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Abstract— Coordinated defensive escorts can aid a navigating
payload by positioning themselves strategically in order to
maintain the safety of the payload from obstacles. In this
paper, we present a novel, end-to-end solution for coordinating
an escort team for protecting high-value payloads in a space
crowded with interacting obstacles. Our solution employs deep
reinforcement learning in order to train a team of escorts
to maintain payload safety while navigating alongside the
payload. The escorts utilize a trained centralized policy in a
distributed fashion (i.e., no explicit communication between the
escorts), relying only on range-limited positional information of
the environment. Given this observation, escorts automatically
prioritize obstacles to intercept and determine where to inter-
cept them, using their repulsive interaction force to actively
manipulate the environment. When compared to a payload
navigating with a state-of-art algorithm for obstacle avoidance
our defensive escort team increased navigation success up to
83% over escorts in static formation, up to 69% over orbiting
escorts, and up to 66% compared to an analytic method
providing guarantees in crowded environments. We also show
that our learned solution is robust to several adaptations in
the scenario including: a changing number of escorts in the
team, changing obstacle density, unexpected obstacle behavior,
changes in payload conformation, and added sensor noise.

I. INTRODUCTION

Successful navigation in crowded scenarios often requires
assuming a non-zero collision probability between the agent
and stochastic obstacles [1]. This required assumption of
risk is potentially frightening given the value of cargo that
modern autonomous agents will be transporting, e.g., human
life. In many real-world scenarios, humans employ escorts
for enhanced safety in crowds during high-consequence
navigation, e.g., a parent with a child, presidential security,
or military convoys. For example, the US Army employs a
tactical convoy to move a payload, personnel and/or cargo,
via a group of ground vehicles to or from a given destination.
Some of the vehicles in the convoy act as coordinated escorts
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Fig. 1. Our experimental setup demonstrates the payload (large orange dot) navigating
to the goal (black dot) with coordinated escorts (blue dots) interacting with obstacles
(grey dots). The blue outlined circles indicate the sensor radius of the escorts. The
orange outlined circle indicates a cordon safety area around the payload.

to prevent traffic from overtaking the convoy, dispersing
crowds, and/or establishing a secure perimeter (cordon area)
that is essential to the safety of the soldiers. We focus on
the protection of a payload, similar to this convoy protection
scenario, and provide a deep reinforcement learning (deep
RL) solution. Our solution is able to learn pedestrian-like,
interacting, environmental dynamics and exhibits emergent
cooperative behavior while no explicit communication be-
tween the escorts is considered in the system design. Fig. 1
illustrates our problem setup. The navigating payload is
represented by the orange circle surrounded by three blue
dots, defensive escorts, protecting the payload. The escorts
protect the payload by enforcing the cordon area around the
payload, encompassed by the orange ring, while the payload
navigates to the destination, the black dot labeled ‘Goal’. The
environment is crowded with interacting moving obstacles,
e.g., pedestrians, shown by the gray dots. The blue ring
centered around each escort represents the lidar sensor range.

Over several decades, diverse variations of related prob-
lems have been considered (detailed in Sec. II) includ-
ing: convoy protection [2]–[5], perimeter surveillance [6],
[7], multi-robot coordination [8], multi-player perimeter de-
fense [9], [10], multi-player reach avoid [11], [12], and
guarding a territory game [13]–[15]. Some recent work con-
siders variations that are similar to ours, including moving
obstacles, payload protection and obstacle interception by
escorts [9]–[12], [16]–[19]. However, due to the curse of
dimensionality [20], the obstacle dynamics don’t consider
interaction and are first-order [9]. Solutions based on learning
have recently emerged as potential solutions. However, their
focus has been on non-interacting obstacles [10], [13], [14],
[18], consider only one obstacle [13], [14], or assume some
communication between escorts [10], [18].



We set out to protect the moving payload in an environ-
ment with a high density of non-aggressive but interacting
moving obstacles. Solutions such as ours are critical, as
previous work has shown that successful navigation is not
possible when aggressive obstacles grossly outnumber the
escorts [9]. Additionally, solutions are highly relevant to
real-world applications where robotic agents are tasked to
navigate through a crowd, e.g., pedestrians, using observa-
tions. We consider that the number of obstacles is orders
of magnitude larger than the number of escorts, e.g., 50
obstacles to 3 escorts. The obstacles interact with one another
and with the escort through a social force model [21].

The complexity of the problem dynamics due to numer-
ous interacting moving obstacles motivates an end-to-end
learning solution. We present an autonomous solution to
the navigation scenario where a team of escorts learn to
defend the payload. A trained centralized policy is used in
a distributed manner by each escort. Escorts learn to follow
along the navigating payload and to disperse obstacles ex-
pected to enter the cordon region. Our deep RL solution takes
only range-limited observations of the environment, i.e., only
positional information of obstacles within a sensor range
(not velocity or acceleration), and no other information. The
escorts learn to adapt to obstacles with interacting motions
and automatically coordinate themselves around the payload.
Each escort merely proximally observes other agents, i.e.,
escorts, obstacles, and the payload.

Our deep RL solution provides enhanced safety of the
payload along a fixed navigation route as compared to agile
maneuvering of the payload using a state-of-the-art obstacle
avoidance algorithm [22], formations of escorts [6]–[8],
and an analytical solution with guarantees [9]. Our learned
solution is scalable to number of obstacles and escorts
and is robust to changes in scenarios such as a changing
conformation of the payload, unexpected obstacle motion,
and sensor noise. A video highlighting results is attached.

II. RELATED WORK

There are several related problems regarding protection
where the terminology varies widely. While we provide a
perspective on the recent literature, we fix the terminology
in Section I to avoid confusion. For example, synonymous
terms to our obstacles are: attackers, intruders, evaders,
invaders, adversaries, and synonymous to our escorts are: de-
fenders, pursuers, guardians, bodyguards. Our terms, payload
and cordon, can be thought of as the convoy, target, or terri-
tory. One category of related methods focuses on strategies to
guarantee visual surveillance of a static or moving payload.
Optimal control [2], [3], moving path following methods [4],
and hierarchical system approaches [5] are used to solve for
the surveillance strategies in both an idealized model [2],
[3] and physical models with constraints on the escorts and
the payload motions [4]. While these problems focus on the
strategy to provide continuous surveillance of the payload, it
is in the absence of moving obstacles.

The most closely related work to our problem focuses on
protecting a moving or static region from obstacles using

defensive escorts. This is typically handled in two ways by
the escorts, by either employing passive or active behavior. In
the first category, escorts provide passive protection, taking
no actions to actively pursue and intercept obstacles. Using
sampling-based motion planning, [6], [7] propose a virtual
fence, created by multiple robot escorts circling around the
perimeter, to protect the perimeter of a moving cordon area.
A combination of physics-based motion planning and an
artificial potential field method is used in [8] to coordi-
nate escorts to surround a payload. In these methods, full
knowledge of the environment is required including full
dynamical information, only static obstacles are considered
and escorts are restricted to orbiting motion [6], [7] or
to a static formation with planning done off-line [8]. In
the second category, active interception of aggressive and
strategic obstacles, methods such as two-player [13], [15]
or multi-player [9], [11], [12], [14], [16], [17] differential
games have been used. Optimal strategies and bounds on es-
corts’ performances in multi-player games are found through
Hamilton-Jacobi-Isaacs formulation [11], [12] or by using
geometric methods [9]. This centralized optimal solution has
been mapped to a decentralized escort policy [10] using
supervised learning. Some methods also employ fuzzy logic
to compensate for uncertainties in observations [13]–[15],
and use Fuzzy RL techniques such as fuzzy Q-learning [23]
and fuzzy actor-critic [24] to approximate optimal solutions.
In these methods, however, the obstacle dynamics considered
are of first-order [9], [14], no obstacle-obstacle interactions
arising from the dynamics are considered, and full knowledge
of the obstacles within observation are required. In order to
address some of the issues of other active escort solutions,
a deep RL solution was proposed recently for perimeter
defense games [18]. That work considers a robotic escort
team protecting a VIP payload from aggressive and non-
aggressive obstacles. While the problem set up is similar to
ours, that work does not consider interacting obstacles and
relies on communication between the escorts.

Deep RL has recently shown great success on highly
dynamic navigation tasks [25]. Some methods combine
long-range planning with highly adaptable short-range deep
RL solutions that continually replan in order to navigate
collision free [26], [27]. Some of our prior work presented
a deep RL solution for navigating in dynamic environments
and compared the learned collision probabilities against a
formal and complete method [22]. Other navigation-based
problems like Pursuit-Evasion and Waterworld have been
previously studied by extending deep RL algorithms to coop-
erative multi-agent systems [28] that do not use any explicit
communication. Although these solutions involve dynamic
obstacle avoidance and learning cooperative navigation, the
navigation objectives do not involve enhancing safety by
escorting a moving payload.

III. PROBLEM FORMULATION

Rather than finding or approximating an escort’s policy
by analytic or semi-analytic means or through dynamic pro-
gramming [29], reinforcement learning approximates the pol-



icy by trial-and-error commonly through policy gradient [20].
The gradient includes the information about the quality of the
policy and the change to improve the policy. This quality
information, through the value of a state, depends on the
reward structure. Value of a state (or state value) is the
expected cumulative future reward of the current state. A
unique advantage of a RL solution is that it is agnostic to
the system dynamics, i.e., agent and environmental dynamics
such as properties of the obstacle space and motions. This
is because RL is devised to learn the mapping between ob-
servation and action given an objective (cumulative reward)
and environment.

A. System Dynamics

We consider holonomic escorts protecting a payload that
navigates in a straight line with constant speed from a start
to a goal. The surrounding environment is densely populated
with non-aggressive interacting obstacles, i.e., moving with
acceleration. The obstacles are assumed to move at most at
the speed of the escorts as seen in similar problems [9], [22].
This assumption is realistic given pedestrian-like obstacles.

These obstacles interact both between themselves and with
the escorts through a social force model originally designed
for interacting pedestrians [21]. In this model, temporal
change in the velocity, wk, of an obstacle k is obtained
through the force acting on it, Fk(t),

Fk(t) := F 0
k +

∑
l 6=k

Fkl +
∑
i

Fki,
dwk

dt
:= Fk(t). (1)

Note that we assume all the obstacles and escorts to have
the same mass, and without loss of generality, set the mass
to unity. Hence, the force terms are assumed to be forces per
unit mass although we refer to them as forces. The social
force takes into account the tendency of an obstacle to reach
a certain desired velocity with a relaxation time. This effect
is given by F 0

k , and the repulsive effects of other obstacles,
l, and escorts, i, are given by Fkl and Fki, respectively.

The repulsive potential is implemented as in [21], and is
assumed to decrease exponentially in the form of an ellipse
that is directed into the direction of motion. The repulsive
effects are only felt if an obstacles is within the influential
radius and inside the directionally dependant vision cone
of other obstacles. The escorts can apply social forces on
the obstacles. However, escorts don’t apply social forces
amongst one another and the escorted payload does not apply
social forces. The lack of social force on the payload has
been commonly used due to the presence of distracted
pedestrians whose unawareness could cause collision [30].

B. Multi-agent Partially Observed Markov Decision Process

Formally, the Payload Protection Problem can be formu-
lated as a multi-agent extension of a Partially Observed
Markov Decision Process (POMDP) [31], given as a tuple
(S,AN ,O, R, T , ρ,N ,K, γ), where agents are the escorts.
N = {1, 2, . . . , i, . . . , N} and K = {1, 2, . . . , k, . . . ,K} are
the sets of homogeneous escorts and homogeneous obstacles

in the system, respectively. At a given time, si ∈ Si, sk ∈ Sk,
and sp ∈ Sp are the states of the i-th escort, k-th obstacle,
and the payload. The state space S of the system is given
by S ≡ {Si}i∈N × {Sk}k∈K × Sp.

At each step, for a given state s ∈ S, the escort i ∈ N ,
receives a range-limited observation oi ∈ Oi, determined by
the conditional observation probability ρ(s, oi) = P (oi|s)
and takes an action ai ∈ A given by a parametrized policy,
πθ(oi, ai), where θ represents the set of parameters. Given
actions from all the escorts, a joint action {ai}i∈N = a ∈
AN is formed which induces transition in the environment
according to the state transition function T (s, a, s′) =
P (s′|s, a).

The observation of i-th escort is given by oi =
({oi,k}k∈K′ , {oi,j}j 6=i∈N ′ , oi,p) where K′, N ′, {oi,k}k∈K′ ∈
Oi,K, {oi,j}j 6=i∈N ′ ∈ Oi,N , and oi,p ∈ Op respectively, are
the subset of obstacles, escorts, and the payload within the
sensor range of i-th escort. This observation is assumed to
be made by an arbitrary sensor which we chose to be a 1-
d lidar with α rays equally distributed radially. Specifically,
{oi,k}k∈K′ is a vector of α elements where each element
is the minimum of distance to the nearest obstacle and
the lidar range, along each ray. {oi,j}j 6=i,j∈N ′ and oi,p are
defined similarly. Range-limited observation is due to the
finite sensor range and one assumption on the lidar: while
agents of the same kind, i.e., escort-escort and obstacle-
obstacle, occlude each other from the lidar rays, agents of
different kinds do not occlude.

For the action ai in state s, the escort i receives a global
reward R(s, ai). Each escort individually tries to maximize
their expected cumulative reward, E

τ∼π
[R(τ)], discounted by

γ, where τ represents a sequence of states and actions of the
escorts following the policy π.

The payload protection task aims to find an escort policy
πθ that maps observations to robot action while maximizing
payload safety. Safety is enforced by minimal probability of
collision while navigating to the goal. Collision events, C, are
impacts that involve the payload and/or an escort. Addition-
ally, it is often critical to defend a zone around the payload
by minimizing the probability of any obstacles entering a
cordon area, B. This translates to πθ = argminθ P

(
B ∪ C

)
,

where P
(
B ∪ C

)
is the joint probability of the collision and

cordon breach events.

IV. METHOD

A. Reward

To train the escorts we design a reward function that acts
as a signal to reinforce desired behavior. For a given state,
s, the reward function R(s) is defined to assign a reward
rgoal = 1 when the payload reaches the goal, rcollision = −1
when a collision occurs, rstep = 0.01 at every timestep, and
rcordon when the cordon area is breached. Since our escorts
are homogeneous in terms of their goals and capabilities, we
reward all the escorts by the same global reward. The penalty
for cordon breach, rcordon, assigns negative reward for every
obstacle that penetrates the cordon area proportional to their



proximity to the payload and is defined as

rcordon = −c
∑

{oi|d(xp,xk)<Scordon}

(
1− d(xp,xk)

Scordon

)
, (2)

where d(xp,xk) is the distance between the payload, xp, and
obstacle, xk, positions, Scordon is the radius of the cordon
area. The parameter c is a constant that tunes the penalty an
escort receives per an obstacle entering the cordon region.
A large c-value results in high penalty, which empirically
resulted in the escorts colliding with the payload to end
episodes. A low value reduces the significance of the cordon
region. In all results shown, we used a value of 0.5.

B. Escort Policy Training

Fig. 2. Neural network architecture. The network takes in the sensor information from
each type of sensed object: payload, obstacles, and other escorts, and outputs a diagonal
Gaussian distribution from which continuous actions are sampled. The network consists
of 2 sets of alternating convolutional and max-Pooling layers followed by a flattened
dense layer.

The large continuous state space of the escorts motivates
a deep RL approximate solution for the Payload Protec-
tion Task. While there exist many deep RL solutions, a
class of policy gradient algorithms [32], actor-critic methods
[33], have been widely used in the RL scheme that train
a value function, i.e., critic, using Bellman’s equation to
estimate the gradient of the performance. The gradient is
then followed to update the policy, i.e., the actor. This
reduces the variance thus stabilizing the training. Generalized
Advantage Estimation (GAE) [34] is an actor-critic method
that improves sample efficiency and further stabilizes the
learning by using an exponentially-weighted estimator of the
advantage function as a baseline function and by using trust
region optimization [35] for both the actor and the critic.

We train multiple escorts that share a single GAE stochas-
tic policy, an approach that is similar to independent actor-
critic with shared parameters [28], [36], using RLlib [37].
The actor and critic are represented by two separate net-
works having the same architecture. Our sensor provides
information about the payload’s, obstacles’ and escorts’
shape, and location. In order to obtain this information, we
used simulated 1D lidar (512 uniformly spaced radial rays)
from each escort. Object classification is implemented by
concatenating three lidar distance measurements, one each
to detect objects of a single type, i.e., escorts, payload and
obstacles. To enable some inference of velocities and accel-
erations, readings from the last three time steps are passed
as an observation. This method, known as frame-stacking,

is suitable for parallelization and is easy to converge stably.
This forms an array of size 3x1x1,536 (as shown in Fig. 2).

The output of the network is a set of actions for each
escort that enables interception of obstacle threats. This
was implemented in the network by outputting a diagonal
Gaussian distribution, N([µVx

;µVy
], [σVx

;σVy
]), where µVx

and µVy
, and σVx

and σVy
are the means and standard

deviations of the escorts’ horizontal and vertical speeds,
respectively, from which continuous actions can be sampled.

The full network (Fig. 2) encodes a policy that maps input
sensor information to output actions. We implemented this
mapping through convolution layers (32 and 64 filters of
size 1x10 and stride 1 with ReLU activation) each followed
by a max pool layer (size 1x5 and stride 5). The output of
the convolutional neural network (NN) is flattened and fed
to a fully connected layer (size 512 with ReLU activation).
Regarding our network architecture design, we make a note
that a convolutional NN was utilised since a simple fully
connected network did not represent the observation well.
A convolutional NN was favored for its well known ability
to recognise shapes and geometry, and reduced number of
parameters compared to a fully connected counterpart [38].

We define collision to take place only between objects
of any two different types, i.e., payload-obstacle, payload-
escort and escort-obstacle. (Collisions among homogeneous
agents are not terminal for our problem formulation since
obstacle-obstacle interactions are dictated by the dynamics
simulator and escort-escort collision is preventable given our
full control of escort motion.) We terminate the episode if
there is a collision or if the goal is reached.

We use a single GAE policy that is shared between all the
escorts. To train this policy we collect experience samples
in parallel on 100 cores of Intel Xeon E-2146G @ 3.50
GHz. We train the policy every time a training batch of
size 524,288 samples is collected by performing stochastic
gradient descents of mini-batch size of 65,536 samples on 4
NVIDIA Tesla V100 GPUs in parallel. We use mean of the
rewards of all the samples in a training batch as a metric for
convergence that typically occurs in 100M samples and takes
about 24hrs and was performed once for all experiments
run. For escort adaptability, we used challenging training
scenarios. We train the escorts at a high obstacle density
(90 obstacles), as we empirically observed that this allowed
the escorts to handle lower densities without retraining.
Additionally, we train the escorts with each episode em-
ploying from one to six escorts, as we empirically observed
that training with varying escort numbers produces a more
flexible model capable of post-training adjustments.

C. Experimental Setup

For all experiments the following specifications of the en-
vironment were used, unless specified otherwise. All objects
are circular moving rigid bodies: a payload (radius 1.5m,
maximum speed 0.25m/s), obstacles (radius 0.5m, maximum
speed 1m/s), and holonomic escorts (radius 0.5m, maximum
speed 1m/s). The environment is 50m by 50m. When the
objects reach the boundary of the environment, they teleport



and reappear at the opposite boundary. The radius of the
cordon area is Scordon = 5m. The simulated lidar has a
maximum vision distance of 8m, and escorts employ 512
beams at uniform intervals. At the beginning of each episode,
obstacles are randomly assigned a position and a desired
moving direction. Heuristics help facilitate setup by reducing
states in collision and assisting the escorts to initially find the
payload: escorts are spawned within 2.5m to 3.5m from the
payload, obstacles are at least 4.6m away from the payload,
and the goal is exactly 20m away from the payload. For the
social force model, the repulsive potential has the maximum
amplitude of 7.9 m2/s2, influential radius of 5m, and the
vision cone of 200° (in the direction of motion).

D. Assumptions and Limitations

Our method is reliant on both the POMDP formulation and
the estimation of the solution through deep RL. Due to both
the formulation and estimation, there are some practical lim-
itations that should be noted. The lack of communication and
coordination between escorts is provided by a homogeneity
assumption of escort behavior and decision making. This
enables escorts to interpret the actions of their teammates
in order to determine their own best next action. However,
other parameters of the method are not as constrained; the
dynamics are automatically estimated by the learning, and
estimated over multiple observations. This has been shown
to be effective for estimating non-linear dynamics for moving
obstacle avoidance [22]. Additionally, while the learning
structure demonstrated uses sensor input, it is only assum-
ing that positional information of the interacting agents is
provided. While the assumption that the multi-channel non-
occluded lidar input is currently not realized in hardware, this
parameterization demonstrates the flexibility of the learning
to learn the mapping of high-dimensional sensor inputs to the
complex action space. Also, the reliance on learning comes
with limitations. First, as a learning approach, there are no
guarantees provided. Second, as static obstacles would not
be subject to interacting forces, they were not implemented
in the learning. However, robust learning has been shown
for navigating with static and dynamic obstacles and in
environments with noise [26].

V. RESULTS

The Payload Protection Task requires both collision free
navigation and protection of the cordon area. Success rate
directly measures our policy’s ability to navigate without
collision. This metric is computed as the ratio of collision-
free runs to all runs. Another metric, cordon area breach
time, quantifies the obstacles’ cordon area breach duration.
This time is computed as percentage of the time the cordon
area is breached over the total duration of an episode. All
experiments are averaged over 100 iterations with different
initial conditions unless otherwise specified. In cases where
comparisons are being made, the same random seed is used
between comparisons to generate the initial conditions for the
episodes to ensure they have the same starting configurations.
Otherwise, randomized initial conditions were used. We

employed GNU Parallel [39] to evaluate experiments in
parallel. Stable convergence of our policy is demonstrated
in Fig. 3(a) where mean rewards and success rate are shown
as functions of training steps.

A. Escort Efficacy and Scalability

To demonstrate the scalability of our solution, we evalu-
ated our escorts in an environment with increasing number
of interacting obstacles (Fig.3). This scenario mirrors our
problem: parents with a child or military convoy navigating
in dense pedestrian crowd. Our escorts show a success rate
above 70%, up to 90 obstacles (see (b)). Additionally, our
method (due to homogeneity assumptions of the escorts)
supports varying numbers of escorts without retraining.

To demonstrate the efficacy of autonomous escorts, we
evaluated trained escorts against a state-of-the-art moving
obstacle avoidance (MOA) policy [22], a fixed-escort for-
mation strategy inspired by a work in multi-robot coordi-
nation [8], an orbiting escorts strategy similar to [6], [7],
and an analytical method providing guarantees solving a
perimeter defense problem [9] adapted to protect a moving
payload. In the MOA approach, the payload itself was trained
to avoid obstacles en-route to its destination. The fixed-
formation escorts, Static and Orbiting, are prescribed to
surround the payload uniformly in a fully static position
or orbiting at maximum speed, respectively, and to repulse
obstacles with social forces while the payload navigates.
To compare with an analytical method, we implement the
escort as described in the analytical solution [9] (Geometric),
matching escorts to obstacles by geometrically determining
interception. The escorts then move towards their matched
obstacle at maximum speed. Assignments are frequently
reassessed given the crowding in the environment in order
to respond to changes in obstacles within visible range.

First, we compare performance against the set of intuitive
strategies (Fig. 3(b)): Static, Orbiting, and MOA. The MOA
payload performs poorly as it moves slower than the obsta-
cles, as seen in the red-square line where the success rate
plummets to 2% when the number of obstacles is above 20.
Adding static escorts to the payload, as the payload navigates
in a straight line to the goal, improved the success rate by up
to 42% (using two escorts), so does increasing the number
of escorts (blue-square lines). This was further improved, by
up to 54% (Orbiting - pink circle lines). However, the escorts
tend to collide with obstacles (67% of collisions were escort
to obstacle at the 90 obstacle density) and have difficulty
maintaining formation due to the movement of the payload
and maximum speed rotation. Our deep RL escorts (black-
triangle lines) improve the success rate by up to 99% versus
MOA, up to 83% versus Static and up to 69% over Orbiting.
The two-escort team finds a solution 14% of the time while
the three-escort team finds a solution 75% of the time in
the most challenging scenario with 90 obstacles. Next, we
compare against the Geometric escorts. We can observe in
Fig.3(c) that despite the advantages of Geometric escorts
(orange-circle lines), i.e., full observation and optimality



(a) (b) (c)

Fig. 3. Demonstration of escort efficacy. (a) Mean reward (right y-axis) averaged over 4 random network initializations (standard deviation shown in shade) and navigation
success rate (left y-axis) evaluated every 12 steps during Deep RL training with 3 escorts and 90 obstacles. (b-c) Post-training performance in environments with increasing
numbers of obstacles. (b) Comparison with an approach where the payload uses a learned moving obstacle avoidance policy (0 escort, MOA), fixed-formation escorts uniformly
surrounding the payload (static) applying social forces to the obstacles, escorts orbiting the payload at max speed (orbiting). (c) Comparison to an analytical solution to a
perimeter defense problem (Geometric). The number in the legend indicates the number of escorts.

for directly approaching obstacles, our deep RL method
outperforms by up to 66%. The dynamic nature of the
problem, with obstacles entering and leaving the visible
range causes frequent reassignment, unlike the aggressive
obstacle scenario considered in the original paper [9]. It
should be noted, trained deep RL escorts are able to enhance
protection of the cordon area (quantitative result shown in
attached video). For example, the total cordon area breach
time is as much as 32 seconds less for deep RL escorts than
Geometric escorts at 90 obstacles.

B. Learned Cooperative Behavior and the State Value

In addition to abiding by the explicit constraints in the
reward structure, i.e., avoiding collision with the payload,
keeping the payload alive, etc, the escorts also display behav-
ior that is not explicitly addressed in the reward structure. The
escorts learn to stay close to the payload despite there not
being a reward for them to do so. They also learn to follow
the moving payload and keep pace with it, maintaining an
efficient formation as they move. This behavior is guided by
the learned value function which can be visualized using a
heatmap (Fig. 4(a)). The heatmap is generated by placing
an escort at each pixel location of the output plot and
sampling the value function. The result shows that the escorts
learned the cordon area, as indicated by the larger state value
(blue circular region around the payload). This is despite
the fact the escorts are never given explicit information
about the cordon, and only penalized when it is breached.
This is further emphasized when we retrain the escorts
with no regard to cordon breaches (cordon breach reward
is 0) (Fig. 4(b)). The escorts no longer have as strong of a
preference to staying within that area; the higher state value
region is not as confined to the cordon area.

The escorts also learn to cooperate with each other, exhib-
ited in their tendency to spread evenly around the payload to
offer the most coverage. Recall that an escort has positional
information of other escorts who are within the lidar range.
Besides this, there is no explicit communication between the
escorts, i.e., cooperation or collision with each other are not
rewarded and no extra message passing between the escorts

(a)

(b)
Fig. 4. Value functions learned by an escort for the Payload Protection Task (a) with
a penalty for obstacles entering the cordon area and (b) without penalty. Black circles
represent payload, escorts, and obstacles. White circle in (a) represents cordon area.

is considered. To demonstrate this, we test the impact of the
loss or addition of an escort while the payload is navigating.
The experiment starts with 4 escorts protecting the payload
in an environment with 90 obstacles. 25 seconds into the
episode, one of the escorts is taken out of the environment,
and 25 seconds later it is placed back (within observation
range of the payload). The results are shown via the change
in cordon breach reward (averaged over 1000 episodes),
Fig. 5. We can observe that when one escort is lost, the
remaining escorts perform as well as possible with three
escorts (as seen by a loss in reward to the level that is roughly



Fig. 5. Average cordon breach reward, rcordon, over the course of successful payload
navigation runs in an environment with 90 obstacles. Lines are from runs with 3 deep
RL escorts (blue), 4 deep RL escorts (black), and four escorts at the start, a loss to
three escorts (at timestep 125), and an increase to four (at timestep 250).

equivalent to the values from a run with three escorts). The
converse is true when an additional escort is gained (from
three to four escorts), as seen in the increase in reward.
This automatic reconfiguration occurs even though there is
no explicit communication between escorts.

C. Robustness to Noise

Despite our method being susceptible to the limitations of
RL methods as a whole, i.e., learned capabilities correspond-
ing with the training environments, it is still robust to some
unseen scenarios. We explore how trained escort teams adapt
to scenarios not seen during the training by introducing a
disruption or disturbance. We look at three practical disrup-
tions: an unexpected change in obstacle motion dynamics, a
change in payload size that represents a reconfiguration of the
payload, and sensor noise. The results shown are produced
with no retraining.

Fig. 6(a) shows the impact of unexpected disruptions in
the social force model, creating unexpected obstacle motion,
compared to the baseline case without disruptions, in an
environment with 3 deep RL escorts and 50 obstacles. For
this scenario, the obstacles experience the change in their
velocity in the form dwk/dt = Fk(t)+ fluctuation, where
Fk(t) is as given in Eq.(1). The fluctuation term is sampled
from a normal distribution N (µ = 0, σ), where σ is varied
from 1 m/s2, 2 m/s2, 3 m/s2, to 4 m/s2. This variation makes
the obstacle dynamics increasingly unpredictable. Note that
on average, Fk(t) is on the order of 0.75 m/s2 over an
episode. Thus, the social force fluctuation we introduce is
large. Furthermore, since the obstacle speed is clipped at the
maximum speed of escorts, the fluctuation manifests largely
in the stochastically changing direction of the obstacle mo-
tion. As expected, collision-free payload navigation success
drops as the social force fluctuations increase. However,
even under moderate noise with σ = 2.0m/s2, the escorts
successfully defended the payload with 93% of the success
rate of the baseline (with no noise).

In Fig. 6(b) we explore the adaptability of the learning
policy to a change in the payload. In practice, this change
could be a reconfiguration of a multi-body payload to a
new conformation, e.g., as mentioned in Sec. I, military

Fig. 6. Success rate expressed as a ratio to a baseline problem of three deep RL
escorts and 50 obstacles after the disruptions of: (a) increased standard deviation of
fluctuations in the social forces and (b) increased rate of transformation of the
payload size and (c) increased observation noise (standard deviation).

convoy re-formation. In order to test this, we implemented
a payload of expanding and shrinking radius between 1.5 m
and 2.5 m. Frequency (horizontal axis) represents a change in
the payload size over time, i.e., a transformation frequency
of 0.5 represents a change to a radius of 2.5 m from the
original 1.5m in 2 seconds. Results with transformations
were tested in an environment with 50 obstacles and three
deep RL escorts. While the disruptions result in a loss in
success rate, as compared to the same setup without the
transforming payload, the escorts show great efficacy still
defending the payload while it is navigating. At a frequency
as high as 1 Hz, the escorts are unable to complete the task
due to the expanding payload overtaking the escorts (98%
of runs). This makes sense as as the payload expands to a
radius of 2.5 m in one second, which is equivalent to the
linear speed of 1 m/s, the maximum speed of the escorts.

In Fig. 6(c), we show the performance of the learning
policy in the presence of observation noise, drawn from
a Gaussian distribution. Performance holds above 96% of
baseline at over 10% noise of the observation range, and
diminishes as the noise grows larger.

VI. CONCLUSION

Defensive escorts help provide critical safety for high-
value payloads. Escorts work by coordinating their actions
in order to protect the payload and can also be trained to
provide a safe cordon area around the navigating payload.
Deep RL escorts enhance safety over current solutions in
crowded environments, can be robust to several changes
including disruptions in the system, changes in payload size,
gain and loss of escorts, and provide an end-to-end solution
for escort coordination. With only range-limited observations



of the environment and no other explicit information, the
escorts learn to automatically coordinate their positions.
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