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Abstract— Computation of the volume of space required for
a robot to execute a sweeping motion from a start to a goal
has long been identified as a critical primitive operation in both
task and motion planning. However, swept volume computation
is particularly challenging for multi-link robots with geometric
complexity, e.g., manipulators, due to the non-linear geometry.
While earlier work has shown that deep neural networks can
approximate the swept volume quantity, a useful parameter
in sampling-based planning, general network structures do not
lend themselves to outputting geometries. In this paper we train
and evaluate the learning of a deep neural network that predicts
the swept volume geometry from pairs of robot configurations
and outputs discretized voxel grids. We perform this training
on a variety of robots from 6 to 16 degrees of freedom. We show
that most errors in the prediction of the geometry lie within a
distance of 3 voxels from the surface of the true geometry and
it is possible to adjust the rates of different error types using
a heuristic approach. We also show it is possible to train these
networks at varying resolutions by training networks with up
to 4x smaller grid resolution with errors remaining close to the
boundary of the true swept volume geometry surface.

I. INTRODUCTION

The swept volume between two robot configurations is the
physical volume that the robot occupies during its motion
from one configuration to the other (Fig. 1). Since some
of the earliest work in motion planning, its computation
has been recognized as a critical primitive operation in
planning [1]. This is because the swept volume, SV(c0, c1),
between two robot configurations, c0 and c1, can be used
for collision detection. While the computation of this swept
volume is direct for simple rigid bodies, the computation
can quickly become intractable for objects with rotations
and for objects that are geometrically complex [2]. This was
noted even in this earliest work [1], where the problem being
considered was industrial manipulation applications. More
recently, swept volume computation is still a critical element
of modern sampling-based motion planning, for example
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Fig. 1. Illustration of swept volume geometry for a linear joint interpolation
of a 7 degree of freedom Kuka robot model. Start (left, top) and end (left,
bottom) joint positions are recorded as configurations c0 and c1, respec-
tively. The recorded swept volume labels (middle, top in blue) are used for
training and evaluation. The prediction (middle, bottom in red) from the
network is used to show errors (right). False positive errors are shown in
red and false-negative errors are shown in blue. The yellow-box in the error
image shows the bounding box (V) from Table I.

for continuous collision detection and planning in high
dimensional spaces [3], [4], [5]. Other applications include
collision detection for industrial and humanoid robots [6] and
foot-step planning for legged robots [7]. The scalar size of
the swept volume has also been used as a distance metric [8]
and as a measure of compactness of the workspace [9].
However, due to computational cost, approximations are
often employed [10], [11]. Moreover, the use of the swept
volume has been recognized in the efficient linking between
motion and task planning [12], [13].

The computation of swept volumes for single rigid bodies
along simple paths can be performed efficiently [14], [15],
however exact swept volumes for articulated bodies are in
general intractable by analytic and algebraic methods [14],
[16] due to the complex non-linear geometry. Approximation
of swept volume has thus been a focus of many algorithms,
such as convex polyhedra-based, occupation grid-based, and
boundary-based methods [17], [18], [6], [12], [19], [15],
[20]. These algorithms can still not be sufficient for some
motion planning applications due to high computational
expense and overly conservative estimates [12], [10]. We
recently demonstrated that the general approximation ability
of deep neural networks facilitates the approximation of the
scalar value of swept volumes, |SV|, that can be directly
used in sampling-based planning for filtering local planning
attempts [8]. However, predicting a geometric representation
of the actual volume swept would require another approach.
In a single proof of concept, a network was used to output a
geometric volume of swept volume for a single robot [21].
Here, we report an extensive evaluation of learned swept
volume geometry for multiple robot types and we explore



the impact of the resolution on the prediction.
This work offers several contributions. First, we show

it is possible to approximate the geometry of the swept
volume using deep neural networks (DNNs) for a wide
variety of robots. Second, despite the inability of networks
to guarantee error bounds on predictions we show empir-
ically that the errors are largely limited to areas near the
boundary and the network output can be tuned to prioritize
one type of error over another. Specifically, we use the
heuristic parameter τ to adjust the error for conservative
or aggressive prediction of the swept volume geometry.
Third, we analyze the effect of finer resolution on network
learning and show that the network errors are not affected by
the change in resolution allowing for better approximations
of the swept volume geometry by increasing the sampling
resolution in the volume space. Finally, in support of these
contributions and wide use of this work, we have publicly
made available the data and networks used in this study
(http://tapialab.science/Resources). Visualizations of example
predictions are provided in the attached video.

II. RELATED WORK

As the computation of swept volume becomes intractable
for objects with rotations and complex geometries, there
are roughly three classes of modern swept volume ap-
proximation algorithms: boundary-based, convex polyhedra-
based and occupation grid-based methods. In boundary-based
methods an outer boundary surface of the swept volume is
computed. This is done by developing surfaces for sweeping
and rotational motion of the object surfaces and computing
the surface of the union [20], [17], [15]. These methods
focus on computing swept volume boundaries of moving
solids and are generally slow, especially for articulated
robots. In convex polyhedra-based methods, robot bodies
are approximated with convex hulls [22]. These methods
generally decompose the model into small sets of convex
polyhedrons which itself is a challenging problem. When
the robot moves between configurations, additional convex
hulls are added and the union of convex hulls is the swept
volume [12]. In occupancy grid-based methods, the space is
split into voxels. These methods then record which segments
of space are touched by the robot as it moves in steps
between the configurations [18], [19]. In our prior work,
we trained a DNN to predict scalar swept volumes after
training with a set of scalar volume data derived from swept
volume occupancy grids [8]. In contrast, this work provides
a network structure to directly predict an occupancy grid.

Deep neural networks have been used to generate 3D
volumetric models from 2D images [23], [24]. In recent
work, multiple images from unknown perspectives were used
to predict the shape of an object [23]. Even more recently,
an alternative network design demonstrated that it could
generate the 3D shape model from a single image [24].
Additionally, neural networks have been used to fill the miss-
ing volume in an incomplete 3D volume of an object [25].
Similar to these works, we output 2D or 3D volumetric
models from deep neural networks. However, our inputs are

representations of the two robot configurations, e.g., sets of
angles representing joint positions.

III. SWEPT VOLUME

The true swept volume geometry, SV , for a straight line
configuration space trajectory can be formulated as the union
of workspace robot poses corresponding to the trajectory’s
configurations [8],

SV (c0, c1) = ∪t∈[0,1]V((1− t)c0 + tc1), (1)

where c0, c1 are start and end robot configuration vectors
in Rd and d is the number of Degrees Of Freedom (DOF)
of the robot. V maps configurations to workspace geometry
representing the volume swept between c0 and c1, and t is
the parameterized time, t ∈ [0, 1]. As elaborated in Sec. II,
the exact calculation of SV is often intractable, therefore we
compute the approximate swept volume geometry function,
SVG.

The learning problem for the scalar-function counterpart
of SVG, i.e., the function that maps robot configuration
pairs to corresponding swept volume scalar values, has
been formulated as a continuous function approximation via
DNNs and the learning has been shown to be successful [8].
This function approximation was formulated on the basis of
the Lipschitz continuity of the scalar function for articulated
bodies [21]. Although the output of the swept volume
geometry function is continuous in principle, for practical
reasons it is represented as a discretized 3D space. Moreover,
the training data would also be generated in a discretized
space. Therefore, we formulate the computation of SVG as
a classification problem as follows.

Given a discretized 3D volume of fixed size, V , let
ri,j,k denote the coordinate of a grid point along x, y,
and z Cartesian coordinates. The subscripts i, j, k, denotes
locations along x, y, z, respectively, and are bounded by
the number of voxels along each dimension (fixed for each
robot). We formulate the swept volume geometry function
we aim to learn, SVG(c0, c1), as a function whose input
is a configuration pair, c0, c1, and whose output is the
occupation probability of a voxel centered at ri,j,k, P (ri,j,k),
∀ i, j, k ∈ V . The occupation probability is then classified
into two classes: occupied (on) or empty (off). The threshold
of the probability that separates these classes is an adjustable
parameter, τ .

The learned function and the predicted occupation proba-
bility are denoted with tilde: S̃VG and P̃ (ri,j,k). We define
the cost function parameterized by θ as

Jθ =
1

NV

∑
i,j,k∈V

(
P (ri,j,k)− P̃ (ri,j,k)

)2
, (2)

where Nv is the total number of voxels in V. The learning
objective is to minimize this function with respect to θ. This
cost function was the one that produced the best results as
explained in Sec. IV-C.



Fig. 2. Robots (and cubic voxel of width 0.1 m, for reference): a)
Kuka manipulator (Kuka20) with an additional voxel of width 0.025 m
(for high-resolution SVG reference), b) Baxter arm (Baxter), c) Sawyer
manipulator (Sawyer), d) (left to right) UR3, UR5, and UR10, e) Mico
manipulator (Mico), f) 2D planar manipulator (Planar), g) 2D prismatic-
revolute manipulator (PR), and h) 2D closed loop manipulator (CL).

IV. METHODS

A. Robot Models

We consider swept volume predictors for the fixed-base
robot models shown in Fig. 2. These robots have a variety
of joint properties and DOFs. We refer to these robots as
the base robot set. The motions of Planar, PR, and CL are
confined to 2D while all other robots move in 3D.

B. Training Dataset Generation

Since the union in Eq. (1) is difficult and expensive to
compute exactly, we approximate it through a discretized
grid of fixed resolution. We use the following method to
generate training and evaluation data.

For simplicity, the limits of the grid in each of the three
dimensions define a cuboid that subsumes the generated
volume. The dimension of this cuboid, V, is fixed for each
robot (see Table I) and includes all reachable and some
unreachable space for the robot. On-voxels are given a value
of 1 while off-voxels are given a value of 0.

The input features of the data, configuration pairs (c0, c1)
are sampled uniformly at random. We implement Eq. 1
in V-REP by discretizing the range of t using ∆t step
size to form a configuration space straight line interpolation
generating the corresponding swept volume geometry. In

V Voxel Space
Robot DOF (x× y × z) Width (m) Usage (%)

Kuka10 † ‡ 7 10× 10× 10 0.1 67.0
Kuka15‡ 7 15× 15× 15 0.1 59.2
Kuka20‡ 7 20× 20× 20 0.1 50.5
Kuka25‡ 7 25× 25× 25 0.1 51.9
Kuka30‡ 7 30× 30× 30 0.1 48.5
Kuka80‡ 7 80× 80× 80 0.025 42.4
Baxter† 7 22× 22× 21 0.1 53.1
Sawyer† 8 26× 26× 26 0.1 39.5

UR3† 6 15× 15× 15 0.1 42.3
UR5† 6 20× 20× 20 0.1 59.9

UR10† 6 30× 30× 30 0.1 46.8
Mico† 6 15× 15× 15 0.1 35.1
Planar† 16 1× 100× 100 0.1 42.3

PR† 8 88× 88× 2 0.1 68.5
CL† 9 41× 50× 3 0.1 93.8

TABLE I
ROBOTS FROM THE BASE STUDY(†) AND RESOLUTION STUDY(‡) USED

IN THIS WORK. ROBOT DOF, SIZE OF BOUNDING VOLUME (V), AND

WIDTHS OF A CUBIC VOXEL (VOXEL WIDTHS). SPACE USAGE IS A

MEASURE OF THE UNION OF THE VOLUMES SAMPLED IN THE TRAINING

DATA OVER THE FULL BOUNDING VOLUME.

each step of the interpolation, the volume of the robot body
corresponding to the configuration is added to an octree,
similar to [19]. The label data for this volume is in the
form of a voxel grid created from the octree at t = 1. All
swept volume generation was done using the built in function
sim.insertObjectIntoOctree from V-REP [26] on a machine
with an Intel Xeon E-2146G (@3.5 GHz) processor with 6
cores and an Nvidia Quadro P1000 accelerator.

It should be noted that sampling configuration pairs for CL
was done in consideration of its end effector. First, pairs of
end-effector poses are selected at random from the reachable
space of the end effector. Then, the corresponding joint
positions are determined through inverse kinematics. Next,
each interpolation step moves the end effector of the robot
linearly between beginning and final end-effector poses.

Additionally, in order to investigate the effect of training
data resolution on the quality of S̃VG, we produced vari-
ous scaled-size models of Kuka and generated data while
keeping fixed the voxel size. Smaller to larger Kuka models
correspond to lower to higher data resolution. Five levels of
resolutions are considered in this way and we denote each
dataset as Kuka10, Kuka15, Kuka20, Kuka25, and Kuka30.
The subscripts indicate the size of the cuboid bounding
volume, V. For example Kuka10 has V=10×10×10 voxels.
One higher resolution was considered, Kuka80, for which
the voxel size was scaled down to 0.015625 liters (a cube
of width 0.025 m) while keeping the robot size the same as
Kuka20. We refer to these Kuka models/data as the resolution
study set.

C. Network Architectures, Swept Volume Geometry Function
Training, and Prediction

We train swept volume geometry function approximators,
S̃VG, in a supervised manner. Two DNN architectures are
used to represent S̃VG; one for Kuka80 and the other for all



Fig. 3. Evaluation loss as a function of training epochs. Convergence
criterion used is 100 epochs with no improvement in lowest evaluation loss.
Some curves demonstrate over-fitting (e.g., Planar), therefore the parameters
with the lowest evaluation loss observed was used in those cases.

other robots. This is due to a large output dimension required
for Kuka80. Specifically, creating a fully connected layer
with 512,000 neurons as the output layer requiring 4000 ×
512,000 connections in our model is prohibitively expensive.

First, we describe the DNN architecture representing all
robots’ S̃VG except for Kuka80. We draw inspiration from
decoder networks [27] since the output dimensions are far
larger than the input dimensions. Decoder network structures
can construct a large space swept by the robot in motion from
a set of small but expressive features, i.e., joint configura-
tions. This is a simple fully connected feed-forward network
of four hidden layers with [500, 1000, 2000, 4000] ReLu
neurons. Input and output layer dimensions depend on the
dimensions of each robot’s input features (DOF), (c0, c1),
and output volume, V (see Table I). The output layer also
has ReLu neurons.

The network representing S̃VG for Kuka80 starts with a
similar decoder network as the other robots followed by three
deconvolution layers [28]. The decoder network has three
hidden layers and one output layer with [125, 250, 500]
and 1000 ReLu neurons, respectively. This output layer is
fed to three successive deconvolution layers each with 16
filters, 3×3×3 kernels, and stride of 2×2×2. The output is
an 80×80×80 voxel grid.

These networks were trained using the cost function given
in Eq. (2) via stochastic gradient descent using the Adam
optimizer [29] with learning rate 0.0001, beta1 0.9, beta2
0.999, and epsilon 1e−8. For each robot, 90,000 training
samples and 10,000 evaluation samples (with no overlap)
were used with a mini-batch size of 100. Although we
initially tried a cross-entropy loss since it is common in
classification (e.g., [30]), the learning did not converge.
However, the mean square loss (MSE), as in Eq. (2), provided
better performance.

The learning curves show stable learning with over-fitting
trends, with some robots demonstrating more over-fitting
than others (Fig. 3). Network training ends at the end of the
100th training epoch without improvement in the evaluation

Fig. 4. Prediction accuracy as a function of output probability threshold
(τ ) used to classify on/off voxels for base robot set.

Fig. 5. Prediction F1 Score as a function of output probability threshold
(τ ) used to classify on/off voxels for base robot set.

loss and the DNN at the lowest evaluation loss is chosen as
the S̃VG for each robot.

To train each network, we used an Intel Xeon Gold 6148
Processor with 20 cores @ 3.7 GHz. The network training is
accelerated by a single Nvidia Tesla V100 GPU. Please note
that this system is different from the training swept volume
generation as TensorFlow is optimized for GPU performance.

A trained S̃VG outputs occupation probability of each
voxel centered at ri,j,k, P̃ (ri,j,k), for all i, j, k ∈ V. Each
voxel is then classified as on or off using the threshold τ ∈
[0, 1]; on when P̃ (ri,j,k) ≥ τ and off when P̃ (ri,j,k) < τ .
All the on voxels together represents the approximated swept
volume geometry.

V. EVALUATION

A. S̃VG Prediction Quality

We evaluate the quality of the learned swept volume
geometry function ,S̃VG, using two metrics, accuracy and
F1 score. Accuracy is computed as the ratio of correctly-
predicted voxel count to the total voxel count. F1 score is



Fig. 6. False-positive (blue) and false-negative (red) voxel counts as a
function of output probability threshold (τ ) used to classify voxels for PR
(top) and Mico (bottom) Robots. Error in the scalar value of swept volume,
|SV|, is also plotted (yellow dotted).

the harmonic mean of the precision and recall, i.e.,

F1 =
2 ∗ precision ∗ recall

precision + recall
. (3)

Precision is computed as the ratio of true-positive prediction
to predicted volume, and recall is computed as the ratio
of true-positive prediction to true-volume. F1 score of 1
indicates perfect geometry prediction.
S̃VG predicts the occupation value of the output volume

at each grid location accurately for a wide range of threshold
values, τ , (Fig. 4), with lowest accuracy at 93.1% for the CL
at τ = 0.9 and highest value of 99.0% for UR5 at τ = 0.48.
We emphasize that accuracy includes correct prediction of
both on and off voxels. (This is why accuracy values don’t
reach zero at low and high τ values.) One reason for high
accuracy is the presence of always-off and always-on voxels
within the bounding volume V. Always-on voxels would be
the voxels near and at the robot base and always-off voxels
belong to the unreachable space within V. For example, the
Planar robot’s reachable space would be a disk whose radius
is the length of its kinematic chain. Thus, the unreachable
space is the remainder of the space within V. A simple
calculation using basic geometry of disks and spheres yield
that the percentage of always-off volume is about 21% for
2D robots and 48% for 3D for a circle/sphere bounded by
inscribing square/cube. The percentage of reachable voxel
space (empirically evaluated) for all robots are given in Ta-
ble I (Space Usage). The underlying probability distribution
function, i.e., the best S̃VG, for the always on/off voxels are
tightly peaked around the parameter values that would output
1/0. Regression models are able to learn such a function well
and thus, our network easily learns always on/off voxels,
yielding high accuracy predictions.
S̃VG also predicts swept volume geometry accurately.

This is seen in Fig. 5 where F1 score against τ is plotted for

all robots. Since F1 score is a measure of on-voxel prediction
accuracy (regardless of off-voxel prediction accuracy), it is
more directly correlated with the accuracy of the predicted
geometry. Trained S̃VG for the base robot set show high
quality with the highest score of 97.3% for PR at τ = 0.43
and lowest score of 56.2% for Mico at τ = 0.9. Precision can
be increased at the cost of recall by increasing the threshold
value, while recall can be increased at the cost of precision
by lowering the threshold.

The F1 score of the different robots (Fig. 5) positively
correlates to the amount of the space explored within the
bounding volume V in the training data set (Table I, Space
Usage). The availability of more on samples within V pro-
duces more learning signal and enhances the training result
of S̃VG. More exploration likely reduces the probability of
false-negative predictions.

We also investigate how S̃VG quality is impacted by
the probability threshold for on/off voxel classification, τ .
Fig. 5 shows that τ impacts the F1 score in a non-monotonic
manner demonstrating peak values for τ ∈ [0.41, 0.48]. (Al-
though less pronounced, a similar trend is found for accuracy,
Fig. 4.) This is expected as τ impacts the amount of false-
positive/negative predictions as demonstrated in Fig. 6, where
the relative voxel count of false-positive(blue)/negative(red)
predictions to truth label is plotted as a function of τ for
PR (top) and Mico (bottom). A lower threshold value corre-
sponds to classifying a voxel to be on at lower occupation
probability as output by the network, and hence will result in
more false-positive prediction and vice versa. This trade-off
between the amount of false-positive and negative predictions
with τ -values is seen in the inverse correlation between the
false-positive/negative curves. More true-positive predictions
are likely missed at higher τ values. This is reflected in the
asymmetric trend of F1 score with respect to τ (Fig. 5).

Additionally, the false-positive/negative prediction curves
show an insightful correspondence with the error computed
for swept volume scalar value, |SV| (yellow dotted line in
Fig. 6). This error value is the difference between the voxel
count of predicted volume and the truth label. The value
of τ for zero |SV|-value and where false-negative/positive
curves cross coincide; where false-negative and positive are
balanced. The threshold value at this point, let it be τc can be
useful in motion planning applications. For example, when
using S̃VG in tasks where it is more important to avoid
collisions, it is useful to favor less false-negative predictions.
Thus, for the robots corresponding to Fig. 6 the threshold
value should be τ < τc = 0.41 (Mico) and τ < τc = 0.43
(PR).

Training data availability (quality) also impacts learning
quality of S̃VG. This can be seen in the relative scale of
prediction errors for PR (Fig. 6, top) and Mico (bottom). Out
of the bounding volume of the training data, V, the reachable
space of PR is 68.5% (highest) and 35.1% (lowest) for Mico
(Table I). (CL is excluded due to a dissimilar sampling
method, see Sec IV-B.) Therefore, PR’s S̃VG received more
learning signal from the training data compared to Mico,
and thus PR’s largest error value is much lower at 21.1%



Training S̃VG SVG

Robot (×103 s) (ms) (s) ∆t
Kuka10 0.5 ± 0.02 1.2 ± 0.4 2.0 ± 0.04 5e−3

Kuka15 0.7 ± 0.04 1.7 ± 0.4 2.0 ± 0.04 5e−3

Kuka20 1.4 ± 0.07 1.5 ± 0.4 2.0 ± 0.04 5e−3

Kuka25 1.9 ± 0.08 2.5 ± 0.4 2.0 ± 0.04 5e−3

Kuka30 3.3 ± 0.20 2.0 ± 0.5 2.0 ± 0.04 5e−3

Kuka80 725.3* 3.9 ± 0.5 2.9 ± 0.20 5e−3

Baxter 1.5 ± 0.04 2.2 ± 0.5 1.0 ± 0.04 1e−2

Sawyer 2.1 ± 0.05 1.8 ± 0.4 1.0 ± 0.04 1e−2

UR3 0.7 ± 0.04 1.7 ± 0.4 2.0 ± 0.04 5e−3

UR5 1.5 ± 0.06 1.5 ± 0.4 2.0 ± 0.04 5e−3

UR10 3.9 ± 0.16 2.1 ± 0.5 2.0 ± 0.04 5e−3

Mico 0.7 ± 0.04 1.7 ± 0.4 2.0 ± 0.05 5e−3

Planar 1.1 ± 0.05 1.6 ± 0.3 2.6 ± 0.05 4e−3

PR 3.1 ± 0.20 1.7 ± 0.5 2.1 ± 0.03 5e−3

CL 1.3 ± 0.14 2.0 ± 0.5 1.1 ± 0.02 1e−2

TABLE II
TIMES (TRAINING/PREDICTION) AND PARAMETER FOR TRAINING DATA

GENERATION: (TRAINING) TIME TO LEARNING CONVERGENCE, (S̃VG)
SWEPT VOLUME PREDICTION TIME OF THE NETWORK POST-TRAINING,
(SVG) AVERAGE TIME TO GENERATE A SWEPT VOLUME PREDICTION

USING FIXED STEP SIZE (∆t). (NOTE THAT LEARNING

(TRAINING/PREDICTION) AND SWEPT VOLUME TRAINING DATA

GENERATION WERE PERFORMED ON DIFFERENT SYSTEMS DUE TO

SYSTEM REQUIREMENTS.) *ONLY ONE RUN PERFORMED FOR KUKA80 .

compared to Mico’s at 58.2% (Fig. 6).

B. Learning and Prediction Time Evaluation

Here, we consider the computation time required to learn
and predict S̃VG (Table II). First, consider the time to
generate the training data for a single swept volume, SVG,
and its parameter, the interpolation step size ∆t (columns 4
and 5). The time taken to generate a single swept volume is
in the order of seconds for all the robots tested. We selected
∆t to be sufficiently small so that swept volume voxels are
not skipped. However, ∆t can not be too small as smaller
∆t requires more time to generate training samples. Next,
we discuss the time taken to train the network (column 2).
The number of robot DOFs does not seem to have much
of an effect on training time, as the 16-DOF Planar takes
less time to train than the 7-DOF Kuka20. However, grid
size does have a significant effect on training time as seen
by the increasing training times of the Kuka robots with
increased grid size. Finally, consider the time taken by a
trained network to predict S̃VG (column 3). Prediction times
for all but Kuka80 are between 1.2 and 2.5 ms on average
with only a slight dependence on grid size. The differences
are small because network structure varies only in input and
output sizes. Kuka80 predictions take 3.9 ms on average. This
could be accounted for by the facts that Kuka80 has a large
grid size and a different network structure.

A common comparison would be to consider the time to
compute S̃VG from the network and SVG. While these times
are three orders of magnitude different, it should be noted
that they were run on different systems due to optimized
system requirements (detailed in Section IV).

C. Spatial Distribution of Errors

Err. Within 1 Err. Within 3 Max Err. Dist.
Voxel (%) Voxels (%) in # Voxels

Robot FP FN FP FN FP FN
Kuka10 98 99 100 100 3 3
Kuka15 93 97 100 100 5 3
Kuka20 95 95 100 100 4 3
Kuka25 88 91 100 100 6 4
Kuka30 86 87 100 100 8 4
Kuka80 50 49 91 96 28 7
Baxter 95 97 100 100 16 4
Sawyer 88 90 100 100 6 3

UR3 96 98 100 100 3 3
UR5 98 96 100 100 4 4
UR10 94 93 100 100 7 3
Mico 95 99 100 100 3 3
Planar 35 34 79 77 23 19

PR 97 93 100 100 18 10
CL 89 100 100 100 6 3

TABLE III
DISTANCE OF FALSE-NEGATIVE (FN) AND FALSE-POSITVE (FP) VOXELS

FROM THE SVG BOUNDARY (ERR. DIST.). THE FIRST TWO COLUMNS

SHOW THE PERCENTAGE OF FN AND FP ERRORS AT 1 VOXEL, AND

MIDDLE TWO COLUMNS SHOW THE PERCENTAGE WITHIN 3 VOXELS

FROM THE SVG BOUNDARY, AND THE LAST TWO COLUMNS SHOW THE

MAXIMUM ERROR DISTANCE IN THE NUMBER OF VOXELS (MAX ERR.
DIST.)

For S̃VG to be a useful predictor, it is critical to understand
where prediction errors occur so that we can minimize
the impact during planning. Here, we analyze the spatial
distribution of prediction errors by computing the shortest
distance between falsely predicted voxels and the proximal
surface voxel of the true volume, the error distance, via the
Euclidean Distance Transform [31]. This metric is analyzed
for both false-positive and false-negative voxels.

The majority of false predictions are found in the proxim-
ity of the true surface as seen in the error distance data for all
robots in Table III. Thirteen of the fifteen robots have almost
all errors occurring at a distance within three voxels and at
least 86% within one voxel of the true surface (columns 1–4).
However, S̃VG for Kuka80 and Planar produce a relatively
broader error distance distribution. The much higher training
data resolution of Kuka80 (0.025 m vs 0.1 m) means there
are more voxels on and near the true surface, resulting in a
broader-distributed error distance. Planar has a much higher
number of DOFs (i.e., 16 compared to 6–9 for all others), and
the 3rd lowest space usage (Table I). These could contribute
to the broader error distances (e.g., larger input feature DOF
could require a larger network and smaller space usage could
lead to an insufficient learning signal).

Additional detail about rare false predictions that occur
further from the true surface is found in columns 5 and
6, where the maximum distance of any error reported over
test data is provided. For our base robot set, the max
distance of error seems to be correlated with larger volume
dimensions for the robots. For example, Planar has a volume
V= 1 × 100 × 100 with max error distance of 23 (Table I,



V), both the largest for all the robots tested. Even though
some errors occur far from the surface (Baxter, Planar, PR)
these are rare and constitute a minute portion of the total
error. For example, the maximum erroneous volume found
for any robot is 6.57e−2% (UR3) of the total error. For
the resolution study set, Kuka10–Kuka80, a similar trend for
rare false predictions are seen. We note that while the max
distance of 28 for Kuka80 appear larger than the rest by a
significant amount, this value is equivalent to only 7 voxels
for the other robots since the width of the Kuka80 voxel is
0.025 m instead of 0.1 m (all other robots).

D. Impact of Data Resolution

Fig. 7. Prediction accuracy as a function of output probability threshold
(τ ) used to classify on/off voxels for the resolution study set.

Fig. 8. F1 score as a function of output probability threshold (τ ) used to
classify on/off voxels for the resolution study set.

Finally, we evaluate the impact of training data resolu-
tion on S̃VG quality through accuracy and F1 score for
the resolution study set: Kuka10, Kuka15, Kuka20, Kuka25,
Kuka30, and Kuka80. While we have explored these variants
in previous sections, we now use the prior insights to gain
understanding about the the differences in accuracy and F1

score for these robots. Figure 7 shows that the higher the
resolution, the better the accuracy, although with a slight
change in the relative order at some values of τ . Moreover,
accuracy positively correlates with space usage (Table I),
suggesting that the higher accuracy is likely due to more
always-off voxels being present for higher resolution data as
was seen with the base robot set.

The F1 score better elucidates the differences in the
resolution set, as shown in Fig. 8. Here we see that the
highest resolution yields the lowest F1 score and the low-
est resolution yields the highest F1 score. As explained
in Section V-C, most of the error happens very close to
the SVG surface, and this has a higher impact at higher
resolutions. The lower space usage (Table I) for the highest
resolution, Kuka80, also likely contributes to the lower F1

score. A relatively smaller amount of learning signal from
the lower space usage results in more erroneous predictions
of true volume. Unlike the base robot set, F1 score is not
well correlated with space usage. While the robots in the
resolution set with the higest and lowest space usage do
show this trend, Kuka10 and Kuka80, there is no correlation
for those in the middle. However, the space usage of this
middle set is within about 10%, indicating little distinction.
In contrast, Kuka10 and Kuka80 have almost a 30% space
usage difference. It should be noted that for the five largest
resolutions, Kuka10 to Kuka30, 100% of errors lie within
three voxels of the surface (Table III). This indicates that
there are few differences between these robots.

VI. CONCLUSIONS

In this work, we evaluated the learned swept volume
geometry function approximator, S̃VG, for 10 robots with
a variety of joint properties and DOF. S̃VG across all
robots demonstrated the ability to accurately approximate
the swept volume geometry given the start and end robot
configurations as well as the occupation probability of each
voxel. Characterizing the prediction errors revealed that
errors are tightly distributed around the true volume surface.
The deep geometry predictor was also shown to produce
approximated swept volume geometries much faster than the
Octree method; our S̃VG can realistically be integrated into
online motion and task planning. Evaluating S̃VG quality
against the voxel occupation probability threshold for on/off
classification showed that a critical threshold value can be
found. This critical value can be useful in tuning the network
to favor false-negative/positive predictions depending on a
motion planning application at hand.

Swept volume geometry predictions are expected to prove
very useful in motion and task planning applications. For
these applications, further studies in the nature of the erro-
neous predictions in relation to the robot’s body as well as
the ability of the network to predict the geometry in restricted
configuration spaces, e.g., lower dimensional sub-manifolds,
may prove to be critical.
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