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Abstract— This paper addresses two challenges facing
sampling-based kinodynamic motion planning: a way to identify
good candidate states for local transitions and the subsequent
computationally intractable steering between these candidate
states. Through the combination of sampling-based planning, a
Rapidly Exploring Randomized Tree (RRT) and an efficient
kinodynamic motion planner through machine learning, we
propose an efficient solution to long-range planning for kin-
odynamic motion planning. First, we use deep reinforcement
learning to learn an obstacle-avoiding policy that maps a robot’s
sensor observations to actions, which is used as a local planner
during planning and as a controller during execution. Second,
we train a reachability estimator in a supervised manner, which
predicts the RL policy’s time to reach a state in the presence
of obstacles. Lastly, we introduce RL-RRT that uses the RL
policy as a local planner, and the reachability estimator as
the distance function to bias tree-growth towards promising
regions. We evaluate our method on three kinodynamic systems,
including physical robot experiments. Results across all three
robots tested indicate that RL-RRT outperforms state of the
art kinodynamic planners in efficiency, and also provides a
shorter path finish time than a steering function free method.
The learned local planner policy and accompanying reachability
estimator demonstrate transferability to the previously unseen
experimental environments, making RL-RRT fast because the
expensive computations are replaced with simple neural net-
work inference. Video: https://youtu.be/dDMVMTOI8KY

I. INTRODUCTION

Consider motion planning for robots such as UAVs [16],
autonomous ships [3], and spacecrafts [22]. The planning
solution needs to satisfy two criteria. First, the solution path
must be feasible, meaning that the path must be collision-
free and satisfy kinodynamic constraints, e.g. velocity and
acceleration bounds even in the presence of sensor noise.
Second, the path needs to be efficient, i.e. near optimal with
respect to objectives such as time to reach the goal. For
example, a motion plan for a car-like robot should avoid
obstacles, reach the goal promptly, not make impossibly
sharp turns, and maintain enough clearance to compensate
for sensor noise.

Current state of the art kinodynamic motion planners
search the robot’s feasible state space by building a tree
data structure of possible robot motions rooted at the robot’s
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(a) RL-RRT and SST in Map 1 (46.1 x 49.5 m)

(b) The Fetch robot (c) Trjectory execution of Fetch in
Map 2 (46.1 x 49.5 m)

Fig. 1. (a) Example trees constructed with RL-RRT (yellow) and SST [14]
(blue) for a kinodynamic car navigating from start (S) to goal (G). (b)
The Fetch robot. (c) RL-RRT (green) and the real-world trajectory executed
(cyan) from the start (green dot) towards the goal (blue dot) in Map 2. Map
2 is a SLAM map of an actual office building.

current state. The methods iteratively use a local planner to
attempt to grow the tree until the goal is reached. While some
tree-based methods grow the tree by randomly propagating
actions, others guide the tree growth to focus state space
expansion thus requiring the local planner to be a steering
function, a control policy that guides a robot to a specific
goal in obstacle-free space, while satisfying the kinodynamic
constraints. For example, consider a car-like robot needing
to translate a small distance to the left, a motion resembling
parallel parking. This motion plan is difficult, even in the
absence of obstacles, and requires a steering function to steer
the car to the goal. Computing the steering function requires
solving an optimal control problem, and is generally NP-
Hard [27]. To date, only very limited robot dynamics such
as linear [26] and differential drive [19] systems have optimal
steering functions.

Besides the existence of steering functions, there are two
additional difficulties facing efficient tree-based kinodynamic
motion planning. First, tree-based methods that use steering
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functions require identifying the state in the tree from which
to grow. This requires a function that compare the distance
between states and return those that are expected to be
easily solved by the steering function. An effective distance
function for kinodynamic planning is the Time To Reach
(TTR) between states using an optimal steering function
[19]. TTR, however, is often expensive to compute as it
involves numerically integrating the steering function [19].
Second, neither the steering functions nor the related TTR
are informed by sensors, and, as a result, do not account for
potential obstacles. For example, if a goal is occluded by a
wall, the steering function is not able to see the wall due to
the lack of sensory input, and TTR would return a value as
if an agent could go through the wall.

Recently, deep Reinforcement Learning (RL) emerged as
a promising near optimal steering function for kinodynamic
systems [12]. In addition, deep RL algorithms can learn
policies that map noisy lidar or camera observations directly
to robot actions, thus enabling obstacle avoidance while
navigating between states for differential drive robots [4],
[5]. With the recent development of AutoRL [4], which uses
evolutionary algorithms to largely eliminate the need to hand-
tune hyper-parameters, network structure and reward func-
tions. This combination offers the promise of deep RL being
employed for local planning, i.e., providing both steering
function and obstacle avoidance. However, RL policies often
lack long-term planning capabilities [17] and get trapped in
environments with complex obstacles [6].

To address the lack of available steering functions, good
distance functions for aiding tree growth, and obstacle-
awareness facing kinodynamic motion planning, we propose
RL-RRT, which combines RL and sampling-based planning.
It works in three steps. First, we learn an obstacle-avoiding
point-to-point (P2P) policy with AutoRL. This is a mapless,
goal-conditioned policy that maps sensor readings to control.
These P2P policies generalize to new environments without
re-training [4]. Second, we train a supervised obstacle-aware
reachability estimator that predicts the time it takes the
P2P policy to guide the robot from a start to goal state
in presence of obstacles, using local observations such as
lidar. The key insight is that the AutoRL policy and the
estimator implicitly learn the topology of the obstacles. This
allows reasonably accurate estimates of time to reach in
new environments. Lastly, presented with a motion planning
problem in a new envrionment, in a RRT setting, we use the
RL policy as a local planner and the reachability estimator
as the distance function. The combination of these two
learning solutions offers two primary advantages. First, by
using RL policies as an obstacle avoiding local planner, RL-
RRT can be applied to a variety of kinodynamic systems
without optimal steering functions. Second, by using the
obstacle-aware reachability estimator, RL-RRT can prune out
randomly sampled states that are un-reachable from the tree,
e.g., the policy is expected to be unsuccessful, and identify
nodes with small TTR to the sampled state. In the example
of a car in front of a wall, the RL policy will go around the
wall, and the estimator will predict that the time to reach

will be longer because of the wall.
We evaluate RL-RRT in two environments with three

kinodynamic robots. Results indicate that AutoRL policies
are effective obstacle-avoiding local planners. The obstacle-
aware reachability estimators, one for each robot, are 74-80%
accurate in identifying if a goal state is reachable. Compared
to a state of the art steering function free method, SST [14],
RL-RRT is up to 2.3 times more likely to identify a path
within a fixed time budget and the identified path is up to
4.5 times shorter. RL-RRT typically identifies dynamically-
feasible paths in very few iterations – 11 in this case – thanks
to intelligent node selection and the obstacle-avoiding local
planner (Figure 1a). The enclosed video demonstrates RL-
RRT tree construction and trajectory execution on a physical
differential drive robot.

II. RELATED WORK

Steering function-based kinodynamic planners, such as
kinodynamic RRT* [26] and D-FMT [23] rely on a steering
function to “pull” the tree to achieve rapid exploration [21]
and a proper distance function [26], [19], [27]. RL-RRT uses
AutoRL [4] to learn steering functions, thus bypassing the
challenging two-point boundary value problem.

Steering function free-based approaches, such as EST [21]
and SST [14], propagate random actions from a selected
node. These methods can be applied to a variety of robot
dynamics, although they tend to “wander” [1], thus they can
take a long time to identify a solution.

Recent research has offered several solutions for P2P
obstacle-avoidance policies on a differential drive robot from
raw sensory input, including learning from demonstration
[20], curriculum learning [28], and reinforcement learning
[25], [4]. Other research offers hierarchical solutions to
navigation, where the RL agent executes a path identified
by another planner, e.g., from a grid [5], PRMs [6], [8], or
manually selected waypoints [11]. However, none of those
methods are designed for kinodynamic robots, leading to
failures at milestones due to dynamic constraints [8].

Designing an effective distance function for sampling-
based kinodynamnic motion planning is challenging [19].
The commonly used Euclidean and weighted Euclidean
distance for configuration space planning is inefficient as
kinodynamic robot states have limited reachability [13]. The
minimum TTR between states is a highly effective distance
function [19], [27] but is often too computationally-expensive
to be used as a distance function [19]. While learned TTR
of a near-optimal differential drive steering function [19] can
overcome the computational complexity, this approach still
requires a near-optimal steering function. Indirect optimal
control has also been used to generate training samples
composed of minimum TTR and optimal control actions
along trajectories [27]. However, this approach currently only
works for low dimensional systems such as inverted pendu-
lum and does not handle limited action bounds. Our approach
addresses these challenges by bypassing the necessity of
a near-optimal steering function via RL. Unlike previous



methods, we also take into account obstacle avoidance, which
can significantly change the minimum TTR.

III. METHODS

RL-RRT is a kinodynamic motion planner that learns
local planner and distance function w.r.t the individual
robot dynamics. It has three main steps. First, we learn an
obstacle-avoiding point to point policy with AutoRL [4].
Next, since the RL policy avoids obstacles, we can use
the policy to generate obstacle-aware reachability training
samples by repeatedly rolling out the learned policy. An
obstacle-aware reachability estimator is trained to predict
the time to reach between two robot states in the presence
of obstacles. Policy and estimator training is done once per
robot in training environments. Third, during planning, RL-
RRT creates dynamically-feasible motion plans using the RL
policy as the local planner and the reachablity estimator as
the distance function. Note, that the training and planning
simulators require simulated depth measurements (e.g. lidar)
around the robot, which can be thought of as analogous to
motion planning with information about clearance.

A. AutoRL Local Planner

We train a RL agent to perform a P2P task that avoids
obstacles. The output of the training is a policy that is
used as a local planner, an execution policy, and a data
generation source for the obstacle-aware reachability esti-
mator. Using one RL policy for both local planning and
path execution is inspired by [8]. This allows the planner to
account for potential noise during path execution. To train
a policy robust against noise, we model the RL policy is a
solution for a continuous state, continuous action, partially
observable Markov decision process (POMDP) given as a
tuple (Ω, S,A,D,R, γ,O) of observations, state, actions, dy-
namics, reward, scalar discount, γ ∈ (0, 1), and observation
probability. The observations are the last three measurements
of the noisy robot lidar and potentially noisy relative goal
position and robot velocity. We define states as the true robot
configuration and its derivative. A black-box robot dynamics
simulator, which maps states-action pairs to states, is an
input to the RL training environment. Another black-box
simulator maps the robot state to noisy lidar observations
w.r.t. obstacles. The goal is to train the agent to reach a
goal state, G, within radius, dG. Note that AutoRL identifies
a policy that maps noisy sensor and state observations to
action. We explore simulated lidar measurement noise in this
work and left state estimation and process noise to future
work. AutoRL training is required only once for a given
robot.

AutoRL [4] over DDPG [15], used for learning the RL
agent policy, takes as input: observations, actions, dynamics,
goal definition, (G, r), and a parametrized reward, R : O ×
θr → R,. The agent is trained to maximize the probability of
reaching the goal without collision. This is achieved by using
evolutionary algorithms over populations of agents to find a
dense reward that maximizes successful goal reaching. Each

generation of agents is trained with a new reward, selected
based on the previous experience. At the end, the fittest agent
that performs P2P tasks best, is selected as the P2P policy.
In this work, all three agents use the same observations, goal
definitions, and neural network architectures, but differ in the
robot dynamics and reward features used.

As an example, we explain the training of the Asteroid
robot here (details of the robot are in the Appendix). Details
for the Differential Drive and Car robot can be found in
[4] and [8]. The observation is a vector of 3Nbeams noisy
lidar returns concatenated with the relative planar position
of the goal, the robot velocity and orientation (3Nbeams + 5
dimensional vector). The state is the planar position, velocity
and orientation of the robot. The action is the amount
of forward thrust and turn rate. The parameterized reward
includes

RθrDD
= θT [rgoalrgoalDist rcollision rclearance rspeed rstep rdisp ],

where rgoal is 1 when the agent reaches the goal and 0
otherwise, rgoalDist is the negative Euclidean distance to the
goal, rcollision is -1 when the agent collides with obstacles and
0 otherwise, rclearance is the distance to the closest obstacle,
rspeed is the agent speed when the clearane is below 0.25m,
rstep is a constant penalty step with value 1, and rdisp is sum
of displacement between the current and positions 3, 6 and
9 steps before. θ is the weight vector tuned by AutoRL.

B. Obstacle-Aware Reachablity Estimator

We further improve upon work in [19] by learning the TTR
of an obstacle-avoiding P2P RL policy learned in Section
III-A. Our obstacle-aware reachability estimator provides
the following benefits: 1) It does not need an engineered
near-optimal steering function for each robot dynamics. This
allows TTR learning for robot systems without near-optimal
steering functions. 2) Due to the presence of obstacles, the
minimum TTR between states is a function of both robot
dynamics and obstacles. Since RL policies can also learn to
avoid obstacles, the obstacle-aware reachability estimator can
provide additional benefit over TTR estimators that consider
only obstacle dynamics such as [19].

1) Training data collection: Algorithm 1 summarizes the
training data collection. First, for each episode, we initialize
the robot with randomly chosen start and goal states (Alg.
1 line 2). Next, we execute the policy until the episode
terminates (lines 4-11) due to reaching the goal, collision, or
reaching a time horizon Thorizon. During execution, we record
the robot observation at each time step (line 8) and compute
and record the TTR cost (lines 9-10). The TTR cost is set to
∆t at every time step. To classify whether the robot can reach
the goal, we use a simple heuristic that penalizes trajectories
that do not reach the goal. If the robot is in collision or the
time horizon is reached (elapsedTime equals to Thorizon), the
TTR cost of that time step is set to ∆t + Thorizon, and the
episode is terminated immediately by setting isDone to true.

After an episode terminates, we compute the cumulative
future TTR cost for all states along the trajectory, i.e.,



Algorithm 1 Training data collection
Input: π(o): Obstacle avoiding P2P RL policy, Nepisode: Number of

episodes, ∆t: Time step size, Thorizon: Reachability horizon
Output: trainingData = (o1, y1), (o2, y2), · · · , (oN , yN ).

1: for i = 1, · · ·Nepisode do
2: s, g = sampleStartAndGoal()
3: elapsedTime = 0
4: while isDone is False do
5: elapsedTime += ∆t
6: o = makeObservation()
7: executePolicy(π(o), ∆t)
8: obsHistory.append(o)
9: c, isDone = getTTRCost(elapsedTime, Thorizon)

10: costHistory.append(c)
11: end while
12: cfc = computeCumulativeFutureCost(costHistory)
13: for j=0, len(obsHistory) do
14: trainingData.append((o = obsHistory[j], y = cfc[j]))
15: end for
16: obsHistory.clear(); costHistory.clear()
17: end for
18: return trainingData

remaining cost-to-go to the end of the trajectory (line 12).
The observation and cumulative future cost of each time
step form a training sample and is recorded (line 14). The
process repeats for Nepisode = 1000 episodes. We designed
the TTR cost heuristic such that if the robot reaches the goal,
the cumulative future cost of each state along the trajectory
is the TTR between that state and the goal. Conversely,
if the robot failed to reached the goal due to collision or
the episode reaches time horizon, all cumulative future cost
along the trajectory will be larger than Thorizon. By employing
a common machine learning technique that uses a regressor
and a threshold value as a classifier [10], we can quickly
classify whether a goal state can be reached during planning.

2) Reachability Estimator Network: We train the obstacle-
aware reachability estimator network with the training data
collected above. The network input is the robot observation o
and the output is the estimated TTR. We use a simple three-
layer fully-connected network with [500, 200, 100] hidden
neurons with each a dropout probability of 0.5. We use the
L2 loss between estimated TTR and the V-value label from
the training data.

C. RL-RRT

Alg. 2 describes RL-RRT. While the standard RRT algo-
rithm was utilized, modifications were made to efficiently
utilize the obstacle-aware reachability estimator and the
obstacle-avoiding RL local planner.

Within RL-RRT, the obstacle-aware reachability estimator
can provide insight into the best samples to enhance tree
growth. However, as we began to use the estimator, it
became clear that the obstacle-aware reachability estimator
can take longer than the standard Euclidean distance metric
to compute (about 0.5 ms vs. 7 µs for Euclidean). Therefore,
to enhance computation time in large trees, the estimator
was integrated into a hierarchical nearest neighbor selector.
Similar to [2], the method first identifies kc candidate nodes
closest to xrnd using Euclidean distance (Alg. 2, line 8), and

Algorithm 2 RL-RRT
Input: π(o): Obstacle avoiding P2P RL policy, ∆ttree: Tree extension time

step size, ∆t: policy time step size, Thorizon: Reachability horizon,
PgoalBias: Goal bias, xroot: Current robot state, kc: Number of candidate
nodes

Output: P: Motion plan.
1: iteration = 0
2: T .add(makeNode(xroot, None))
3: while termination condition not met do
4: iteration += 1
5: goodXrndFound = False
6: while not goodXrndFound do
7: xrnd = sampleCollisionFreeStateSpace(PgoalBias)
8: candidateNodes = findNearestNodesEu(T , xrnd, kc)
9: nnearest = findNearestNode(candidateNodes, xrnd)

10: TTR = getAvgTTR(nnearest, xrnd)
11: if TTR < TTRthreshold or rnd > Pprune then
12: goodXrndFound = True
13: end if
14: end while
15: xnew = nnearest.state; textend = 0
16: while not (textend > tmaxExtend or reach(xnew, xrnd) or xnew is in

collision) do
17: textend += ∆t
18: o = makeObservation(xnew, xrnd)
19: xnew = propagateDynamics(π(o), xnew)
20: if xnew is not in collision and textend % ∆ttree = 0 then
21: T .add(makeNode(xnew, xrnd))
22: end if
23: end while
24: end while
25: return P = extractMotionPlan(T )

subsequently these choices are filtered by the obstacle-aware
TTR between each candidate node and xrnd. To alleviate
noise in the TTR estimator, we take the average of the TTR
between the selected node and NTTR sample=10 target states
around xrnd, i.e., within a hypercube of dTTRsample=0.3
units (line 10). The node with the lowest average TTR
is selected for RRT extension (line 9). In addition, the
obstacle-aware reachability estimator can also be used to
check whether the randomly sampled state xrnd is reachable
from the nearest node nnearest. Recall that the TTR reward in
Section III-B is setup such that any xrnd unreachable from
nnearest.state has an associated V-value larger than Thorizon. As
the result, the estimated TTR can be used to prune out xrnd
that are un-reachable from the tree within Thorizon. However,
since the estimated TTR is not exact, we made the pruning
probabilistic, i.e., if xrnd is deemed unreachable, it will be
pruned with probability Pprune (line 10). If xrnd is pruned, it
is rejected and a new xrnd is sampled (line 6).

After the nearest node is selected, RL-RRT uses the RL
policy π as the local planner (lines 15-24). Specifically, an
observation o which includes simulated lidar, robot state,
and goal information is made at every policy time step ∆t
(line 17). This observation is fed to the RL policy, which
produces an action that can be used to forward propagate
the dynamics to a new state xnew (line 18). This process
repeats and a new node storing xnew is created, and added
to the tree every ∆tree seconds (line 21), until xnew is in
collision, a maximum extension time is reached (line 20), or
xrnd is reached (line 20).

RL-RRT terminates when either the tree reaches the goal



or after a fixed amount of computation time is exhausted
(line 3). If the tree reaches the goal, a dynamically-feasible
motion plan can be returned (line 25).

IV. EVALUATION

To demonstrate RL-RRT, we evaluate our method on
three kinodynamic robots in two environments unseen during
training, and we experimentally verify the method on a
physical differential drive Fetch robot from Fetch Robotics.

A. Setup

The three robots we evaluate are: Car, Asteroid, and Fetch.
Car is a kinematic car with inertia [18] with a maximum
steering angle 30◦, and a 1.0 m/s2 maximum acceleration
and speed of 1.0 m/s. Asteroid has similar dynamics to those
found in the popular video game Asteroid, and we chose it
since it is highly kinodynamic, unintuitive for a human to
control, and has no known optimal steering function. The
details are available in the supplemental materials. The Fetch
robot has a radius of 0.3 m, 1.0 m/s maximum speed and
2.0 rad/s turn rate. The sensor noise is simulated by a zero
mean Gaussian with a standard deviation of 0.1 m. We use
the Fetch robot as a differential drive platform for on-robot
experiments.

All point-to-point policies are trained in the environment
depicted in Figure 4a. We evaluate RL policies and plan in
two office building environments, Map 1 (Figure 1a) and
Map 2 (Figure 1c), which are roughly 15 and 81 times
larger than the training environment, respectively. Map 1 is
is generated from a floor plan, while Map 2 is generated
using a noisy SLAM of the Fetch physical testbed where we
ran the experiments. These environments include parts that
are cluttered, as seen in Map 1, and very narrow corridors,
such seen in Map 2.

We compare RL-RRT to SST [14], a state of the art
steering function free kinodynamic motion planner. For Fetch
robot, we also compare to RRT with Dynamic Window
Approach (DWA) [7] as local planner (denoted RRT-DW).
Additionally, we test disabling the clearance term of DWA,
essentially turning it into a MPC-based steering function (de-
noted RRT-S). All experiment are repeated 50 times. Besides
AutoRL training, all computation was done on an Intel Xeon
E5-1650 @ 3.6GHz using TensorFlow 1.x (Google release)
and Python 2.7. AutoRL policies were implemented with
Google Vizier [9] and TFAgents [24].

B. AutoRL Policy Performance

We use pre-trained P2P policies for Fetch [4] and Car [8]
robots. Their short description is available in the Appendix.
The Asteroid P2P policy is original to this paper. All agents
are trained with AutoRL over DDPG [4]. The goals are
randomly placed within 10 m. We train 100 agents in parallel
over 10 generations as in [4]. The training took roughly 7
days.

Figure 2 shows the success rate of the P2P agents com-
pared to goal distance. Notice that when the goal distance

Robot Confusion Matrix Prec. Recall Accur.
True (%) (%) (%) (%)

Fetch Predicted 42.7 21.6 66.4 92.2 74.8(%) 3.6 32.1

Car Predicted 44.5 14.2 75.8 90.2 81.0(%) 4.8 36.5

Asteroid Predicted 26.5 16.3 61.9 73.4 74.1(%) 9.6 47.6

TABLE I
REACHABILITY ESTIMATOR CONFUSION MATRIX, PRECISION, RECALL,

AND ACCURACY IN THE TRAINING ENVIRONMENT.

is 10 m or farther than the trained policy, the performance
degrades. We also notice that the Car policy is best perform-
ing, while the Asteroid policy is the most challenging. These
results show that AutoRL produces, without hand-tuning,
effective local planners, i.e., both a steering function and an
obstacle avoidance policy for a variety of robot dynamics.

C. Reachability Estimator Performance

The obstacle-aware reachability estimator is trained in the
training environment with goals sampled within 20 m from
the initial states, twice the distance used for P2P training. The
estimator network was trained on 1000 episodes with about
100,000 samples. Data generation takes about 10 minutes.
The reachability thresholds are 20 seconds for differential
drive and Asteroid, and 40 seconds for Car. Each estimator
was trained over 500 epochs and took about 30 minutes.

Accuracy of the models is between 70% and 80% (Table
I). Notice that a high recall means that the estimator misses
fewer nodes, and suggests that the paths RL-RRT produces
should be near-optimal. On the other hand, relatively low
precision implies that RL-RRT will explore samples that end
up not being useful. This means that we can speed-up RL-
RRT further by learning a more precise predictor.

The reachability estimator overestimates the TTR of reach-
able states across all robots (Fig. 3). However, overestimation
disappears when trained and evaluated only on reachable
states (see Fig. 1 in Appendix for more detail). This suggests
that the overestimation of TTR is likely due to the TTR cost
heuristic uses a penalty for states unreachable within Thorizon.
We leave identifying better TTR cost heuristics and estimator
network architectures for future work.

In general, the estimator captures the regions of start states
that cannot reach the goal (blue dot) (Fig. 4). This is most
visible at the bottom right region of the environment, which
has a TTR larger than the 40s horizon which indicates that
the policy failed to escape that region. We also see that the
estimated TTR captures the dynamics of Car robot, i.e., since
the goal orientation is facing right, it takes less time to reach
the goal from the left, top or bottom than from the right.
Note that the network is never trained on trajectories that
start inside of obstacles and thus cannot accurately predict
TTR starting from those states, an event which should not
occur in sampling-based planning.



(a) Differential Drive (b) Car (c) Asteroid

Fig. 2. AutoRL P2P navigation success rate as a function of start and goal distance for (a) Fetch, (b) Car and (c) Asteroid robot. The success rates are
evaluated in Map 1 with randomly sampled start and goal states.

(a) Differential Drive (b) Car (c) Asteroid

Fig. 3. Predicted cumulative future time to reach cost v.s. true value for various robots.

(a) Training environment (22.7 x
18.0 m)

(b) Predicted (c) Ground truth

Fig. 4. (a) The training environment. Contour plot of (b) Predicted future cumulative time to reach cost v.s. (c) the true value for Car to reach the goal
near the center marked by the blue dot. The white regions have time to reach value over the 40s horizon, i.e., un-reachable. All start states and the goal
have 0 as linear speed and orientation.

D. Planning Results

RL-RRT finds a solution faster than SST for all three
robots in both environments (Fig. 5a, 5b, 5c). Note that Car
shows the best improvement over the baseline (up to 2.3
times faster), which matches the high success rate of the
P2P Car policy. Conversely, the least improvement is for
Asteroid, which is the most challenging for the RL agent.
Figure 5a also shows that RL-RRT finds a solution faster than
steering function-based methods, where DWA was used as
the steering function (yellow, RRT-S) and obstacle-avoiding
steering function (red, RRT-DW). These results are expected
as RL-RRT learns a obstacle-avoiding local planner that can
often go through very narrow corridors and move around
corners (Figure 1a). In comparison, DWA often gets stuck
around corners. To separate the impact of the RL local
planner as compared to the reachability estimator, we tested
RL-RRT without the estimator and use Euclidean distance to
identify the nearest state in the tree instead. Figures 5a, 5b
and 5c show that RL-RRT without the reachability estima-
tor (magenta curves) performs worse than RL-RRT for all
robots. This is expected as the reachability estimator prunes

potentially infeasible tree-growth, thereby biasing growth
towards reachable regions. Also, the reachabilty estimator
encodes the TTR and is thus more informative than the
Euclidean distance for kinodynamic robots such as Asteroid.

The finish time of trajectories identified by RL-RRT are
significantly shorter (up to 6 times shorter) than SST for all
robots (Fig. 5d, 5e, 5f) and comparable to RRT-DWA and
RRT-S on differential drive. This is expected as SST does
not use steering functions. Instead, it randomly propagates
actions, resulting in a “jittery” behavior (visible in Figure
1a) and long finish time. The comparable finish time with
steering function-based methods show that RL-RRT learns a
near-optimal steering function.

E. Physical Robot Experiments

In order to verify that the RL-RRT produces motion plans
that can be used on real robots, we executed the motion
plans on the Fetch robot (Figure. 1b) in Map 2 environment.
We ran 10 different motion plans, repeated 3 times. Figure
1c presents one such trajectory. The straight line distance
between the start and goal is 20.8 m. In green are tree



(a) Differential Drive. (b) Car (c) Asteroid

(d) Differential Drive. (e) Car (f) Asteroid

Fig. 5. Success rate (top) and Finish time (bottom) of RL-RRT (black) compared to, SST (blue), RRT-DW (red, RRT with DWA obstacle-avoiding steering
function), RRT-S (yellow, RRT with DWA as the steering function) and RL-RRT-E (magenta, RL-RRT using Euclidean distance instead of the reachability
estimator) in Map 1 (M1) and Map 2 (M2).

nodes for a path, and the blue line is the executed robot
path with the P2P AutoRL policy. We notice two things.
First, the path is similar to the one humans would take. The
shortest path leads through cubicle space, which is cluttered.
Because the P2P policy does not consistently navigate the
cubicle space, the TTR estimates are high in that region and
the tree progress slowly in that area. At the same time, in
the uncluttered space near the start position (left and right)
the tree grows quickly. The executed trajectory (in blue)
stays close to the planned path. Enclosed video contains the
footage of the robot traversing the path.

V. DISCUSSION

(a) Two Astroid trajectories. (b) V-value and TTR.

Fig. 6. (a) Two trajectories (green and red) of the Asteroid robot from the
yellow dots to blue dots. (b) The corresponding predicted TTR (solid lines)
and the negative of V-value from DDPG’s critic net (dashed lines).

Deep actor-critic RL methods approximate the cumulative
future reward, i.e., state-value function with the critic net.
Intuitively, the state-value function captures the progress
towards the goal and may be used as a distance function
during planning. Here we show that this is not the case when
proxy rewards are used. AutoRL uses proxy rewards (shown
in Section III-A) since they significantly improve learning
performance, especially for tasks with sparse learning sigals

such as navigation [4]. Fig 6a shows examples of two
Asteroid trajectories and Fig. 6b shows the corresponding
the estimated TTR (solid lines) and negative of DDPG state-
value function extracted form the critic net (dashed lines).
The obstacle-aware reachability estimator correctly predicted
the TTR while the DDPG’s critic net has a significant
local maximum, thus unsuitable as a distance function. This
finding motivated the supervised reachability estimator.

(a) Predicted (b) Ground truth

Fig. 7. Contour plot of (a) Predicted future cumulative time to reach cost
v.s. (b) the true value for Car to reach the goal near the center marked by the
blue dot. The white regions have time to reach value over the 40s horizon,
i.e., un-reachable. All start states and the goal have 0 as linear speed and
orientation. The environment size is 50 m by 40 m.

One limitation of RL-RRT is that the obstacle-aware
reachability estimator approximates reachability using only
local information such as simulated lidar measurements
around the robot. However, the true reachability is often
impacted significantly by large-scale obstacle structures. Fig-
ure 7 demonstrates this limitation. The ground truth shows
that the Car policy generally fails to reach the goal outside
of the center box due to the complex maze-like obstacles
(Figure 7b). The reachability estimator failed to predict this
as some regions outside of the center box are incorrectly



predicted as reachable (Figure 7a). On the other hand, we
also demonstrated that the estimator performs well when the
training and planning environments are similar (Figure 4).
This suggests that the reachability estimator should to be
trained in environments similar to the planning environment
or perform online adaptation/learning during planning. We
leave the latter to future work.

VI. CONCLUSIONS

This paper contributes RL-RRT, a kinodynamic planner
which works in three steps: 1) learning obstacle-avoiding
local planner; 2) training an obstacle-aware reachability
estimator for the learned local planner; and 3) using the
estimator as the distance function and to bias sampling in
RRT. Unlike traditional kinodynamic motion planners, RL-
RRT learns a suitable steering and distance function. The
robot is trained once, and the policy and estimator transfer
to the new envrionments. We evaluated the method on three
kinodynmic robots in two simulated environments. Com-
pared to the baselines, RRT plans faster and produces shorter
paths. We also verified RL-RRT on a physical differential
drive robot. For future work, following PRM-RL, we plan to
improve the noise robustness of RL-RRT by Monte Carlo
roll-outs during tree extensions. We also plan to identify
better TTR cost heuristics, network architectures and online
adaptation of the reachability estimator.
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SUPPLEMENTAL MATERIAL:
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REWARDS FOR THE P2P
A. P2P for differential drive robots

The P2P agent was developed in [4]. The reward is:

RθrDD
= θTrDD [rgoalrgoalDist rcollision rclearance rstep rturning ], (1)

where rgoal is 1 when the agent reaches the goal and 0 otherwise,
rgoalDist is the negative Euclidean distance to the goal, rcollision is 1
when the agent collides with obstacles and 0 otherwise, rclearance is
the distance to the closest obstacle, rstep is a constant penalty step
with value 1, and rturning is the negative angular speed.

B. P2P for kinodynamic car robots
The P2P agent was developed in [8]. The robots dynamics is

identical as [18]. The reward is:

RθrCM
= θTrCM [rgoalrgoalProg rcollision rstep rbackward ], (2)

where rgoal, rcollision and rstep are the same as the differential drive.
rgoalProg rewards the delta change of Euclidean distance to the goal.
rbackwards is the negative of backwards speed and is zero when the
robot moves forward. Nbeam = 64.

SUPPLEMENTAL MATERIAL:
ASTEROID

Asteroid has a similar dynamics to those found in the popular
video game Asteroid.

ẍ = athrustcos(θ)− κẋ (3)
ÿ = athrustsin(θ)− κẏ (4)

θ̇ = aθ (5)

athrust is the thruster acceleration action ranged from [-0.5, 1.0]
m/s2 while aθ is the turn rate action ranged from [-0.5, 0.5]
rad/s. κ = 1.0 s−1 is the first order drag coefficient, resulting
in a maximum speed of 1.0 m/s. Nbeam = 64.

SUPPLEMENTAL MATERIAL:
TIME TO REACH ESTIMATORS

The obstacle-aware reachability estimator combines rechable
state classification and TTR estimation in order to bias tree-growth
towards reachable regions and identifying nearest neighbors. Here
we explore estimating only the TTR by training a TTR estimator
that is trained only by trajectories that reached the goal. Fig. 8
shows the predicted TTR and the ground truth for various robots.
Unlike the reachability estimator (Fig. 4 in the main paper), the
TTR estimator does not overestimate TTR. This suggests that the
overestimation of the reachability estimator is caused by the TTR
cost heuristic penalizing unreachable states.

(a) Differential Drive (b) Car

(c) Asteroid

Fig. 8. Predicted time to reach v.s. true value for various robots. The
estimators are trained and evaluated with only states that can reach the
goal.
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