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Abstract— Identifying collision-free paths over long time
windows in environments with stochastically moving obstacles
is difficult, in part because long-term predictions of obstacle
positions typically have low fidelity, and the region of possible
obstacle occupancy is typically large. As a result, planning
methods that are restricted to identifying paths with a low prob-
ability of collision may not be able to find a valid path. However,
allowing paths with a higher probability of collision may limit
detection of imminent collisions. In this paper, we present
Dynamic Risk Tolerance (DRT), a framework that dynamically
evaluates risk tolerance, a function which is formulated as
a time-varying upper bound on the acceptable likelihood of
collision for a given path. DRT is implemented with forward
stochastic reachable sets to predict the exact distribution of
obstacles in a scalable manner over an arbitrarily long time
window. In effect, DRT identifies actions that balance risks
posed by both near and far obstacles. We empirically compare
DRT to other state of the art methods that are capable of
generating real-time solutions in highly crowded environments,
and demonstrate the success rates for DRT that is 46% higher
than the best performing comparison method, even in the most
difficult problem tested.

I. INTRODUCTION

Navigation in crowded environments with dynamic,
stochastic obstacles is a challenging problem in a variety of
domains including robotics (swarms, micro-robotics, UAVs)
and transportation systems (air traffic control, intelligent
highways, autonomous vehicles in pedestrian-heavy environ-
ments). Obvious challenges include the density of obstacles,
their dynamic movement, and the inherent uncertainty associ-
ated with any prediction of obstacle position. Over long time
windows, the variance of the likelihood of obstacle position
typically grows so large that vast regions have non-trivial
likelihood, and the distribution can become uniform. Such
uncertainty impairs existing planning methods, which rely
on a static upper bound for risk tolerance, the acceptable
likelihood of collision over a given path. Hence real-time
solutions are required that can manage both the need for
immediate, evasive actions as well as the need for long-term
planning.

The notion of risk tolerance was originally posed in
stochastic optimal control problems to navigate in uncertain
but static environments [16]. However, in dynamic envi-
ronments, a constant-valued risk tolerance is detrimental: a
low risk tolerance means that while imminent collisions will
be avoided, a path that is deemed feasible over the entire
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Fig. 1: The robot (red asterisk) must navigate from S to G without
colliding with 20 stochastically moving dynamic obstacles (yellow).
(a) RRT (blue) employed by SES [8], a method with no dynamic
risk tolerance, with 100,000 iterations. The tree accepts a node only
if the probability of collision is less than 0.01. (b) Our method,
DRT (blue), a Multi-Stage Risk Tolerating tree, with 25,000 total
RRT iterations. The tree in (b) explores more area and can therefore
extract longer paths (green curve) by considering risk tolerance that
varies over the path.

time window is extremely unlikely in crowded environments;
conversely, a high risk tolerance means that while feasible
paths will be returned, immediate evasive maneuvers may
not be taken. We propose a solution for uncertain, dynamic
environments that is based on dynamically adjusting the risk
tolerance. Intuitively, risk tolerance should be low in the
short-term to avoid imminent collisions, and high in the
long-term to generate feasible paths. Our proposed solution
dynamically adjusts risk tolerance to meet both short-term
and long-term objectives.

We present Dynamic Risk Tolerance (DRT), a framework
that dynamically evaluates risk tolerance, a function which is
formulated as a time-varying upper bound on the acceptable
likelihood of collision for a given path. DRT is demonstrated
with offline-computed forward stochastic reachable sets to
predict the exact distribution of obstacles in a scalable
manner over an arbitrarily long time window. In effect, DRT
is capable of identifying a path in real-time that balance
risks posed by both near and far obstacles. We empirically
compare DRT to other state of the art methods that are
capable of generating real-time solutions in highly crowded
environments, and demonstrate a success rate for DRT that
is 46% higher than the best performing state of the art
comparison methods even in the most difficult problem
tested. The enclosed video demonstrates the comparison
between methods.



II. RELATED WORK

Many collision avoidance problems in aerospace and au-
tomotive applications [27], [23], [11], [15], [5] have been
handled through backward reachable sets and exploit the
relatively low dimensionality of the state-space. These ap-
proaches consider an optimal control framework, in which
the worst-case realization of the obstacle (or disturbance)
is presumed, and provide strict assurances of safety. Other
approaches use forward reachable sets (whose formal rela-
tionship to backwards reachable sets is described in [28]) for
obstacle avoidance in robotics [31], [10], [2], [22], automo-
tive applications [2], and UAVs [22]. These methods are often
based on an approach used by the robust control community
[26], [3], [21] to evaluate the maximum set of states that the
system can achieve in the presence of bounded disturbances.
The resulting controllers often create very conservative so-
lutions, particularly when the disturbance variance is large,
and can lead to infeasible solutions for longer prediction
horizons.

A variety of planning methods have been posed to prevent
collisions in stochastic, dynamic environments. Researchers
have incorporated velocity obstacles [13], the set of possible
robot velocities that lead to collision, into planning methods
that handle obstacles following an arbitrary trajectory [19]
and stochastically moving obstacles [4]. However, computing
the velocity obstacle online is prohibitively expensive for
obstacles with complex geometry or stochastic dynamics.
Our previous work [6], [7] used a backwards stochastic
reachable set, computed for pairwise collisions only, to bias
the repulsive potential in an artificial potential field-based
method. However, the union of pairwise-computed back-
wards stochastic reachable sets can only provide an under-
approximation of the likelihood of collision in environments
with more than a single obstacle, and direct computation of
the backwards reachable set for more than a single obstacle
is prohibitively expensive. Stochastic Ensemble Simulation
(SES) [8] attempts to circumvent this issue through a tree-
based planner that uses of an offline or online [9] Monte
Carlo simulation to find collision free paths. However, pre-
dicted collisions limit the algorithm’s ability to find long-
term paths in crowded environments. The resulting segments
of short-term paths often leads the robot to an Inevitable
Collision States (ICS) [14].

Several methods attempt to balance risks posed by both
near and far obstacles. The method proposed in [1] considers
possible future measurement results of obstacle location
and the ability of the robot to replan. A directed roadmap
weighted by the probability of collision considering the
future measurements is constructed by sampling the com-
pound probability distribution of obstacles at every time step.
This method provides a point-based POMDP-like approach
to exploit replanning and future predictions of obstacles
[18]. The computation cost however, is exponential in the
horizon of the compound probability distribution sampling
and therefore it can be difficult to generate a long term path.
Another method, [12], also leverages the fact that the robot

can replan in the future and considers collision avoidance
at the expected obstacle locations in the predicted horizon.
This allows the planner to utilize long term predictions that
may be critical to planning success. However, if the obstacle
motion is highly stochastic, the assumption that the obstacle
will end up at the average location has a high chance of
leading the robot into an ICS.

III. PREDICTIONS AND DYNAMIC RISK TOLERANCE

We first present a method for computing a prediction
distribution for a stochastically moving obstacle. While this
can be done with several techniques, we demonstrate a
method for exactly predicting the future position distribution
of moving obstacles by using Forward Stochastic Reachable
(FSR) sets. Then, we pose an optimization problem for
collision avoidance with a dynamic risk tolerance.

A. Forward Stochastic Reachable Sets
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Fig. 2: Comparison between FSR obstacle prediction at various
times in the future (a-c) and Monte Carlo predictions (d-f) with 500
particles. Computing the FSR took 2.91s. Monte Carlo predictions
are accomplished as described in [8], and took 0.30s. A diamond
shaped obstacle (described in Section V) is traveling to the right
linearly with stochastic speed. As time progresses ((b-c) and (e-f)),
the obstacle occupancy distribution (shown as a heat map) spreads
for both the FSR and Monte Carlo predictions, respectively.

We consider obstacles with stochastic dynamics that are
time-invariant and possibly nonlinear,

xot+1 = fo(xot , w
o
t ) (1)



with state xot ∈ Rn, disturbance wot ∈ W , an i.i.d. discrete
random variable with a finite sample spaceW and probability
mass function p(w), and initial state xo0, without loss of
generality.

We compute the Forward Stochastic Reach (FSR) set and
the forward stochastic density function for a specific obstacle
and a known time window T . The FSR set Reach(t, I) ⊆
Rn characterizes the states that the obstacle could reach
at time instant t with non-zero probability when xo0 ∈ I,
a Borel set of Rn, such that I ∈ B(Rn). For a given
initial set I ∈ B(Rn) and a time instant t ∈ {1, 2, . . . , T},
we define the forward stochastic density function, F :
{0, 1, . . . , T} × B(Rn) × Rn → [0, 1], recursively. With
P
{
xot = z

∣∣xot−1 = y
}

as the probability that the obstacle is
at location z at time t, conditioned on the obstacle’s location
at time instant t− 1, we have

F(t, I, z) = P {xot = z|xo0 ∈ I} (2a)

=
∑

y∈Reach(t−1,I)

P
{
xot = z

∣∣xot−1 = y
}
F(t− 1, I, y)

=
∑

y∈Reach(t−1,I)

P {w |z = fo(y, w)}F(t− 1, I, y)

=
∑

y∈Reach(t−1,I)

∑
v∈{w |z=fo(y,w)}

p(v)F(t− 1, I, y) (2b)

Reach(t, I) = {z ∈ Rn|F(t, I, z) > 0} (2c)

with F(0, I, z) = 1, z ∈ I, and Reach(0, I) = I.
To compute the FSR sets, because the distribution is a

probability mass function, we use a brute-force approach and
discretize the state space with 0.05m resolution and propa-
gate the probability values of each point in the set forward in
time. More efficient computational methods can be exploited
for certain classes of dynamics and distributions. For a 6m
wide diamond shaped obstacle moving in a straight line with
stochastic speeds, Figures 2(a), (b), and (c) show the FSR
set and corresponding probability distribution at times 0s,
10s, and 20s, respectively. For comparison, Figures 2 (d),
(e), and (f) show 500 particle predictions using Monte Carlo
where the obstacle occupancy distribution is mapped onto a
discretized workspace with the same resolution as FSR. Our
proposed method, DRT planning, is general and can also use
these approximate predictions.

To consider M moving obstacles, let Fi(t, xoi , ·) and
Reachi(t, xoi ) denote the probability density and the FSR set
associated with the ith obstacle when starting from xoi ∈ Rn
at time t. Defining Ei = {z ∈ Reachi(t, xoi )} as the event
of a state z lying in the set Reachi(t, xoi ), the probability
of collision, that is, the probability that any one of the M
obstacles occupies location z at time t ∈ {0, 1, . . . , T} is

G(t, z) = P(∪Mi=1Ei). (3)

Since the obstacles dynamics are independent, exact compu-
tation of (3) is possible via the inclusion-exclusion principle.
However to improve computational time, we approximate (3)

to second order.

G(t, z) ≈
M∑
i=1

Fi(t, xoi , z)−
M∑

i=1,i6=j

Fi(t, xoi , z)Fj(t, xoj , z)

(4)

B. Dynamic Risk Tolerance

We presume the robot dynamics are given by

xRt+1 = fR(xRt , ut), (5)

with state xRt ∈ Rnr and control input ut ∈ U ⊆ Rpr . For a
path defined as a sequence of states {xR0 , xR1 , . . . , xRT } ∈
(Rnr )

T+1 to avoid collision with obstacles with a time-
varying likelihood Paccept(t; τ), we require 1) G(t, xRt ) ≤
Paccept(t; τ),∀t = {0, 1, . . . , T − 1}, and 2) that the terminal
state lies in the goal set, xRT ∈ Xgoal.

This problem can be mathematically formulated as
Problem 1 (Dynamic risk tolerance problem):

min
ū∈UT−1

T (6)

subj. to

 xRT ∈ Xgoal
xRt+1 = fR(xRt , ut), t ∈ {0, 1, · · · , , T − 1}

G(t, xRt ) ≤ Paccept(t; τ), t ∈ {0, 1, · · · , T − 1}
(7)

where Paccept(t; τ) =

{
P const

accept if t ≤ τ
α(t) if t > τ

.

The objective is to reach the goal Xgoal in minimum
time T with control input ū = [u1, u2, ..uT ], such that the
probability of collision of each node xRt is always less than
Paccept(t; τ). Constraints arise due to robot dynamics and
due to tolerance Paccept(t; τ) for risk. The optimal solution
to Problem 1 is a path that minimizes time to reach while
satisfying the constraints.

For Paccept(t; τ) = P const
accept, Problem 1 reduces to a straight-

forward (static) risk tolerance, typically chosen a priori to
balance conflicting needs: short-term path safety requires
low P const

accept, but feasibility of paths in the long-term requires
high P const

accept, especially in the presence of a large number
of stochastically moving obstacles. In contrast, the DRT
function Paccept(t; τ) provides high likelihoods of collision
avoidance in the short-term, but also to provide flexibility
needed to find a feasible path over a longer horizon. That is,
using the DRT function as the path acceptance threshold 1)
enables the evaluation of longer paths, 2) maintains safety of
the path in the short-term, and 3) avoids overly conservative
solutions which limit path feasibility.

We propose several heuristic solutions for the choice of
Paccept(t; τ) that use readily available domain knowledge, and
investigate the value of τ and the form of the function α(t).

IV. METHODS

A. Dynamic Risk Tolerance Function

We consider two classes of functions α(t) to describe the
dynamic risk tolerance function Paccept(t; τ), as shown in
Figure 3. While many possibilities exist, we select α(t) that
are constructed with easily obtainable domain knowledge.
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Fig. 3: (a) To heuristically determine a threshold at which no
path will be feasible, we consider the area of possible occupancy
of the obstacles in the environment without knowledge of their
position. The upper limit on the normalized area occupied by 15
or 20 stochastically moving obstacles is shown, with a prediction
of occupancy higher than P const

accept = 0.01. For any time t ≥ Tfull,
any path will eventually have a collision with probability greater
than this limit. (b) Possible dynamic α(t) functions: step (blue) and
exponential eσ(t−τ), σ ∈ {1e−3, 1, 1e2}) (red, orange, and purple,
respectively). Also shown is a constant valued α(t) (green). Domain
specific properties, such obstacle density ρ and Tfull, characterize
Paccept(t; τ). For the environment shown in Figure 1, we select
τ = 3s, P const

accept = 0.01, ρ = 0.17, and Tfull = 8.8s in the above.

We first identify the time τ to transition to dynamic risk
tolerance. Consider the following scenario. We define the
area an obstacle occupies with probability greater than some
value P const

accept ∈ (0, 1] as A(t;P const
accept). If there are Nobs

dynamic obstacles in the environment, the total area occupied
by the obstacles, with probability greater than P const

accept, is no
greater than NobsA(t;P const

accept). As an example, Figure 3(a)
shows NobsA(t;P const

accept), normalized by environment size,
for various values of Nobs with P const

accept = 0.01. In this
plot, NobsA(t;P const

accept) exceeds the environment area at 8.8
seconds with Nobs = 15, and at 4.2 seconds with Nobs = 20.
We define the time instant when NobsA(t;P const

accept) is equal
to the area of the environment as Tfull. For t ≥ Tfull, any
path will eventually have a collision probability greater than
P const

accept.
Therefore, for t ≥ Tfull, we define an upper bound ρ which

is the ratio of NobsA(0;P const
accept) to the total environment area.

Essentially, we set the acceptable probability of collision to

Algorithm 1 growMultiStageTreeAndGetPath

Input: Precomputed FSR, Robot current state xR, time Tfull,
current position of M obstacles xo = [xo1, ..., x

o
M ]

Output: [P , pathState]

/* τ -STAGE */
1: T = growInitialTree(xR, FSR, maxIterTau, xo)
2: if goal reaching nodes exist then
3: return [goal reaching path, INIT GOAL REACHED]
4: else

/* DRT STAGE */
5: T = growRiskToleratingTree(xR, FSR, Tfull,
maxIterRisk, xo)

6: [P , pathState] = getRiskToleratingPath(T )
7: if pathState == RISK TOLERATING then
8: return [P , RISK TOLERATING]
9: else

/* EMERGENCY STAGE */
10: T = growEmergencyTree(xR, FSR,

maxIterEmrg, xo)
11: return [P , EMERGENCY] = getEmergencyPath(T )
12: end if
13: end if

the portion of area actually occupied by the obstacles. Note
that ρ and Tfull can be computed numerically from analysis
of predictions, i.e., FSR sets, offline.

The function α(t) that describes Paccept(t; τ) for τ <
t < Tfull can be any function that satisfies the boundary
conditions. The best choice for α(t) may depend on problem
specific properties, such as obstacle uncertainty growth rates
(Figure 3(a)). We consider two classes of dynamic risk
tolerance functions, shown in Figure 3(b): a step function
1(t−τ) and an exponential function eσ(t−τ) with σ = 0.001
(similar to a linear function), σ = 1, and σ = 100. For
comparison, a constant-valued function (Constant) is also
shown.

B. Multi-Stage Risk Tolerating Tree

Once the dynamic risk tolerance function is selected, a
Multi-Stage Risk Tolerating tree is grown (Algorithm 1)
in two stages, representing 1) Paccept(t ≤ τ ; τ) and 2)
Paccept(t > τ ; τ). A final stage is used when a path is not
found from the first two stages. This is an emergency stage
where any probability of collision is allowed for tree growth.

First, to find paths that ensure short-term path safety,
the τ -stage, with Paccept(t ≤ τ ; τ) = P const

accept, grows a tree
with time step Tstep in which all nodes in the tree have
a low probability of collision (line 1, Algorithm 1). Since
time of each node in the tree corresponds to a particular
FSR set, Reach(t, ·), the probability of collision can be
evaluated for each node by simply querying the occupancy
probability G(t, x), as in (4). Any efficient tree-based planner
can be used to grow a tree from the robot’s current position,
where standard collision checking is replaced by querying



the probability of collision from the FSR sets. (We used RRT
[20] in this paper.) To ensure short-term path safety, the τ -
stage tree adds a tentative node if the probability of collision
is less than P const

accept. The tree building terminates if a path
that reaches the goal exists or when the number of iterations
reaches maxIterTau. Note that given a large maxIterTau,
the tree grown in the τ -stage explores all possible state-time
regions connected to the root with probability of collision
≤ P const

accept. Therefore, τ (the maximum time at which the
probability of collision is ≤ P const

accept for all nodes) can be
defined for each leaf node of this tree. Algorithm 1 returns
either the goal reaching path (line 3) or continues to the DRT
stage.

The DRT stage, with Paccept(τ < t < Tfull; τ) or Paccept(t ≥
Tfull; τ), uses the DRT function Paccept(t; τ) (Figure 3) to
find longer-term paths. In this stage, a risk tolerating tree
is grown from the leaves of the tree grown in the τ -stage
(GrowRiskToleratingTree, line 5). This tree utilizes the DRT
function as the risk constraint. It adds a tentative node if the
probability of collision is less than Paccept(t; τ), allowing the
tree to explore regions with higher probability of collision.
An example of this combined tree is shown in Figure 1(b). As
compared to the tree grown in the τ -stage (e.g., Figure 1(a)),
this tree explores a larger area thus enabling the extraction
of long-term paths.

A path is extracted (line 6) by choosing the end node
in this combined tree, which is at least minPathT imeRT
seconds away from the root. This ensures the path is a long-
term path. The extracted path minimizes maxCollProb + ε
distToGoal, where maxCollProb is the maximum probabil-
ity of collision of all nodes along the path and ε is a small
greediness parameter that biases the extracted path to have
low probability of collision and assures progression towards
the goal. We use maxCollProb instead of the accumulative
probability of collision [17] since it is independent to the
path step size Tstep, i.e., it remains constant instead of
approaching 1 as Tstep → 0.

If no path is found in the DRT stage, the algorithm
enters the emergency stage, in which an emergency tree is
grown on the previous tree (growEmergencyTree function,
line 10). This tree adds tentative nodes with any probability
of collision. A path that is at least minPathT imeEMRG

seconds long and minimizes maxCollProb is extracted
(getEmergencyPath, line 11).

The paths extracted from the Multi-Stage Risk Tolerating
tree have the following properties. 1) Since the DRT stage
is only triggered if a path cannot be identified with proba-
bility of collision less than P const

accept, the resulting path avoids
taking unnecessary risk and minimizes short-term collision
probability. 2) The DRT function facilitates identification of a
long-term path that balances progression toward the goal and
probability of collision, thus reducing the chance of guiding
the robot into an ICS.

C. DRT planning

The proposed motion planning framework, DRT planning
is shown in Algorithm 2. DRT planning integrates Algorithm

Algorithm 2 DRT planning

Input: Precomputed FSR, Robot current state xR, Tfull,
World simulation Time Step ∆sim, max world simula-
tion time maxTime

1: reGrowTree = true;
2: xo = observeObstacles()
3: for t = 0; t < maxTime; t = t+ ∆sim do
4: if reGrowTree == true then
5: [Pcurrent, pathState] =

growMultiStageTreeAndGetPath(xR, xo)
6: reGrowTree = false;
7: end if
8: xR = xR + ∆sim· getAction(Pcurrent)
9: [reGrowTree, xo] =

observeObstaclesAndCheckPath(P , xR, t)
10: if t - lastGrowTrial >= TrialTreePeriod && re-

GrowTree == false then
11: lastGrowTree = t;
12: [Ptrial, pathStatetrial] =

growMultiStageTreeAndGetPath(xR, xo)
13: Pcurrent = chooseBetterPath(Pcurrent, Ptrial,

pathState, pathStatetrial)
14: end if
15: end for

1 and a set of replanning criteria, in order to identify paths
and to utilize new obstacle observations and predictions.

First, a Multi-Stage Risk Tolerating tree (Algorithm 1) is
grown and a path is extracted (Algorithm 2, line 5) after
observing the current position of all obstacles (line 2). The
robot then executes the path Pcurrent (line 8). Every time
the robot reaches a node, the robot observes the obstacles
and decides to find a new path (line 9, reGrowTree is set to
true if a new path is required) if 1) the path has been fully
executed, or 2) any node along the path in the near future
has a probability of collision greater than P const

accept (within
checkPathLength seconds from the current instant).

In order to incorporate new obstacle observations and
prediction, every few seconds (TrialTreePeriod), a trial
path Ptrial is extracted by growing another Multi-Stage Risk
Tolerating tree (line 12). The trial path is constructed based
on the new obstacle observation and is compared with the
current path Pcurrent.

The trial path will replace the current path if it is expected
to have a lower probability of collision along the path (line
13). This can happen if the trial path: is extracted from an
earlier stage of the Multi-Stage Risk Tolerating tree, has
a higher amount of time left to reach the last node with
probability of collision lower than P const

accept (DRT stage), or
has a smaller maxCollProb (Emergency stage).

Note that DRT planning differs from the receding horizon
control formalism [25] as the trial paths are identified every
trialTreePeriod (instead of every time step) and paths are
not replaced unless they have lower collision probability



(instead of constant replacement). This is important since
tree-based methods operate stochastically and different paths
maybe returned for different runs.

V. RESULTS AND DISCUSSION

We conducted experiments in a 40m by 40m environment
(Figure 1(c)) with 5 to 20 fast moving obstacles. The
obbstacles could have any convex geometry; we arbitrarily
chose a 6m wide diamond shape to demonstrate our method’s
ability to handle obstacles with a convex, non-circular shape,
which is known to be difficult for velocity obstacle based
planners [30]. The obstacles are positioned randomly in the
environment at the start time. We presume that the obstacles
follow the stochastic dynamics (1) with fo(xk, wk) = xk +[
wk ψwk

]T · ∆sim, with constant heading ψ ∈ R and
stochastic speed wk ∈ W = {0.15, 0.90, 2.10, 3.00} m/s
with probability p(w) = {0.4, 0.1, 0.1, 0.4}, and obstacles
can vary speed every 1s. The bimodal distribution and large
speed differences of obstacle motion greatly increases the
difficulty of planning, since the future position of obstacles is
highly unpredictable. To maintain constant obstacle density,
if the obstacle’s center of mass hits a boundary, the obstacle
is transported to the antipodal boundary with unchanged
velocity. The holonomic point robot travels at a maximum
speed of 1 m/s, 64% of the average speed of the obstacles
and three times slower than any obstacle’s maximum speed.
Although the number of obstacles is much lower than com-
pared to [6] and [8], the obstacles can travel much faster than
the robot. In addition, the obstacles occupy a large portion
of the planning domain (up to 23% in the 20 obstacle case
as compared to 11% in the densest obstacle scenario in [8]).

Our proposed method shares some parameters with other
tree-based methods such as SES. We empirically deter-
mined these parameters for SES and applied them to DRT
planning: Tree and FSR time resolution (Tstep = 0.2s),
greediness parameter (ε = 0.01), planning time horizon
(Thorizon=20s), P const

accept = 0.01 and checkPathHorizon =
2s. Parameters exclusive to our method are: Maximum RRT
iterations (maxIterTau = 10000, maxIterRisk = 10000,
maxIterEmrg = 5000), minimum risk tolerating path time
(minPathT imeRT = 8s) and minimum emergency path
time (minPathT imeEMRG = 5s). Lastly, the world sim-
ulation resolution ∆sim is set to 0.01s.

The FSR set offline computation was implemented in
MATLAB and all planning methods were implemented in
C++. All experiments were repeated 100 times and ran on a
single core of an Intel i7-3720QM at 2.6GHz with 16GB of
RAM. Uncertainty in success rates due the limited number
of experiments is captured using the 99% confidence level
derived from the central limit theorem while the variation in
finish time is depicted by standard deviation.

A. Comparison to Existing Methods

Our first experiment is designed to compare our method
with Stochastic Ensemble Simulation (SES) [8], Gaussian
Artificial Potential Field (Gaussian) [24], Artificial Potential

Fields biased by Stochastic Reachable sets (APF-SR) [6],
and Velocity Obstacles (VO) [30].

We empirically determined the parameters that yield the
highest navigation success rates for the comparison methods.
SES uses the same parameters as the proposed method except
for maxCD = 25000 (maximum number of RRT iterations),
which is set to the same value as the total RRT iterations
used in our proposed method. The Gaussian method uses
N (0,3) as the repulsive potential. APF-SR has a goal bias
(relative strength weight between the attractive potential and
repulsive potential) of 0.01. VO was adapted from the RVO2
C++ code base implementation of the Optimal Reciprocal
Collision Avoidance (ORCA) algorithm [29] to allow for
single-agent collision avoidance, removing the reciprocal
aspect of ORCA while maintaining many of ORCA’s linear
programming optimizations.
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Fig. 4: Success rates and finish times in environments with 5–20
stochastically moving obstacles. The finish time of Gaussian APF
method is omitted for 15 and 20 obstacles since it failed to reach
the goal. Averages are taken over collision-free (successful) runs.

Figure 4 shows that DRT planning has a 73% higher
success rate while the best performing comparison method
only has a 27% success rates in the crowded 20 obstacles
environment. All methods, except Gaussian, perform well
in the low obstacle density environments. SES performs
well in medium obstacle density environments (10 and 15)
compared to VO, APF-SR, and Gaussian, since it predicts the
future position of obstacles with Monte Carlo simulations,
much more accurately than a constant velocity approximation
employed by VO, or the repulsive potential biased by SR
sets computed for one obstacle used by APF-SR. However,
in the most crowded environment (20 obstacles), SES also
performs poorly, due primarily to the RRT online planner
failing to find long-term paths and thus reaching ICS.

DRT planning has a computation time per planning step
that is similar to SES and much slower than reactive methods
(APF-SR, Gaussian, VO) (Table I). However, DRT finds
paths with higher success rates and remains real-time capable
(3.6ms per planning step) in the most crowded environment.

B. Impact of Prediction Quality

This experiment compares the obstacle prediction from
FSR sets with those from Monte Carlo (MC) within DRT
planning. The MC prediction has the same time resolution
(Tstep) as FSR and uses 500 and 10000 particles, respec-
tively. The remaining parameters are those used previously.



Number of obstacles DRT planning SES APF-SR Gaussian VO
5 3.7±1.3 1.7±1.2 0.016±.006 0.008±.005 0.006±.004

10 3.1±0.9 2.1±1.6 0.028±.009 0.016±.012 0.022±.015
15 3.2±0.8 2.9±2.3 0.034±.011 0.032±.019 0.017±.010
20 3.6±1.0 5.3±4.8 0.046±.016 0.027±.017 0.027±.017

TABLE I: Average computation time per planning step (milliseconds).
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Fig. 5: Success rates and finish times using FSR and MC prediction
with 500 particles and 10000 particles to predict future obstacle
occupancy within DRT planning.

Figure 5(a) shows that, as expected, FSR has success
rates consistently higher than MC predictions. In addition,
MC simulations with low number of particles (MC 500)
perform worse than ones with higher number of particles
(MC 10000). Similarly with finish time (Figure 5(b)); lower
finish times are associated with more accurate predictions,
since unexpected obstacle motions cause the robot to replan.

This result demonstrates the impact of accurate predictions
of obstacle’s future position distribution on planning success.
While FSR gives the exact position distribution and therefore
is a valuable tool for planning, approximate predictions, such
as MC approaches, can be applied as well.

C. Impact of Dynamic Risk Tolerance Heuristic

This experiment compares the performance of the various
DRT functions proposed in Section IV-A with constant risk
tolerance (Paccept(t, τ) = P const

accept). Note that the emergency
tree (Algorithm 2, line 13) can still grow in all cases.
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Fig. 6: Comparison of planning success rates and computation
time using constant, step, and exponential functions (as defined in
Section IV-A) with various values σ.

Figure 6(a) shows all DRT functions have higher success
rates than a constant risk tolerance in the crowded envi-
ronments when Tfull is less than Thorizon. In this case, we
evaluated Thorizon = 20s with Tfull taking on values greater

P const
accept Success rates (DRT) Success rates (SES)
0 89±8% 50% ± 13%

0.01 83±10% 65% ± 12%
0.05 73±11% 63% ± 12%

TABLE II: Performance comparison between various P const
accept. The

environment has 15 stochastically moving obstacles.

than 20, 20, 8.8, and 4.2s for environments with 5, 10, 15,
and 20 obstacles, respectively. The best performing linear
DRT function (σ = 0.001) has a success rate up to 30%
higher than that with a constant risk tolerance, in the 20
obstacle environment. This suggests DRT is important to
planning success in crowded environments, since it uses long
term predictions to identify paths that avoid an ICS.

Amongst DRT functions, the exponential that is almost
linear (with σ=0.001) has the highest success rates, especially
in crowded environments. This is likely due to the fact that
the position uncertainty of our obstacle dynamics also grows
roughly linearly with time (Figure 3(a)). Therefore, a linear-
like function may balance between short term path safety
and risk tolerance in order to plan a long term path.

Figure 6(b) indicates that a function that accepts risks
early on (like the step function) has the highest computation
time, likely due to an increase of replanning, since the path
has a higher probability of collision and replanning is often
required due to a potential collision is detected in the future
(Algorithm 2, line 9).

D. Parameter Sensitivity Analysis

We conducted parameter sensitivity analysis on P const
accept, the

maximum probability of collision for t = [0, τ ] for a node
to be accepted in the tree, and for Tstep, the time resolution
in RRT. The environment has 15 dynamic obstacles.

A low value for P const
accept is often required to avoid short-term

imminent collision, however, without DRT, this also hinders
the planner’s ability to find a long-term solution in order to
avoid ICS. This tradeoff is reflected in Table II: the success
rates of SES are highest at P const

accept = 0.01. In contrast, the
success rates of DRT planning increase as P const

accept decreases,
with P const

accept = 0 yielding the highest success rates. This
suggests that the DRT bypasses the dilemma, resulting in
much higher success rates (34% higher) and does not require
the user to manually adjust P const

accept.
Table III shows that success rate increases as Tstep de-

creases. This is consistent with our observation that many
collisions occur between nodes. Recall that DRT planning
only evaluates the probability of collision at nodes of the
Multi-Stage Risk Tolerating tree. A Multi-Stage Risk Toler-
ating tree with higher time resolution (lower Tstep) reduces



Tstep (s) Success rates Finish Time (s)
0.1 90±8% 79±40
0.2 83±10% 65±30
0.4 77±11% 64±25

TABLE III: Comparison of success rate and finish time for values
of Tstep. The environment has 15 stochastically moving obstacles.

the probability of collisions occurring between nodes, hence
producing a higher success rate.

VI. CONCLUSION

We presented a framework for dynamic risk tolerance,
based in dynamical systems and stochastic reachability. This
framework is shown implemented in DRT planning that
provides a time-varying bound on the acceptable likelihood
of collision for a given path. We showed DRT planning with
both exact predictions of obstacle locations through FSR sets
and approximate predictions. Our experiments demonstrate a
46% higher success rate than the best performing comparison
methods even in the most crowded environment tested.
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