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ABSTRACT
ElectronMicroscopy (EM) has become an invaluable part of modern
structural biology. As the limits of EM techniques are explored,
issues arise with model reconstruction and fitting, especially at
resolutions lower than 10 Å where structural detail is lost. In this
paper, we introduce methods to model and fit molecular structures
into low resolution EM datasets (20-40 Å resolution). First, we use
Gaussian Mixture Models (GMMs) to describe molecular systems
with high flexibility and enable efficient conformation sampling.
Then, GMM parameters are optimized to best describe the model
molecular structure. Finally, these GMMs are placed into a fitting
procedure to generate a conformation of the GMM that fits an input
set of tilt series tomograms, a set of 2D images of a 3D molecule
taken at a variety of angles. We evaluate our method by fitting a
model of the IgE-FcϵRI complex to a variety of simulated single tilt
axis datasets. This work was done in preparation for analysis of
larger aggregate structures of IgE.
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1 INTRODUCTION
Fitting a known structure to experimentally imaged molecules is
critical to understanding molecular conformations. One such tool to
image molecules, Electron Microscopy (EM), has become an essen-
tial part of understanding cellular function [13]. EM is performed
by preparing a sample and placing it into an electron microscope.
The microscope produces an image (tomogram) of the sample. A
tomogram can be thought of as a 2D image of a 3D object where
the intensity of the image pixel is proportional to the density of the
3D object. Electron Tomography (ET) is a technique that utilizes
a series of EM tomograms to produce a 3D reconstruction of the
molecular structure. Tomograms of a sample are captured from a
variety of angles and are then combined to produce a 3D density
map. These tomograms can be collected in an ordered fashion (e.g.,
single/dual axis tilt series) or an unordered fashion (e.g., single mol-
ecule imaged in solution). EM and ET are becoming cornerstones of
modern structural biology research, but several challenges remain,
including model fitting and reconstruction evaluation [9].
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Depending on the type of sample, densitymap reconstruction can
be challenging. This step, required before an atomic model can be fit,
can suffer from issues including distortions in tomogram alignment
and the missing wedge problem [15]. Distortions in alignment
occur when the tomograms of a dataset are clustered and aligned
to produce an averaged tomogram from a given perspective. The
quality of the clustering/alignment results are highly dependent
on the size of the input dataset and tomogram quality. The missing
wedge problem occurs during reconstruction of a tilt series, a set
of projections captured by rotating the sample about an axis. If
the angle range is narrow, portions of the sample are not imaged,
resulting in a loss of information that elongate reconstructions.

In addition to the challenge of reconstruction, fitting structural
models, typically all-atom structures, to reconstructed density maps
can be difficult. Resolution of a density map is important to the
type of fitting technique used. At high resolution (< 10 Å), all-atom
fitting techniques work well, but lower resolutions (20-40 Å) still
pose a challenge to existing methods due to a lack of detail [26].
This is particularly true for larger asymmetric molecular systems
that are typically imaged at lower resolutions.

In order to address both the issues of reconstruction quality and
fitting at lower resolutions, we propose a method that uses a flex-
ible reduced-resolution molecular model for fitting directly to a
series of tomograms. These tomograms depict images of a static
molecular structure at a series of angles which can be efficiently fit
with our GMM by comparing projections of our reduced-resolution
molecular model at corresponding angles of the tomograms. In
order to represent flexibility of the model that may exist in the
imaged molecule, we use a multi-body GMM with constrained flex-
ible joints. GMM fit evaluation is performed against all tomograms
in the dataset, thus enabling evaluation of a conformation of the
GMM against experimental data. While this method does not di-
rectly provide all-atom structures, it provides a quick assessment of
the imaged molecule and the reasonableness of the conformation.

Our motivation for this approach is determination of structures
of large molecular assemblies, specifically antibody/antigen aggre-
gates critical to the understanding of the human allergic immune
response. As a first step toward this goal, we focus on one compo-
nent of these assemblies, the large antibody complex (IgE-FcϵRI).
These molecules are potentially highly dynamic, so we are inspired
by static images such as datasets captured via Cryo EM where sam-
ples are flash frozen before imaging. To evaluate our construction
procedure, we generate a GMM of IgE-FcϵRI and assess how well
the GMM can model a variety of datasets by optimizing parameters
of the GMM. We then evaluate our fitting technique by generating
a set of IgE-FcϵRI conformations under a variety of conditions and
attempting to fit them to the known native conformation. We show
that our GMM is flexible enough to model a variety of datasets and
is capable of fitting tilt series data.
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2 RELATEDWORK
Projection Matching. Several computational geometry methods
have been used to model volumes from projection information and
vice versa [2, 17, 19, 27]. For example, the optimal packing/covering
problems have been solved using Phi-functions which were devel-
oped to evaluate the interaction of geometric objects [2]. Another
example is shadow art, the idea of occluding light from a source
to produce an image. One such method uses light sources and a
desired shadow art as input and produces a sculpture that is capable
of generating the scene [17]. This work has been expanded to model
shadow theater where shadow art is generated by the pose of a
single or multiple performance artists [27]. Another similar method
turns 2D silhouettes from different perspectives into 3D models
[19].

EM and Structure Determination. Integrating comparative
modeling and EM data to produce atomic models is reviewed in [25].
Fitting structures to reconstructed 3D EM data can be broken down
into two main methodologies, rigid and flexible [7]. Most six degree
of freedom rigid fitting is done using methods like geometric tech-
niques [4], GMMs [12], or Zernike descriptors [6]. Flexible fitting
focuses on using molecular simulation methods [14, 23], robotic
motion planning techniques [1], as well as statistical techniques
[5, 22] to determine candidate conformations. GMMs have been
applied to other aspects of EM analysis, including reconstruction
of single particles imaging [11] and structural dynamic evaluation
[10].

Antibody Structure. Antibodies are immunological molecules
which identify and target foreign threats to the body. Immunoglob-
ulin (Ig) proteins have been determined to be highly flexible and
can form asymmetrical structures [3, 21]. The structures obtained
from X-ray diffraction analysis show that IgG is composed of three
major structural subunits: two identical binding arms (Fab arms)
and a membrane bound constant domain [20]. Since antibodies are
known to have very flexible and dynamic structures, populations
of different conformations have been found to co-exist in images
[24, 28]. Therefore, commonly used methods such as X-ray crystal-
lography, which rely on molecular averaging, often do not reflect
protein dynamics and flexibility [29]. In contrast, EM can be used
to reconstruct unique and independent samples [20].

3 METHODS
To generate a semi-flexible reduced resolution model of a molecular
system, we start with an all-atom molecular structure. This struc-
ture is decomposed into rigid subunits, and Principal Component
Analysis (PCA) is applied to these subunits to generate a GMM.
Flexibility between rigid regions is added, and GMM subunits are
refined to complete the model construction. This process is outlined
in Figure 1. The resulting model is used to fit tomographic tilt series.
In this paper, evaluation focuses on the IgE-FcϵRI complex [16].
The model was constructed using available PDB structures (1OAU,
2VWE, 1O0V, 1F6A) and is composed of 1,709 amino acids (13,477
atoms total) [16].

3.1 Model Construction
To begin model construction, we identify rigid subunits of the
model by performing rigidity analysis of the all-atom model using
Kinari-Web [8]. If a sequence of residues is considered flexible, we
identify the rigid subunits at the termini of the flexible sequence.

Figure 1: Process of taking an all-atomstructure and generat-
ing a GMM. First, the atomic model (top left) is decomposed
into rigid subunits (top right). The rigid subunits are then
processed using PCA (bottom left). The results of PCA are
then used to construct a GMM (bottom right).

If both ends of the sequence are associated with the same subunit,
the sequence is considered a rigid part of that subunit. For our IgE
model, ten rigid subunits were classified into five regions outlined
in Table 1.

Structural Subunit Chain & Residues Region
FcϵRIα 1 A 5-84 1
FcϵRIα 2 A 88-169 1
Constant 1 H 256-355, I 256-355 1
Constant 2a H 364-462 1
Constant 2b I 364-462 1
Constant 3 H 469-571, I 469-571 1
Fab 1 - C terminal H 151-247, L 140-234 2
Fab 1 - N terminal H 21-144, L 26-127 3
Fab 2 - C terminal I 151-247, M 140-234 4
Fab 2 - N terminal I 21-144, M 26-127 5

Table 1: IgE-FcϵRI subunits calculated from rigidity analysis.
A flexible region is considered part of a rigid region if both
ends of the region are associated with the same structural
subunit.

After rigid subunits have been identified, we convert the de-
composed subunits into a GMM representation. This is done by
performing PCA on the atom positions of each subunit structure
identified by rigidity analysis decomposition (Figure 1, bottom left).
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If the difference between the lowest and highest eigenvalues of the
PCA is high, the subunit is divided. From our data we used a ratio of
1.8x or larger as a cutoff for division. For the IgE complex, subunits
1 and 2 of FcϵRIα and constant subunits 2a and 2b were split along
their principle component.

Using the results of PCA, molecular subunits are converted to a
GMM description with Gaussian functions centered at the subunit’s
mean µ with standard deviation σ set to the square root of the
largest subunit eigenvalue. For each subunit, we include a σ -scaling
factor to compensate for potential differences in model resolution,
discussed in Section 3.2. This construction method is applied to
all subunits of the IgE complex, resulting in a model composed of
fourteen Gaussian functions (Figure 1, bottom right).

To capture flexibility that may exist between rigid subunits, we
incorporate distance constraints into the GMM. Specifically, dis-
tances between GMM subunits that are linked together via non-
rigid portions of the protein backbone are maintained. If a flexible
region is found to connect rigid subunits during rigidity analysis,
the α-carbons of the amino acids on both termini of the flexible
regions are stored with their associated GMM subunit. These points
are evaluated for distance when a new GMM conformation is gen-
erated. The distance must be less than n·d , where n is the number
of amino acids in the flexible region and d is the average distance
between α-carbons. For our IgE-FcϵRI complex model, we use the
average distance between the α-carbons of the flexible regions.

In the IgE complex, there are six flexible regions that connect
molecular subunits. Each Fab arm is connected to the constant do-
main, resulting in two distance constraints. Fab arms are composed
of two subunits connected together by two flexible regions, result-
ing in two distance constraints per arm. This results in six distance
constraints total, outlined in Table 2.

Class Subunits Chain & Residues Length
Arm Linker Con 1, Fab 1C H 248-255 8
Arm Linker Con 1, Fab 2C I 248-255 8
Fab Short Fab 1C, Fab 1N H 145-150 6
Fab Long Fab 1C, Fab 1N L 128-139 12
Fab Short Fab 2C, Fab 2N I 145-150 6
Fab Long Fab 2C, Fab 2N M 128-139 12

Table 2: Flexible regions between rigid antibody subunits.
Con 1 represents the Constant subunit and Fab subunits are
labeled “Fab XY ”, X being the arm index (1 or 2) and Y being
the termini (N or C). Length is in number of residues in the
flexible region.

3.2 GMM Refinement and Fitting
In this section we discuss how we refine GMM parameters to tailor
our GMMs to a particular experiment (Algorithm 1).We then outline
how we minimize GMM conformation to identify a best fit to the
provided EM tilt series (Algorithm 2).

When tomograms and density maps are generated, various levels
of image and post processing are applied to prepare the data for
reconstruction/fitting. Depending on the parameterization of these
processes, results can differ from experiment to experiment. This

Algorithm 1 GMM Parameter Refinement
Input. GMM model cinit , dataset projections P, parameter ranges

R and maximum iteration count itermax
Output. conformation copt optimized to match P
1: ccur ← cinit
2: ocur ← EvalOverlap(ccur , P)
3: for iter = 0; iter ≤ itermax ; iter++ do
4: vcur ← EvalParams(ccur ,R,ocur )
5: ccur ← UpdateParams(ccur ,vcur )
6: ocur ← EvalOverlap(ccur , P)
7: end for
8: copt ← ccur

can alter the ability of the GMM to represent the data. In order
to capture these differences, we introduce Algorithm 1 which per-
forms parameter refinement, a method that produces a GMM that
is tailored to a particular dataset that can also be used to fit other
datasets from the same experiment.

To generate a GMM specific to a given dataset, each parameter
of the GMM needs to be optimized (positions and σ -scales) with
respect to the input dataset. Parameter refinement begins with eval-
uating the initial GMM quality (line 2). To determine the quality
of the match between a conformation and a dataset, we compare
projections of the GMM and dataset from the same perspective.
Projections are generated and compared as seen in Figure 2. Corre-
sponding pixel values of the projections are evaluated using the OR
and XOR operators. The OR operator provides us with the number
of pixels in the projections occupied by both the GMM (u) and the
part of the dataset visualized as the non-black pixels in the last
row of Figure 2. The XOR operator provides us with the number
of pixels that are occupied by either GMM or dataset but not both
(x ), representing the differences in projections (red and blue pixels
in the last row of Figure 2). The overlap score is the proportion of
pixels that overlap in the union, ((u - x) / u).

Figure 2: Comparison of tilt series to evaluate overlap score.
Molecular data (top left) andGMM (bottom left) orthogonally
projected at angles {-60,0,60} (top/middle rows, right). Projec-
tions from the same perspective are overlaid and evaluated
for OR and XOR (bottom row, right).
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To perform GMM parameter refinement, we use a binary search
scheme over a range of values (R) centered at the initial parameter
values of the input GMM (Cinit ). For each iteration, every parameter
is evaluated for overlap score at 3 values, at the upper and lower
bounds of the range and the middle (line 4). The overlap scores
are compared and the parameter values with the highest overlap
scores are used to update the saved values and the ranges for the
next iteration (line 5). The process is iterated for a specified number
of times (itermax ), and the resulting GMM parameter values are
returned.

Algorithm 2 GMM conformation Fitting
Input. GMM model conformation cinit and tilt series projections t,

maximum iteration count itermax , window averaging widthw
and local minima detection interval i

Output. conformation cmin that is the best fit of t
1: ccur ← cinit
2: cbest ← ccur
3: socur ← EvalSubOverlap(ccur )
4: sobest ← socur
5: for iter = 0; iter ≤ itermax ; iter++ do
6: cnew ← UpdateGMM(ccur , t)
7: IsCollisionFree ← CollisionResolution(Cnew )
8: IsDCSatis f ied ← DCSatis f action(cnew )
9: if InLocalMin(w, i) then
10: ccur ← Resample(cnew )
11: else
12: if !IsCollisionFree | | !IsDCSatis f ied then
13: ccur ← Resample(cnew )
14: else
15: ccur = cnew
16: end if
17: end if
18: socur = EvalSubOverlap(ccur )
19: if EvalNewMax(socur , sobest ) == True then
20: cbest = ccur
21: sobest ← socur
22: end if
23: end for

At this point, we have a GMM for fitting a tilt series. Our proce-
dure for conformational fitting is described in Algorithm 2. To begin
fitting, we start by generating a GMM conformation to fit. Prepa-
ration of the initial GMM conformation for minimization can be
performed using a variety of methods including rigid body fitting,
user specified conformations, or using a sampling-based methods.
For the IgE-FcϵRI-complex, we evaluate the procedure with an anal-
ysis of minimizing a wide variety of initial GMM conformations.
We evaluate and score the fit of a given conformation directly to
the tilt series by generating projections of our GMM conformation
and individual subunits and compare the projections to their tilt
series counterpart (line 3).

The overlap scores of the individual subunits are stored to a list
used to monitor minimization progress. For each iteration, we eval-
uate changes in overlap score for each subunit. At a given positional
resolution, all subunits are translated each axis in both directions
(6 evaluations total) and overlap scores are calculated. If necessary,

i.e., for evaluating a multi-component subunit, orientation is eval-
uated in a similar fashion to positions using rotation. The results
of position and orientation evaluation are used to generate a new
conformation cnew (line 6). The new conformation is resolved of
any collisions and evaluated for distance constraint satisfaction.

To avoid getting stuck in local minima, we monitor the progress
of the score throughout the minimization process. We do this by
calculating the current average overlap score by averaging the lastw
overlap scores of the minimization. We evaluate progress by adding
the current average overlap score to the list of previously averaged
overlap scores and calculate the differences between consecutive
average scores (deltas). If the most recent delta values of the local
minima interval, i , are less than or equal to zero, the conformation
is considered to be in a local minima (line 9) and is resampled. For
resampling, individual subunit overlap scores are evaluated and the
worst performing subunit is resampled. If the new conformation is
not considered in a local minima, the new sample cnew is validated
(line 12). If cnew is collision free and satisfies all distance constraints,
it is assigned to ccur . If not, the conformation is resampled.

Once a new conformation is generated, ccur is updated and
compared to the current best conformation and is stored if the
overlap score is better (lines 18-21). The best scoring conformation
is returned.

4 EXPERIMENTS
4.1 GMM Parameter Refinement
To evaluate whether or not our GMM model is robust enough to
fit datasets of varying quality, we refine the parameters of our
GMM to a variety of tilt series collected from simulated density
maps of the native conformation of IgE-FcϵRI. Density maps were
generated at three resolutions (20, 30, and 40 Å) using the molecular
modeling software Chimera [18]. Density maps are rendered at a
specified isolevel, producing an image of the surface of a density
map that has been thresholded at the isolevel value. Higher isolevel
values render surfaces that represent higher density volumes in
the map. For lower isolevel values, the surface is typically larger
since the lower threshold results in an increase of volume to render.
As mentioned previously, values can vary between density maps
so isolevel values for rendering are evaluated empirically on a per
dataset basis. For our evaluation, the maps were rendered at two
isolevel values (0.09 and 0.06), resulting in six datasets.

To generate projections for GMM parameter refinement, we
rotate our sample molecule along the X and Y axis (dual-axis).
Rotations about the X axis were generated over 180◦ in 10◦ intervals
(18 angles total). Rotations about the Y axis were generated over
360◦ in 10◦ intervals (36 angles total). All combinations of X and Y
angle values are evaluated, resulting in a total of 648 projections.

For our experiments, two rounds of ten iterations refinement
were used (Algorithm 1). The first round started with an initial con-
formation, and the second started with the results of the first round
(Figure 3). We observed that two rounds of refinement provided
an exceptional increase in model quality, but more rounds did not
significantly improve the result.

From the results, GMM is able to model a variety of density
maps and isosurface values well. Overlap scores of the initial GMM
range from ∼70-85% to the different datasets. After refinement, our
six different datasets all produced GMM parameters with overlap
scores between 91% and 95%, Figure 3. This increase in overlap
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Figure 3: Refinement of the IgE-FcϵRI complex GMM pa-
rameters. Score (Y-axis) is shown overmultiple iterations (X-
axis) for two rounds of optimization.

shows how robust our GMM can be in dealing with various EM
datasets and that we can produce GMMs tailored to fit particular
datasets.

4.2 GMM Tilt Series Fitting
In this section we present results on tilt series fitting using our
GMM and density map projections. We use single axis projection
sets where rotation is performed about the Y-axis. We evaluate
datasets generated from three angle ranges [-45◦, 45◦], [-60◦, 60◦]
and [-90◦, 90◦]. These represent 90◦, 120◦ and 180◦ of total range,
respectively. We used the 30 Å density map of our default antibody
conformation rendered at an isosurface value of 0.09 to generate
our projections. Collision was detected using a σ -scale value of 1.5
and a distance of 3.5 Å was used as D, the distance-per-residue for
distance constraints. Positional and orientation resolutions values
were 1.0 Å and 1.0◦, respectively. Fifty runs of each experiment
were performed.

To evaluate our method, we fit GMM conformations to tilt series
of the native state density map. We setup three conditions to model
potential variation in the initial base position. Each condition allows
a different amount of angle change in the base position. In the first
condition, (No Change), we leave the IgE-FcϵRI complex base alone
and just sample the Fab arms. This is considered the condition with
the highest quality start states. In the second condition (Small), we
randomly sample the IgE-FcϵRI complex base along the Y and Z
axes within an angle range of [-30◦, 30◦] and then sample the Fab
arms. The final condition (Large) is the same as the second but the
angle range is [-60◦, 60◦] and models the condition with the lowest
quality start states.

To determine the quality of the fitting, we used a scoring scheme
to quantify the fit given subunit positions. The Root Mean Squared
Distance (RMSD) of each GMM subunit is calculated, and a cutoff
value of 8.0 Å (determined from subunit RMSD distributions) is
used to determine if a given subunit is properly placed. Average
RMSD values are reported in Table 3 and the number of properly
located subunits is shown in Figure 4.

Table 3 demonstrates that as total angle range increases, RMSD
decreases. Greater visibility, as provided by a larger number and
range of tomograms, improves fitting quality. We see this trend in
all conditions of the starting conformation. We also observe that
starting condition does have an impact on fit quality. Sampling the

Tilt Series No Change Small Large
90◦ 51.45 ± 22.26 57.56 ± 27.24 63.36 ± 27.41
120◦ 45.86 ± 19.69 54.83 ± 26.59 56.60 ± 23.81
180◦ 23.53 ± 12.27 26.58 ± 12.78 38.17 ± 22.36

Table 3: Average RMSD ( Å ) with variance of the fitted GMM
conformations to the native GMM conformation. Rows are
angle range of the tilt series and the average RMSD values
for different starting conditions.

(a) 90◦ Angle Range

(b) 120◦ Angle Range

(c) 180◦ Angle Range

Figure 4: Evaluation of correctly placed subunits for three
experiments with different angle ranges. The number of
generated conformations (Y-axis) is plotted versus percent-
age of correctly placed subunits (X-axis). No Change, Small,
and Large represent the amount of variation in the position
of the base.

base with no angle change performs the best and as base sampling
range increases the fit is worse.

For the smallest total angle range of 90◦ (Fig 4a), we see that
only a small number of conformations (∼17%) produced place more
than half of their subunits in the correct location. Figure 4b demon-
strates that increasing the angle range to 120◦ increases overall
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conformation quality. This is observed in the increase of conforma-
tions with correctly placed subunits, where ∼26% of results placed
more than half of the subunits correctly. This trend is continued
in Figure 4c where the largest angle range of 180◦ produces the
largest percentage of correctly positioned conformations (∼64%).
Of these correct conformations, about 13% have all subunits in the
structure correctly positioned.

5 DISCUSSION AND CONCLUSION
In this paper, we presented a method for flexible fitting of GMM
models to projections from tilt series. We performed this by gener-
ating a GMM representation of atomic models of the IgE-FcϵRI com-
plex. We showed that our GMM can represent a range of tomogram
resolutions. We also showed that the our GMM parameters can be
refined to be compatible with a wide array of datasets. We then used
our GMM to fit tilt series projections directly and evaluated our
method’s ability to perform flexible fitting. From our fitting results,
we are able to see that the minimization scheme we implemented
works better with more information and performs better when the
initial conformation is closer to the conformation described by the
tilt series. For future work, our goal is to work with our experimen-
tal collaborators who produce cryo EM tilt series and begin fitting
their datasets.
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