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Abstract—One of the primary challenges for autonomous
robotics in uncertain and dynamic environments is planning
and executing a collision free path. Hybrid dynamic obstacles
present an even greater challenge as the obstacles can change
dynamics without warning and potentially invalidate paths.
Artificial Potential Field (APF) based techniques have shown
great promise in successful path planning in highly dynamic
environments due to their low cost at runtime. We utilize the
APF framework for runtime planning but leverage a formal
validation method, Stochastic Reachable (SR) sets, to generate
accurate potential fields for moving obstacles. A small number of
SR sets are computed a priori, then used to generate a potential
field which represents the obstacle’s stochastic motion for online
path planning. Our method is novel and scales well with the
number of obstacles, maintaining a relatively high probability
of reaching the goal without collision, as compared to other
traditional Gaussian APF methods. Here, we demonstrate our
method with up to 900 hybrid dynamic obstacles and show that
it outperforms the traditional Gaussian APF method by up to
60% in the holonomic case and up to 20% in the unicycle case.

I. INTRODUCTION

Navigation in dynamic, uncertain environments is a diffi-
cult yet ubiquitous problem in transportation systems (e.g.,
autonomous driving, shipping lanes near ports, air traffic
management) and distributed robotic systems (vehicle swarms
in air, ground, or water environments), with application to
problems in search and rescue, coordinated movement, dis-
tributed monitoring and surveillance, and others. We consider
the problem of motion planning in environments with hundreds
of stochastic, dynamic obstacles, in which the obstacles can
arbitrarily switch between trajectories that follow a constant
radius arc or a straight line, with stochastic angular or transla-
tional speeds, respectively. This kind of switching is a realistic
abstraction of planar vehicle dynamics, and is commonly used
in models of multivehicle conflict resolution [63], [64], [7],
[54], [20], aircraft target tracking [30], [8], [47], and in other
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applications [18] which require mathematically tractable yet
realistic models of complex behavior.

While motion planning algorithms are highly effective in
static environments and can be adapted for moving obsta-
cles with easily predictable trajectories, effective solutions
in environments that are both dynamic and stochastic are
elusive. Common approaches to solving the motion planning
problem for dynamic obstacles include Artificial Potential
Field (APF) methods [26], [11], [35], [38], tree based planners
[40], [49], Probabilistic Roadmap Methods (PRMs) [43], [67],
[57], [32], and several variants which use heuristics [3], [10].
APF methods create a potential landscape and use gradient
descent for navigation, plan locally, and can be dynamically
reactive to unexpected obstacles. These methods generate an
artificial potential in the robot’s workspace, which repels the
robot from obstacles and attracts the robot to the goal [34].
Recent work has extended the capabilities of APF methods
by addressing several known limitations, e.g., traps due to
local minima and difficulty with narrow passages [26], [19].
Some work has been done to extend APFs to moving obstacles
[38], by considering the trajectories of the obstacles. However,
methodological approaches that address obstacles that are both
stochastic and dynamic are lacking.

While control theoretic methods have been developed to
provide mathematical assurances of safety despite stochas-
ticity in low dimensional systems, they are computationally
infeasible when the environment has tens to hundreds of
dynamic obstacles. Stochastic reachability analysis provides
offline verification of dynamical systems to assess whether
the state of the system will, with a certain likelihood, remain
within a desired subset of the state-space for some finite
time, or avoid an undesired subset of the state-space [2].
To solve problems in collision avoidance, the region in the
relative state-space, which constitutes collision, is defined as
the set of states the system should avoid [60], [33], and those
configurations which will lead to collision with a given likeli-
hood are described by the Stochastic Reachable set (SR set).
Unfortunately, the computation time for SR sets is exponential
in the dimension of the continuous state, hence assessment
of collision probabilities with many simultaneously moving
obstacles is not feasible.

We propose a solution that combines ad-hoc and formal
methods, to incorporate the effect of likely obstacle motion
into the desired path, and exploit computationally efficient
paradigms that can be used in real time. Our method weights
an artificial potential field with stochastic reachable sets,
computed pairwise between the robot and each stochastic,
dynamic obstacle. Computational efficiency is achieved by
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pre-computing the SR sets offline for a finite set of obstacle
types, then querying those sets at run-time to construct a
repulsive potential field around each obstacle.

Preliminary versions of this method were implemented via
roadmap methods for dynamic path queries (SR-Query) [43]
and APF with SR sets (APF-SR) for stochastic obstacles that
followed simple line or arc trajectories [13] (but did not switch
between these trajectories). SR-Query was more successful
in identifying collision-free paths in environments with 50
moving obstacles than a roadmap-based approach that simply
pruned invalid edges during dynamic path queries [32], but
was susceptible to fast unseen moving obstacles, due to limited
reactivity and required navigation on the roadmap edges.
In [13], we demonstrated the advantages of APF methods
over roadmap-based methods in environments with up to 300
stochastic, dynamic obstacles. We also evaluated the improved
performance of incorporating SR sets with APF methods, as
opposed to ad-hoc methods [38], [66], [27] for computing
repulsion fields.

In this paper, our main contributions are to a) extend
APF-SR to accommodate stochastic hybrid obstacles, which
are more realistic and capture behavior that is much more
representative of real-world dynamic obstacles, b) present a
thorough parameter exploration of APF-SR and comparative
analysis between APF-SR and other methods, and c) demon-
strate our method in environments with up to 900 obstacles
(approximately an order of magnitude more obstacles than
we considered in previous implementations, while remaining
real-time capable). Our method has several advantages over
existing moving obstacle solutions and over SR sets alone.
First, at runtime, the method is fast because it does not
have to make expensive collision detection calls and sim-
ply queries the SR sets. Second, it scales well with many
obstacles. Furthermore, it provides a framework in which
multiple SR sets can be combined to generate approximate
collision probabilities with many moving obstacles, which
would otherwise be impossible using a single SR set that
accounts for all obstacles simultaneously. Finally, by using
SR sets for the underlying collision probability calculation,
the method provides an upper bound on the probability of
collision, which can be used to select the best path.

In Section II, we discuss related work in combining formal
and ad-hoc methods for autonomous navigation. Section III
describes the problem formulation, modeling, and stochastic
reachability analysis. Section IV presents APF-SR. In Section
V, we begin by conducting an extensive parameter evaluation.
We then perform a comparison of success rate, path length
and cause of failure with a holonomic and a unicycle robot in
environments with up to 900 obstacles. We show that APF-SR
outperforms the Gaussian APF comparison methods by up to
60% in the holonomic case and up to 20% in the unicycle
case with 900 obstacles. Lastly, Section VI summarizes our
contribution.

II. RELATED WORK

The field of motion planning is vast, and there are countless
approaches, both formal and ad-hoc, for designing strategies to

navigate robots through complex environments while achiev-
ing certain goals. Ad-hoc methods typically demonstrate their
effectiveness through simulated performance, while formal
methods use verification and controller synthesis techniques
to provide theoretical performance guarantees.

APF methods are a popular ad-hoc approach for solving
path planning problems, because of their simplicity, fast ex-
ecution time, and applicability to several robotic problems,
including unmanned aerial vehicles [11], [35], robot soccer
[71], and mobile robots [26], [19], [65], [59], [46]. APF
methods work by creating an artificial repulsion field around
obstacles and an attraction vector towards the goal. The robot
then navigates by following the gradient. For example, a
recently developed APF method assigns non-uniform repulsive
bubbles around moving human obstacles to prevent robots
from moving in front of a walking human [38].

Recent work has extended the APF method to account
for cases in which the goal is not reachable due to obstacle
proximity [26], and navigation in narrow passages is required
[19]. Other recent work has focused on modification of the
computation of the potential field through fuzzy [59] and
evolutionary [65] APFs. Another branch of work on APFs
utilizes the repulsive and attractive concepts of APFs, but
also integrates another path planning method [31], [55], [14].
For example, [31] uses a user-defined cost-map to influence
node placement in a Rapidly exploring Random Tree (RRT)
algorithm. The cost-map dictates a repulsiveness or attractive-
ness factor for every region. Similarly, Navigation Fields [55]
assign a gradient that agents follow, and is used for crowd
modeling. Finally, path guided APF methods utilize a global
path planning method to find a desired path from start to goal,
but then use APF for local planning decisions [14].

Many APF methods, however, do not exploit information
about the possible future behavior of dynamic obstacles. One
class of methods that does exploit possible future behavior
is multi-resolution planning. Traditionally, multi-resolution
planning uses a coarse grid to restrict the planning space
on a global scale and then uses finer resolution grids in
the restricted area [9], [5]. This allows for future states
to be anticipated and planned for in the coarse restricted
grid. However, recent work has started to combine high
level global planning with varying underlying local planners.
Some proposed methods use a global planner with a variant
of APF for local planning [52], [28], [50], [51]. Voronoi
decomposition was used in [52] to generate a global plan and
then uses APF for local planning along the Voronoi edges.
Similarly, a probabilistic roadmap was used in [28] to generate
a global guidance path, and an APF-based local planner avoids
dynamic obstacles and smooths the path. An APF variant
was used in [50], [51] for reactive planning, but they also
construct a hierarchy of successively more forward-looking
path planners (eventually ending with a mission planner).
While these planners can handle certain classes of moving
obstacles, they do not directly consider the likelihood of robot-
obstacle collisions.

Velocity obstacles (VO) [24] are widely used for path
planning with moving obstacles. It is suitable for fast online
planning in environments with hundreds of moving obsta-
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cles. ORCA (Optimal Reciprocal Collision Avoidance) [69]
extended this idea to multi-agent planning and was efficient
enough to be implemented by mainstream video games. Ad-
ditional VO formulation incorporated arcing motion obsta-
cles, allowing an algorithm to handle both linear and arcing
motion obstacles [39]. Frameworks have also been proposed
for planning with stochastically moving obstacles by iterating
through all possible robot velocities in order to approximate
the true VO and find the optimal velocity [36]. The main
drawback of VO-based collision avoidance is that the cost of
VO calculation becomes prohibitively high for obstacles with
complex geometry and stochastic motion.

Formal methods, in contrast, consider the likelihood that a
path will result in a collision. By using a mathematical model
of the system, and hence capturing possible future behavior,
formal methods synthesize provably-correct paths using either
optimal control or model checking algorithms, at the expense
of scalability. Recent work has focused on logic languages
(i.e., linear temporal logic) to express complex specifications
for the robot, rather than simple criteria, such as “reach the
goal while avoiding obstacles.” For example, the authors in
[22] consider the temporal logic for motion planning with
dynamic robots and static, known obstacles, and use formal
methods to construct paths that are provably guaranteed to
meet the desired specifications. Extensions of this type of tech-
nique to uncertain (but still static) environments are given in,
e.g., [44] and [4]. A robot whose motion is probabilistic, and
modeled as a Markov decision process (MDP), is considered
in [37], and the optimal strategy and maximal probability of
successful navigation in a static environment are computed.

Reachability analysis is another formal method, based on
optimal control techniques, that is well-suited to dynamic
environments. Reachability analysis can be used to generate
optimal strategies for avoiding a certain region of the state
space, while reaching a target set, through the use of a
Hamilton-Jacobi-Isaacs (HJI) formulation that allows for both
control and disturbance inputs [63]. The result is a maximal
set of states (the reachable set), that when applied to collision
avoidance problems, represents the set within which collision
between two objects is guaranteed, subject to optimal robot
actions and worst-case disturbance (i.e. obstacle) inputs [48],
[45], [29]. In [62], reachable sets are calculated to assure
a robot safely reaches a target while avoiding a single ob-
stacle, whose motion is chosen to maximize collision, and
the robot cannot modify its movements based on subsequent
observations. A similar approach is taken in [17], but reachable
sets are computed iteratively so that the robot can modify its
actions. In [42], multiple obstacles that act as bounded, worst-
case disturbances are avoided online, based on pre-computed
reachable sets.

Stochastic reachability analysis extends the deterministic
setting to allow for stochastic dynamics, and thus generates
probabilistic reachable sets, which are the set of initial states
from which a robot can reach a target while avoiding certain
regions of the state space with a certain probability [56],
[2], [61]. In [60], the desired target set is known, but the
undesired sets that the robot should avoid are random and
must be propagated over time. In [16], a two-player stochastic

dynamical game is applied to a target tracking application
in which the target acts in opposition to the tracker. The
computational techniques used to solve these reachability
problems rely on solving a dynamic program by modeling
the system as a finite state Markov decision process (MDP)
[1], [21]. Such an approach suffers from an explosion in the
number of states as the dimension of the system grows, and
therefore for higher dimensional problems, this approach is
not feasible.

Because the strengths of ad-hoc versus formal methods
(speed and scalability versus performance guarantees, respec-
tively) seemingly complement each other, there has recently
been considerable interest in combining formal methods with
ad-hoc planning methods. Luders et al. [41] applies robust con-
trol in the expansion step of the RRT algorithm. The algorithm
constructs an RRT and performs a robust planning check along
each new edge, which takes into account the possible obstacle
locations and rejects non-robust paths. Somewhat similarly,
[70] uses both a global and a local RRT to find guaranteed
successful paths that satisfy both local and global objectives
specified in linear temporal logic. The work in [58] uses a
reactive controller which is tuned to avoid certain classes
of pop-up obstacles, such as cylinders, combined with way-
point following to guide a holonomic micro-UAV. While the
method does not have a global path planning component, it
still combines the ad-hoc way-points with a formal obstacle
avoidance control method.

Similar to our work, Frazzoli et al. [25] uses a global
path planner with an underlying control method. The authors
propose using an RRT to build a feasible tree of paths
from a start configuration to a goal configuration and then
utilize an online controller to move between configurations
in the tree. This online controller is capable of avoiding static
obstacles. Alternately, [53] extends RRTs to dynamic obstacles
by repairing subtrees invalidated by moving obstacles. Unlike
our method, the computational cost of this RRT-based method
is directly related to environment size, and stochastically
moving obstacles are not handled. Lastly, [15] and [12] predict
obstacle motion by Monte Carlo simulations and forward
reachability analysis, respectively. Partial RRTs (which may
not reach the goal) in the state-time space are grown in order
to identify collision-free paths. However, unlike APF-SR,
which has limited tunable parameters, the performance of these
methods are sensitive to many scenario specific parameters.

III. MODELING AND STOCHASTIC REACHABILITY
ANALYSIS

A. Robot Dynamics

We consider two models for the dynamics of the robot:
1) a holonomic point-mass model, and 2) a non-holonomic
unicycle model, with state xr = [xr, yr, θr] ∈ R3 representing
the robot position and heading angle. The holonomic model

ẋr = ux

ẏr = uy

θ̇r = 0
(1)
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has velocity control input u = [ux, uy] ∈ Uh ⊂ R2. The input
is bounded, with Uh = [uxmin, u

x
max]× [uymin, u

y
max]. The non-

holonomic unicycle model

ẋr = us cos θr

ẏr = us sin θr

θ̇r = uw
(2)

has control input u = [us, uw] ∈ Unh ⊂ R2, with speed us

and angular velocity uw. The input is bounded, with Unh =
[usmin, u

s
max] × [uwmin, u

w
max]. Discretizing the robot dynamics

(1) and (2) using an Euler approximation with time step ∆
results in xrn+1 = xrn + ∆fr(un, θ

r
n), with

fr(un, θ
r
n) =

 uxn
uyn
0

 (3)

for the holonomic robot and

fr(un, θ
r
n) =

 usn cos θrn
usn sin θrn
uwn

 (4)

for the unicycle robot.

B. Obstacle Dynamics

Each obstacle is represented as a point mass with state xo =
[xo, yo, θo] ∈ R3, that follows either a straight-line or constant-
arc trajectory with stochastic velocity w that represents linear
or angular velocity, respectively. The random variable w takes
values in the finite sets W line and Warci , respectively, with
probability mass functions described by pline(w) and parci(w)
for i ∈ {1, 2, 3}. The obstacle dynamics discretized with time
step ∆ are xon+1 = xon + ∆·fo(qn+1, wn, θ

o
n), with

fo(line, wn, θ
o
n) =

 wn
γwn

0

 (5)

for straight-line motion, with line slope γ ∈ R determined by
the heading angle θon (i.e. γ = tan θo0), and

fo(arci, wn, θ
o
n) =

 riwn cos θon
riwn sin θon

wn

 (6)

for constant-arc movement, with radius ri ∈ R+.
We allow the obstacles to switch between a straight line

trajectory and one of three arc trajectories. Hence at any in-
stant, the obstacle may take on continuous dynamics associated
with one of four modes, Q = {line, arc1, arc2, arc3}, with
arc trajectories distinguished correspondingly by distinct radii
r1 < r2 < r3. Further, we presume continuity of the heading
angle, such that the angle γ of the line trajectory is completely
specified by the obstacle heading at the previous instant, upon
exiting an arc trajectory.

The switching dynamics are described by a stochastic
process, such that the duration of time spent in a given mode is
modeled similarly to an exponential distribution. We presume

that the likelihood of switching from mode qi to mode qj ,
qi, qj ∈ Q, at time n is given by

pQ(line, arci) = 1
3

(
1− βline

n

)
∀i ∈ {1, 2, 3}

pQ(line, line) = βline
n

pQ(arci, line) = 1− βarc
n ∀i ∈ {1, 2, 3}

pQ(arci, arci) = βarc
n ∀i ∈ {1, 2, 3}

pQ(arci, arcj) = 0 ∀i, j ∈ {1, 2, 3}, i 6= j
(7)

with βline
n = e−

∆(n−ns)
S (1−Rline), βarc

n = e−
∆(n−ns)

S (1−Rarc),
∆ ·ns the time that the obstacle last switched, S the switching
time parameter, Rline the fraction of obstacles in the planning
space that are following line trajectories, and Rarc = 1−Rline.

The switching time parameter allows for the tuning of the
switching rates of obstacles, such that lower values of S
increase the switching rate and higher values of S decrease
the switching rate. For example, a switching time parameter
set to a value much greater than the simulation running time
will produce a negligibly small probability of an obstacle
switching. This process assures that switching occurs roughly
every S seconds, and also that the total number of obstacles in
the planning space following arc and line trajectories remains
approximately constant.

C. Relative robot-obstacle dynamics

We model the relative dynamics between the robot and a
single obstacle by examining the motion of the obstacle with
respect to a coordinate frame affixed to the robot, via standard
kinematic analysis. We define the relative state

x̃ =

 RT (θr)

[
xo − xr
yo − yr

]
θo − θr

 ∈ R3 (8)

in terms of a standard rotation matrix R(·), with dynamics

x̃n+1 = x̃n + ∆ · f̃(qn+1, un, wn, θ
r
n, θ

o
n),

f̃(qn+1, un, wn, θ
r
n, θ

o
n) =

[
RT (θr) 01×2

02×1 1

]
·

(fr(un, θ
r
n)− fo(qn+1, wn, θ

o
n))

(9)

For the purpose of computing the SR sets (but not for use in
later simulation), we approximate the Poisson-like distribution
(7) by a Markov process by presuming constant values for the
switching likelihood, that is,

βline
n = βline

βarc
n = βarc (10)

This approximation is computed empirically for a given
Poisson-like distribution by finding the average switching
rate per time-step over 10,000 trials. The approximation en-
ables us to express the resulting system as a discrete-time
stochastic hybrid system (DTSHS), described by the tuple
H = (X̃ ,Q,U , Tx, Tq), with
• X̃ ⊆ R3 the set of continuous states representing relative

position and heading
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Fig. 1: Stochastic reachable set for relative robot-obstacle dynamics (9) with Markov switching (7), (10) in an arc mode. Since
the SR set is 3D, we visualize the probability of collision with respect to relative position (x̃, ỹ) for four selected values of
relative heading θ̃.

• Q = {line, arc1, arc2, arc3} a finite set of discrete modes,
with S = X̃ × Q the hybrid state space,

• U ⊆ R2 a compact Borel space which contains all
possible control inputs,

• Tx : R3 × Q × S × U → [0, 1] a stochastic transition
kernel Tx(x̃n+1|x̃n, qn+1, un) that assigns a probability
distribution to x̃n+1 conditioned on x̃n, qn+1, and un,
and

• Tq : Q × Q → [0, 1] a discrete transition kernel
Tq(qn+1|qn) that assigns a probability distribution to
qn+1 conditioned on qn.

We assume the sets W line and Warc are finite, and therefore
define the transition kernel Tx as

Tx(x̃n+1|x̃n, qn+1, un) ={
pline(wn) for x̃n+1 = x̃n + ∆f̃(line, un, wn, θ

r
n, θ

o
n)

parci(wn) for x̃n+1 = x̃n + ∆f̃(arci, un, wn, θ
r
n, θ

o
n)
(11)

The transition kernel Tq is described by pQ (7), with βline
n

and βarc
n as in (10).

We combine the continuous and discrete state transition
kernels for ease of notation, such that

τ(x̃n+1, qn+1|x̃n, qn, un) = Tx(x̃n+1|x̃n, un, qn+1)·
Tq(qn+1|qn) (12)

D. Stochastic Reachable Sets for Collision Avoidance

We presume a collision occurs between the robot and a
single obstacle whenever

‖xrn − xon‖1 ≤ ε (13)

for some n and some constant distance ε, and define the avoid
set, K, as the set of states in which (13) holds.

We generate collision avoidance probabilities through
stochastic reachability analysis. To avoid collision with the
obstacle, the robot should remain within K, the complement
of K. The probability that the robot remains within K over N
time steps, with initial relative position x̃0, can be calculated
using dynamic programming [6], introduced for SR sets in [2].
To compute the SR set, we iterate a value function backwards
in time from n = N to time n = 0,

V ∗N (x̃, q) = 1K(x̃) (14)

V ∗n (x̃, q) = max
u∈U

1K(x̃)
∑
Q

∫
X
V ∗n+1(x̃′, q′)·

τ(x̃′, q′ | x̃, u, q) dx̃′
(15)

in which an indicator function 1K(x) is equal to 1 if x ∈ K
and equal to 0 otherwise. The value function V ∗0 (x̃0, q0) at
time n = 0 describes the probability of avoiding collision
over N time steps when starting in some initial state x̃0 and
initial mode q0.
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Note that (14)–(15) generally do not have a closed form
expression, and must be evaluated for all possible (x̃n, qn) ∈
X̃ × Q. A discretization of X̃ ⊆ R3 to a finite number
of (x̃n, qn) results in an approximate solution, with smaller
error corresponding to finer resolution of the discretization.
We assume our discretization is sufficiently refined that we do
not consider any errors in the resulting SR set because of this
approximation, or the Markov switching approximation (10),
and treat V ∗0 (x̃0, q0) as the actual probability of collision.

Figure 1 depicts V ∗0 (x̃0, arc), the SR set for relative robot-
obstacle dynamics (9) with Markov switching (7), (10) in an
arc mode with a unicycle robot. The heat maps for four
selected values of relative heading, θ̃, show a higher probabil-
ity of collision when the robot is in line with the obstacle’s
trajectory. Intuitively, the closer the robot is to the obstacle,
the higher the probability of collision. On a single core of an
Intel 3.40 GHz CORE i7-2600 CPU with 8 GB of RAM, the
SR set in Figure 2a took 1727.25 seconds to compute, over
a horizon of N = 30 steps, with time step of length ∆ = 1.
We observed convergence in the stochastic reachable sets for
N > 5 since the robot and obstacle traveled sufficiently far
apart within this time frame. The precomputed SR sets have
a memory storage requirement of about 4.8MB for obstacles
with hybrid dynamics. Using single mode dynamics (arc/line)
as in [13], the memory requirement is 117KB. The SR set is
computed over a grid which has 121× 121× 18 elements.

When used in environments with a single obstacle,
V ∗0 (x̃0, q0) (14) is the maximum probability of avoiding a
collision and a tight upper bound. To consider environments
with multiple obstacles, let Bi correspond to the event that
the robot avoids collision with obstacle i ∈ {1, · · · ,M}.
We presume that collision avoidance probabilities are cal-
culated separately for each obstacle, that is, V ∗,10 (x̃10, q

1
0),

V ∗,20 (x̃20, q
2
0), . . ., V ∗,M0 (x̃M0 , q

M
0 ) for relative position x̃i0 with

respect to obstacle i in mode qi0. The probability of avoiding
collision with all obstacles is
P[B1 ∩B2 ∩ · · · ∩BM ] ≤

min{V ∗,10 (x̃10, q
1
0), V ∗,20 (x̃20, q

2
0), · · · , V ∗,M0 (x̃M0 , q

M
0 )}

(16)

Hence, by computing the minimum value over all probabilities
of collision avoidance with each obstacle individually, we ob-
tain an upper bound to the total collision avoidance probability.
While this upper bound does not provide a guarantee of safety,
it can inform which paths are relatively more likely to avoid
collision. Since our focus is on finding paths with higher suc-
cess rates, rather than theoretically guaranteed collision-free
paths, the upper bound (16) is appropriate. Further discussion
and the derivation of (16) is given in [43].

IV. METHODS

In this section, we present a novel method for integrating
SR sets with APF methods. First, the SR sets are calculated
with a time step of ∆ seconds, however the robot and obstacle
states are updated at a time step of δ seconds such that δ < ∆.
One hurdle in using SR sets to inform the potential field is

Algorithm 1 APF-SR

Input: obstacles O with state xo and mode qo, robot r with
state xr and mode qr, smoothed SR sets V ∗

′

0 (x̃, qo)

1: for t = 0; t < maxTime; t = t+ δ do
2: APFvector = (0, 0)
3: for all obstacle o ∈ O do
4: if dist(xot , x

r
t ) < dmin then

5: APFvector = APFvector +
getRepulsiveGradient(xrt , x

o
t , q

o
t ;V ∗

′

0 (x̃t, q
o
t ))

6: end if
7: end for
8: APFvector = APFvector+ goal–vector
9: u = calcControl(APFvector)

10: xrt+δ = xrt + δ · fr(u, θrt )
11: end for

the possibility of non-smoothness of V ∗0 (x̃, q) in (14)-(15). In
general, no guarantees of smoothness are possible. Since APF
methods use a gradient as a warning that the robot is about
to collide with an obstacle, we first smooth the SR set by
convolving the set with a Gaussian, N (µ = 0, σ2), to produce
V ∗
′

0 (x̃, q). While there are many forms of smoothing that can
be used, we chose a Gaussian smoothing due its common
incorporation in APF methods, simplicity of computation, and
effectiveness for this application. Figure 2 shows two examples
of smoothing SR sets. Figure 2a is the SR set for a holonomic
robot and Figure 2c is the raw SR set for a unicycle robot.
Figures 2b and 2d show the respective resulting sets after
convolution with a Gaussian. As expected, the discontinuity
from 0 to 1 at the obstacle boundary in Figures 2a and 2c is
smoothed in Figures 2b and 2d, respectively.

Algorithm 1 calculates the APF gradient by summing the
obstacle gradients, calculated in getRepulsiveGradient (Al-
gorithm 2), and the goal–vector (Lines 3-8). The combination
of the contributions of the individual obstacles provides the
upper bound defined by (16). The gradient of the attractive
and repulsive potentials is then used by calcControl to
construct the control input u (Line 9). The goal–vector is a
small magnitude vector which always points towards the goal
relative to the robot’s current position. Thus, the APF gradient
is the direction the robot should move in to avoid obstacles
and reach the goal. Finally, the control law for the robot is
updated with the control input u (Line 10).

The getRepulsiveGradient function, described in Algo-
rithm 2, calculates the repulsive APF gradient for an obstacle
with state xot and mode qot . This gradient is calculated by first
finding which cell of the smoothed SR set the relative state
x̃t is in for mode qot , and denoting this cell as pi,j,k. Thus,
SR(pi,j,k) is the value in the stochastic reachable set at cell
pi,j,k. The gradient is then calculated by the (planar) second
order central finite difference centered at i, j, by examining a
‘slice’ of the SR set for a given relative heading θ̃t with cell
index k.

Once the APFvector is calculated, then the control input u
is calculated by the calcControl function. For the holonomic
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Fig. 2: SR sets for relative robot-obstacle dynamics in line mode; the color represents probability of collision. (a-b) Holonomic
robot: (a) raw SR set (Discontinuities exist where color changes suddenly from red to blue.) (b) smoothed SR set after
convolution with a Gaussian, N (µ = 0, σ2), σ = 0.15. (c-d) Unicycle robot: (c) raw SR set (d) smoothed SR set after
convolution with a Gaussian, N (µ = 0, σ2), σ = 0.15

Algorithm 2 getRepulsiveGradient

Input: robot position xrt , obstacle position xot and mode qot
Output: gradient G

1: {i, j, k} = cell(x̃t)
2: Gx = 1

2 (o.SR (pi−1,j,k, o.q) + o.SR (pi−2,j,k, o.q)) −
1
2 (o.SR (pi+1,j,k, o.q) + o.SR (pi+2,j,k, o.q))

3: Gy = 1
2 (o.SR (pi,j−1,k, o.q) + o.SR (pi,j−2,k, o.q)) −

1
2 (o.SR (pi,j+1,k, o.q) + o.SR (pi,j+2,k))

4: G = (Gx, Gy)

case, u = APFvector. However, for the non-holonomic case
a heading and speed must be extracted from the APFvector
to construct u = (us, uw). This is done by first setting uw
to the maximum turn rate in the direction of the APFvector,
then setting us to the maximum speed in the direction of the
APFvector. The maximum speed of the unicycle is the same
as the maximum speed used in the SR calculation. Finally, u
is the updated the control law for the robot.

V. EXPERIMENTS

A. Experimental Setup

Evaluation is performed in environments with up to 900
moving obstacles. In our evaluation, we define successful
navigation as the ability to find a path from a start state to

goal state, without any collisions and within a specified time
horizon. Two environments are used for evaluation. In the
first environment, randomized initial obstacle start locations
are placed in a circle of radius 50m. To maintain consistent
obstacle density, an obstacle exiting the circle wraps around
the boundary of the environment, re-entering π radians away
from the point of exit, with the same velocity as upon its exit.
Figure 3 shows the first environment. Black squares represent
obstacles in line mode, and blue squares represent obstacles
in arc mode. The robot (represented as the orange circle) must
navigate from the box labeled ‘S’ (Start) to the box labeled
‘G’ (Goal). In the second environment, a regular pattern of
obstacles is used, e.g., traffic lanes. The results for the second
environment are shown in Section V-H.

We maintain the same values for model parameters in
all experiments. For the obstacles, the set of velocities in
line mode are W line = {0.1, 0.2, 0.5, 0.7}m/s, with corre-
sponding probabilities pline(w) = {0.3, 0.2, 0.3, 0.2}. In the
three arc modes, the set of angular velocities are Warci =
1
5·i · {

1.08
2π ,

1.622
2π , 2.4322π , 3.242π } radian/s for arcs of radius 5m,

10m, and 15m, respectively, with corresponding probabilities
parci(w) ∈ {0.2, 0.2, 0.3, 0.3} that are the same in each mode.
The angular velocities of arc obstacles are chosen such that the
average linear speed is identical to line obstacles, regardless
of arc radius.

The collision distance is determined by the obstacle body,
and hence ε = 1. The time step for the experiments is δ = 0.1s
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Fig. 3: Example of the circular environment with 600 obsta-
cles. The red circle represents the robot’s location. S is the
start, G is the goal, black boxes are line obstacles, and blue
boxes are arc obstacles.

and for the stochastic reachable set calculations, we presume
∆ = 1s. The distance around the robot in which obstacles
will affect the selection of the APF gradient is dmin = 3m.
To implement the 3D stochastic reachable set calculations,
we discretize relative heading in increments of π

20 and in the
experiment, use the corresponding planar stochastic reachable
set that is closest to the current value of relative heading. This
is the same discretization resolution used to compute the SR
set.

We compare our method to other published methods that
address moving obstacles. First, a Gaussian APF method
was used, [46], with two parameterizations: N (0m, (0.15m)2)
(Gaussian σ = 0.15) and N (0m, (0.45m)2) (Gaussian σ =
0.45). The Gaussian methods place a Gaussian potential field
around moving obstacles. We selected two different standard
deviation values to demonstrate the impact of increasing the
safety margin around obstacles, but at the expense of making
some paths infeasible due to the large repulsion area. Other
parameters were evaluated but were found to not provide
high success rates (results not shown). For example, a low
σ value, such as 0.05m, allowed the robot to get too close
to obstacles and often resulted in collision with fast moving
obstacles. Contrarily, high values, such as 0.9m, resulted in
overly conservative behaviors that hinder the robot’s ability to
progress toward the goal in crowded environments. Second,
a VO [24] was used that computed an avoidance vector based
on the current state of obstacles in the environment. The
Velocity Obstacle (VO) algorithm was adapted from the RVO2
C++ code base [68] implementation of the Optimal Reciprocal
Collision Avoidance (ORCA) algorithm. This algorithm [69]
was modified to allow for single-agent collision avoidance,

removing the reciprocal aspect of ORCA while maintaining
many of ORCA’s linear programming optimizations. All ex-
periments were run on a single core of an Intel i7-3720QM at
2.6GHz with 16GB of RAM, and were repeated 100 times.
In Figures 4, 5, 7 and 12, the uncertainty in success rate
is captured using the 99% confidence level derived from
the central limit theorem and the variation in path length is
depicted by standard deviation.

B. Model Assumptions and Limitations

During the computation of the gradient during planning,
we assume knowledge of the obstacle’s position xot and mode
qot , robot position xrt , and goal position. These values can be
obtained and updated anytime, and, for APF methods, frequent
updates are common since accurate values are critical for
finding the gradient. In this paper, we update their positions
before each gradient computation. We assume obstacle dynam-
ics are not impacted by outside forces, e.g., other obstacles.
Therefore, in the highly crowded experiments shown, obstacle
trajectories do not interact.

There are limitations inherent to APFs and SR sets that are
also inherent to APF-SR. First, the point-mass robot model is a
simplification of actual robot motion. However, methods such
as [26] and [19] exist, which extend APF methods to non-
point robots. Also, a more realistic robot model can be easily
incorporated into the SR set calculation. Another common
implicit limitation of APF methods is that small, non-convex
obstacles are required to minimize the possibility of local
minima in the potential field that may entrap the robot. One
possible way to address this limitation is to combine the local
method of APF-SR with a global planning method that consid-
ers possible local minima that occur in the static environment
offline [14], [28]. In planning methods for moving obstacle
avoidance, there is often an implicit assumption that obstacles
move sufficiently slow. In this work, the size and possible
velocities of the obstacle and robot are directly incorporated
into the SR set computation. Therefore, the size and shape of
the SR set reflects those velocities and enables planning even
in the presence of fast-moving obstacles.

SR set computation is an expensive process that requires
knowledge of the stochastic dynamics. We address this with an
approximation that considers modes individually that performs
similarly to the actual dynamics model in Section V-C. Beyond
the scope of this work, this approximation facilitates the
integration of new methods that might maintain a SR set
database which could be used to match obstacle motion to
sets (as was done with funnel libraries [42]) or predictions of
dynamic obstacle motions [23].

C. Stochastic Reachable Set Approximation

We first consider an approximation to the hybrid model in
Section II. In many applications, the mode of the obstacle
may not be known at all instants. Hence we consider an
approximation to the SR set for the hybrid system described by
(5), (6), (7), in which we compute the SR sets for non-switched
systems with dynamics and distributions as described for each
mode individually, and select the appropriate SR set in the
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Fig. 4: Success rate vs. the switching time parameter appearing
in (7). Smaller switching time parameter values indicate faster
obstacles switching between a line and arc (or vice versa).

APF-SR algorithm. We believe that this approach would be
more computationally efficient in realistic scenarios.

We evaluate in Figure 4 the efficacy of this approxima-
tion by comparing the performance of APF-SR over several
switching time parameter values with the true SR set (denoted
APF-SR w/o approx) and with the approximate SR sets, that
are derived from constant-mode obstacles (denoted APF-SR
w/ approx). The βline and βarc in APF-SR w/ approx have
the values {0.53, 0.18, 0.56, 0.02, 0.01} for switching time
parameter values S = {0.2s, 2s, 20s, 200s, 2000s}. This plot
shows that the approximation produces success rates that are
similar to without approximation. Due to this similarity, the
approximation is used in all subsequent experiments.

The switching time parameter parameter can impact the
planning complexity, with faster switching obstacles increas-
ing problem complexity. Figure 4 shows that APF-SR is
minimally impacted by the parameter. On the other hand,
the Gaussian methods, which do not take into account the
trajectories of the obstacles, are heavily affected by a rapid
switching rate. Success rate is reduced by 10% for the fastest
switching rate from the slowest switching rate. For the re-
maining experiments, we select a switching time parameter of
20s.

D. Method and Environmental Parameter Evaluation

In this set of experiments, we explore in detail the method
and the environmental parameters that can impact APF-SR. All
experiments are run in an environment with 300 obstacles, a
goal–vector magnitude of 0.01, and a holonomic robot.

Table I shows the impact of the σ used for the Gaussian
that smoothed the SR Set in APF-SR. The best performance
occurs at σ = 0.15m. Thus, this value for σ will be used
for smoothing all SR sets for APF-SR in the remaining
experiments.

The ratio of line obstacles to arc obstacles is another impor-
tant environmental parameter as arc obstacles have empirically
been shown, for many methods, to be more complicated to
plan for than line obstacles. Figure 5 shows the impact of

σ 0.05 0.15 0.45
Success Rate 35 ± 12% 95 ± 5% 86 ± 9%

TABLE I: Success rate vs. σ (in meters) used for smoothing
the SR set in APF-SR. (goal–vector magnitude of g = 0.01)
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Fig. 5: Success rate vs. the percentage of obstacles moving in
an arc trajectory, with a goal–vector magnitude of 0.01 and
300 obstacles.

varying the ratio of obstacle types on the success rates of
the various planning methods. Unlike the other experiments,
the obstacles are not allowed to switch dynamics; instead, the
ratio of obstacles types are varied from 0 to 100%. For APF-
SR, the success rate is approximately constant around 95%
regardless of the percentage of line obstacles. It is important
to note that the possible radii of the arc obstacles were chosen
such that the difference between the line trajectory and the
arc is large. Unlike APF-SR, the success rate for Gaussian
σ = 0.15 is reduced by 6% with 100% arcs, and the success
rate for Gaussian σ = 0.45 is reduced by 34% with 100%
arcs. Similarly, VO hovers around 80% success rate for all
the switching time parameter values (15% less than APFSR),
which indicates that VO is affected more by the number of
obstacles than by their trajectories.

E. Holonomic Robot Experiments

Figure 6 demonstrates the success rate versus number of
obstacles (300 to 900) for the APF-based methods when
varying goal–vector magnitude with a holonomic robot. APF-
SR (Figure 6a and 6b) and the two Gaussian APFs (Figures 6c-
6f) show that the goal–vector has a consistent effect across all
three methods with goal–vector magnitude of 0.01 providing
on average the best overall balance between success rate
and path length regardless of the number of obstacles. An
additional test (labeled “off” in Figure 6) is run with the
goal–vector magnitude set to 0.01 when all obstacles are
more than 3m units away and set to 0 when at least one
obstacle is closer than 3m away. This test allows the algorithm
to attempt maximal avoidance when obstacles are nearby.
Second, APF-SR does better than either of the Gaussian
method parameterizations and VO. The slopes in Figure 6 are
approximately the same for each method. This indicates that
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(c) Gaussian σ = 0.15
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(e) Gaussian σ = 0.45
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Fig. 6: Holonomic robot success rate and path length for
various methods. g is the goal–vector, and g = off indicates
that the goal–vector is 0 when the robot is under the influence
of an obstacle’s APF and is 1 otherwise. The solid line at
path length 70m indicates the theoretical shortest path possible
(i.e., straight line from the start to the goal). The dotted line
at path length 210m indicates a cutoff point where the run is
considered a failure.

the difficulty of the problem increases linearly with the number
of obstacles. APF-SR has a similar slope to the Gaussian
σ = 0.15, but for 300 obstacles the success rate is higher
(95% compared to 60% for a goal–vector magnitude of 0.01).
Interestingly, the slope for Gaussian σ = 0.45 is steeper than
the other methods, but it has a success rate of 89% for 300
obstacles, which indicates that the greater repulsion region aids
in path planning for sparse environments but prevents the robot
from navigating in cluttered environments.

Total path length captures how much the robot is forced
to deviate from the straight-line path because of obstacles.
Figures 6b, 6d and 6f show the average path length versus
the number of obstacles for APF-SR and the two Gaussian
comparison methods (only recorded for collision-free runs).

These figures show that, as expected, the path length increases
as the goal–vector gets smaller. This indicates that if the
goal–vector is too strong the robot does not react enough to
the obstacles’ potential fields, but if the goal–vector is too
small (the black dotted line) the robot does not make enough
progress towards the goal and spends too much time in the
obstacle field which increases the probability of colliding. This
trend holds for APF-SR and the two Gaussians, however this
trend is scaled relative to the potential fields used. Gaussian
σ = 0.45 has the widest field and, as such, is affected the most
by the obstacles. Gaussian σ = 0.15 is more similar in size to
APF-SR, but it does not consider the obstacle trajectory. Thus,
its path lengths are similar, but its success rate is lower. The
shaped potential field of APF-SR allows the robot to navigate
around obstacles in a safe manner by avoiding entering the
obstacle trajectory (like the large Gaussian method) but still
have a relatively small field which allows it to move between
dense obstacle clusters.

After selecting a goal–vector of 0.01 for the APF-based
methods, we evaluated success rate as a function of the number
of obstacles in Figure 7 for all comparison methods. Figure
7a shows that APF-SR has the highest success rate over all
quantities of obstacles. VO has the second highest success rate,
in most cases. The Gaussian methods are the most impacted by
the increasing number of obstacles. Figure 7b shows APF-SR
has a similar path length to Gaussian σ = 0.15. This could be
because SR sets were convolved with a Gaussian function with
the same sigma. VO provides a slightly shorter path length in
most cases.
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Fig. 7: Holonomic robot (a) success rate and (b) path length.
The goal–vector is 0.01 for all APF-based methods.

We also investigate what situations cause APF-SR to fail.
Figure 8 shows the multi-obstacle collision percentage, that
is, the percent of collisions due to either, one, two or three
nearby obstacles (not percentage of interactions which led to
collision). The failure case occurrences are normalized for
each planner/robot combination. The total number of failures
for holonomic, unicycle dynamics, respectively are: 4, 14 for
APF-SR, 40, 66 for Gaussian σ=0.15, and 11, 40 for Gaussian
σ=0.45. The test is conducted in the circular environment with
300 moving obstacles and the goal-vector is set to 0.01 for
all methods. The value of dmin is used to define proximity.
Gaussian σ = 0.15 collides mostly with single obstacles. This
is likely due to the fact that low σ allows the robot to get too
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close to obstacles, and thus is unable to avoid collision with
fast moving obstacles. In contrast, a larger Gaussian, σ = 0.45,
more often collides with two obstacles. The wider Gaussian
provides a larger buffer between the robot and single obstacles,
thus reducing the collisions with a single obstacle.

SR sets provide probabilistic collision avoidance when the
corresponding optimal control for that SR set is implemented.
This means that applying the optimal control will almost surely
result in collisions when enough trajectories are simulated.
This is likely the phenomena underlying the collisions with a
single obstacle. Another possible source of the collision is due
to the fact that the controller implemented is not necessarily
the optimal control as computed by (14), (15). In addition, we
can provide no guarantee of success when planning for more
than one nearby obstacle, since the SR sets are only computed
for single obstacle interactions. Figure 8 confirms this, as the
APF-SR method fails most often when multiple obstacles are
nearby. Essentially, conflicting APF gradients from multiple
obstacles can cause the APF-SR method to fail.
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Fig. 8: Analysis of collisions. Percent of collisions due to 1, 2
or 3 nearby obstacles for various methods, for (a) holonomic
and (b) unicycle robots. An obstacle is nearby if the distance
between the robot and the obstacle is less than 3m.

Table II indicates that APF-SR has very low computation
time per planning step. In the extremely crowded 900 obstacles
environment, the 0.13ms computation time per planning step
for APF-SR is comparable to the Gaussian APFs and is much
faster than VO (16ms). APF-SR has a low computation time
since the algorithm simply queries the precomputed SR set
for the construction of repulsive potentials. Therefore, the
computation time is very low. In this problem with obstacles
that are distributed uniformly at random, we observe an
expected linear scaling in computation time to the number
of obstacles. The high computation time of VO compared to
APF methods is due to implementation [68]; re-building the
K-D tree every planning step is computationally intensive.

# of Obstacles 300 450 600 750 900
Gaussian σ = 0.15 0.036 0.052 0.068 0.083 0.10
Gaussian σ = 0.45 0.036 0.051 0.068 0.083 0.10

APF-SR 0.045 0.065 0.087 0.11 0.13
VO 5.1 7.8 11.0 13.5 16.0

TABLE II: Computation time per planning step in ms of APF-
SR and comparison methods.

F. Unicycle Robot Experiments

In this set of experiments, we presume unicycle robot
dynamics. The robot is limited to a turning rate of π

12 per
time step ∆. This increases the difficulty of the problem as
the robot cannot instantly change heading to avoid a collision.

Figure 9 shows that both APF-SR and the Gaussian methods
all have relatively lower success rates than in the holonomic
case. However, the Gaussians suffer much more than APF-SR.
The best Gaussian success rate (for 300 obstacles) reduces
from from 90% in the holonomic case to 62% in the unicycle
case, but APF-SR reduces from 95% to 84%. Furthermore, as
the number of obstacles increase, the Gaussians rapidly ap-
proach 0% success rate. Since [68] cannot be directly applied
to non-holonomic robots without significant modifications, we
do not include a comparison to VO.

For the holonomic case a goal–vector magnitude of 0.01 was
on average better than any other goal attraction (Figures 6).
However, for the unicycle case (Figures 9), success rates for a
goal–vector magnitude of 0.01 and 0.1 oscillate. This is likely
due to the increased difficulty of the problem which greatly
increases the probability of collision the longer the robot is
in the environment. Furthermore, the success rate slope for
APF-SR is the steepest. While this indicates that APF-SR’s
success degrades faster with increasing number of obstacles,
the success rate is still higher than the Gaussian comparison
methods.

Figures 9b, 9d and 9f show the path length versus the
number of obstacles. Again, as expected the path length
increases as the goal–vector decreases, and the path length
increases as the number of obstacles increases. As seen in
the Gaussian σ = 0.45 path length plot (Figure 9f), the path
length increases substantially for the few collision-free paths
in highly crowded environments (more than 600 obstacles).
This is due to paths that were unable to arrive at the the goal
before an imposed cutoff. For Gaussian σ = 0.15, there was
only one collision-free path in the 900 obstacle environment
with goal–vector 0.01 (Figure 9d).

These experiments have shown that APF-SR is able to path
plan in environments that have up to 900 hybrid dynamic
moving obstacles with a high success rate. Furthermore, APF-
SR is significantly more robust to the hybrid dynamics than
the comparison methods, and the increased success is due
to encoding the relative obstacle robot dynamics in the SR
set used to produce the potential fields for the obstacles.
Thus, APF-SR is able to make more informed path planning
decisions to avoid moving obstacles.

Figure 8b shows the number of nearby obstacles when
each method fails. The same trend as the holonomic case is
exhibited. Specifically, there are more collision events for all
methods since the unicycle robot dynamics is more difficult,
but APF-SR rarely collides with only one nearby obstacle.

G. APF-SR in Environments with Sensor Noise

Real-world robots often face environment sensing uncer-
tainty. In this experiment, we simulate uncertainty via ran-
domly sampling the perceived obstacle position every time
step with a bounded uniform distribution centered around
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(c) Gaussian σ = 0.15
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Fig. 9: Unicycle robot success rate and path length for various
methods. g is the goal–vector, and g = off indicates that the
goal–vector is 0 when the robot is under the influence of an
obstacle’s APF and is 1 otherwise.

the true position of the obstacle. The uniform distribution is
bounded by 10, 25 and 50% of the obstacle width (1m). For
example, if the noise is bounded by 50% and the obstacle’s
true position is at the origin, the perceived position of that
obstacle can be anywhere within the box of (0.5m, 0.5m),
(-0.5m, 0.5m), (-0.5m, -0.5m) and (0.5m,-0.5m). The SR sets
used was described in Section III, which does not consider
robot sensor uncertainty. The remaining experimental setup is
the same as Section V-E.

Figure 10 shows the success rate of APF-SR is largely
unaffected by sensor uncertainty, except in highly crowded
cases with the largest amounts of noise. For all noise levels,
APF-SR has a higher success rate than the Gaussians despite
the lack of noise in the SR set computation. All methods are
likely assisted by frequent observation of nearby obstacles and
frequent replanning (100 Hz). Therefore, incorrect obstacle
position observations may be averaged out.
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Fig. 10: Success rate and path length vs number of obstacles
in the presence of obstacle position noise. A 10% noise level
means the sensed position of the obstacle can deviate from
the true position according to a uniform random distribution
up to 10% of the obstacle width.

H. Lanes Environment

In this experiment, we tested APF-SR in an environment
with structured obstacle motions. This contrasts the random
obstacle placement in the previous experiments. This new en-
vironment, Lanes, requires the holonomic robot to travel across
18 lanes of moving obstacles from a start (-15m,-7.5m) to a
goal (15m,7.5m) (Figure 11). The dynamic obstacles travel in
lanes, and the speed of each obstacle is sampled stochastically
using line dynamics (5). Lane direction alternates sequentially.
For example, the obstacles in the bottom lane travel from left
to right while the obstacles in the lane above travel from
right to left. In order to maintain the obstacle density, an
obstacle is transported to the opposite side of its lane upon
exiting the domain boundary. The robot is a holonomic point
robot with a maximum speed of 0.36m/s, identical to previous
experiments.

Figure 12 shows APF-SR has a much higher success rate
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Fig. 11: Lanes environment. The robot must travel from S to
G by crossing lanes without colliding with moving obstacles
(black squares) or leaving the domain (solid black boundary).
7 obstacles per lane is shown.
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Fig. 12: Lanes environment (a) success rate and (b) path length
with varied number of obstacles per lane. The goal-vector is
0.01 for all APF methods.

compared to the other methods (over 20% higher for 7
obstacles per lane). As seen in the reduced success rate, VO
struggles in this problem due to the density and proximity
of obstacles. This factor also impacts the Gaussians whose
success rates are the lowest of all the methods. All path lengths
are similar, except Gaussian σ = 0.45. This method exhibits a
path length that is at least 20% longer than the other methods.
This is expected since it attempts to maintain a high clearance
from obstacles in this crowded environment.

VI. CONCLUSION

The incorporation of the formal SR sets into the ad-hoc APF
method produces a more accurate representation of the relative
robot-obstacle dynamics, which leads to an increased success
rate during path planning. Our experiments indicate that APF-
SR has a 10%-30% higher success rate than comparison
methods in all cases, including problems with 900 moving
obstacles. The SR set informs APF-SR of the direction and
velocity of the obstacle, which is used to generate a repulsive
potential that reflects the probability of collision. Hence, the
APF-SR algorithm can make informed planning decisions even
in the presence of multiple moving obstacles. We showed that
APF-SR is robust to the primary parameters in the method,
and demonstrated that the method is capable of path planning

in highly complex and dynamic environments with obstacles
that can switch between line- and arc-following dynamics.
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