. The updated positions and
orientations are generated with the consideration of biolog-
ical constraints, e.g., diffusion constants [1] and rotational
correlation times [20]. Over the course of the simulation a
receptor binding site will end up within the binding volume
of the ligand. The probability of a binding event occurring is
dependent on the association rates specified. Dissociationrates
are specified as well, each bond at every time step is evaluated
for dissociation. We note that DNP linkers have been well
studied and have values for association/disassociation rates.
These parameters are not known for Pen a 1, thus we can not
determine kinetics from our simulation, only possible packing
structures.

C. Aggregate Model and Analysis

We define the state of the system as graphG{V,E} where
V is the set of molecules andE is the set of edges. Given
two vertices{vl, vr} ∈ V , an undirected edgee{vl, vr} ∈ E

if and only if vl andvr are bound. Since ligands only bind to
receptors and vice versa, the graph is bipartite. Data aboutthe
overall aggregation process can be extracted from the graph.

To gain further insights into the aggregate structures, we
take our modeled aggregate structures and generate all-atom
structures. With these all-atom models we can take measure-
ments of the aggregate structure and analyze features of the
aggregate such as steric hindrance and can quantify model
construction quality.

IV. EXPERIMENTAL SETUP

We simulate a discrete patch of membrane 200 nm x 200
nm (40,000 nm2) with non-periodic boundaries. We simulate
24 receptors for all our experiment, resulting in a density
of ∼600 receptors/µm2 In two different experiments, we
simulate 12 DF3 and 1 Pen a 1 ligand molecules. We used the
diffusion constant 0.09µm2/s of IgE-FcǫRI found in [1] for all
molecules. We use a time step of 10µs and run experiments
500,000 time steps, long enough for the simulations to reach
a stable state. Association and disassociation rates of 1.0
and 0.01 s−1, from [25] were used for both ligands. As
aggregates get larger, they have been shown to slow down
[1]. This is incorporated into the simulation by diffusing
aggregates inversely proportional to their size. Rotations of
large aggregates are limited by the diffusion rate of the fastest
moving receptor of the aggregate. The receptor furthest from
the center of the aggregate is limited by its diffusion constant,
thus limiting the amount of rotation an aggregate can make.
Simulation code was developed using the Parasol Motion
Planning Library (PMPL). Simulations were run on a super
computer housed at UNM utilizing single cores of Intel Xeon
E5645 processors with 4 GB of ram per processor. Thirty (30)
runs of each experiment were performed.

V. RESULTS

A. Volume and Timing

We begin with analyzing the impact of polygon reduction
on the volume of the model. Table I shows the number of
polygons and volume for each model. The polygon reduction
algorithm works by specifying a percentage of the polygons
to reduce, leading to the close correspondence between the
reduction percentage and the number of polygons. We find
that volumes decrease with increased reduction. Such decrease
is expected, and can be quite dramatic (nearly 50% for 90%
reduced Pen a 1). We note that volume reduction does not
necessarily mean less realistic results, “soft docking” ap-
proaches [6] allow a certain degree of inter-protein penetration
to approximate flexibility given rigid structures.

As seen in Figure 4, the reduction in polygons has a
clear effect on runtime. We see a linear increase in runtime
vs. model polygon count. This is due in part to the nature
of the rigid body modeling, collision detection is a major
factor in computation time and is highly dependent on model
complexity. We attribute binding site interaction calculation to
the difference in slope between the two lines.



TABLE I: Model reduction statistics including polygon counts
and volumes of the molecular models generated at a variety
of resolutions.

Molecule Model Model Percent Reduction
Name Property 0% 50% 75% 90%

Receptor
Polygons (#) 4876 2438 1216 490
Volume (nm2) 234.98 227.90 208.73 162.31
Volume (%) 100.00 96.99 88.83 69.07

DF3
Polygons (#) 1208 604 302 120
Volume (nm2) 15.83 14.90 13.16 9.74
Volume (%) 100.00 94.13 83.13 61.53

Pen a 1
Polygons (#) 2328 1164 582 234
Volume (nm2) 51.60 49.95 44.86 28.80
Volume (%) 100.00 96.80 86.94 55.81
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Fig. 4: Runtimes of the different resolutions of the same
model. Thex-axis is the sum of the number of polygons used
to describe all of the models for any given experiment. The
y-axis is the runtime in hours.

B. Impact on Quality of Results

Simulations are run until a stable state is reached. Figure 5
shows the number of edges inG for DF3 in blue. We see that
for DF3, all of the reductions generate similar numbers of
connections. The more reduced models produce slightly more
connections but all the values are very close. The mean of each
reduction is contained in the overlap of the standard deviation
of all reductions.

In Figure 6 we see that Pen a 1 model resolution has more
of an impact on the number of connections that are made. The
90% reduced model made nearly 2 more connection than the
unreduced model for a single ligand. This is one of the side
effects of reducing model volume. With the reduction there
is more open volume around the binding site, reducing steric
hindrance of receptors trying to bind to sites in the same or
adjacent regions.

To further analyze the implications of model reduction
we plot a histogram of aggregate size versus percentage of
occurrence. We see in Figure 7 that there is minimal impact
on aggregate size distributions for the DF3 experiment. The
distribution for each model reduction seem to be the same.

This is not the case for Pen a 1, seen in Figure 8. The

Fig. 5: Thex-axis is simulation time step and they-axis is
the number of edges inG. DF3 connections do not seem to
be affected much by model resolution.

Fig. 6: Thex-axis is simulation time step and they-axis is
the number of edges inG. Pen a 1 binding is affected by the
use of different resolutions, lower resolutions generate more
connections than higher resolutions.
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Fig. 7: Aggregate size vs. percentage of aggregates of that
size. The different resolutions do not affect the distribution of
aggregate sizes for DF3.

distribution has the two least reduced models peaking near
aggregates of size 7 whereas the two most reduced models



peak near aggregates of size 8. This is attributed to the
volume reduction of the model which in effect relaxes the
steric constraints. With a smaller volume, more free space is
available for a molecule to pack into a tight space within a
given aggregate.
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Fig. 8: Aggregate size vs. percentage of aggregates of that size.
Aggregate size seems to be dependent on model resolution,
lower resolution Pen a 1 models produce larger aggregates.

Finally, we investigate the impact of model reduction on
the aggregate structure. In order to evaluate this, after ag-
gregates are constructed with low-resolution polygon models,
we construct the corresponding all-atom structure. However,
since the polygon models are much simpler than the all atom
structures, there may be unintended interactions. For example,
when non-bonded atoms are too close, repulsion occurs due
to van der Waals interactions. In order to evaluate the possible
effects of transitioning between polygon and all-atom models,
we counted the number ofCαs and DNP linker carbon rings
within 7Å for IgE-FcǫRI and DF3. For Pen a 1, distances
were calculated betweenCαs for the aggregated molecules.
In order to indicate these proximal non-binding residues, we
refer to them aspotential collisions. Also, ligand binding site
epitopes are not included in the enumeration.

TABLE II: Percentage (%) of residues that exhibit apotential
collision. Ligand residues involved in binding are not included.

Ligand Model Percent Reduction
Simulated 0% 50% 75% 90%

DF3 0.0074 0.0122 0.0215 0.1016

Pen a 1 0.0158 0.0350 0.0816 0.2238

We can see from the results in Table II that model resolution
does have an impact on the number ofpotential collisions
that exist in aggregate structures.Potential collision residues
increase as resolution decreases. We see that DF3 is not signif-
icantly impacted by model resolution up to 50%. However, at
90% there is a relatively large increase inpotential collisions.
This trend exists for Pen a 1 as well, however, it is not as
pronounced.

We see that Pen a 1 model reduction generally has a higher
percentage of residues inpotential collision compared to DF3.
This is attributed to the flexibility of the DF3 binding site.The
DNP linker has a large, relatively open volume that can be
bound. The binding sites of Pen a 1 are smaller in volume since
they are on the molecular surface and are partially occupied
by the molecular volume. Therefore, the antibodies have to be
closer to the allergen surface in Pen a 1.

We note that overall, the number of residues inpotential
collision is minimal. Even at 90% reduced for the Pen a 1,
aggregates generated have about 0.2% of residues inpotential
collision. These interactions could be first addressed though
locally evaluated energetics and perturbations. An example
Pen a 1 all-atom aggregate is shown in Figure 9.

Fig. 9: A resulting aggregate structure generated using our
method. The 8 IgE-FcǫRI (light/medium blue) are bound to
the Pen a 1 ligand (tan) at various binding site on the antigen
(various colors)

VI. CONCLUSION

We investigated the impact of model resolution on sim-
ulations of antibody aggregation. We generated models of
both synthetic and natural allergens at a variety of resolutions
and analyze the generated aggregates. We found that model
reduction affects fundamental attributes such as the polygon
count, volume change, and simulation time in predictable
ways.
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