

Towards Machine Learning of Motor Skills for Robotics From Simple Skills to Robot Table Tennis and Manipulation

> Jan Peters Technische Universität Darmstadt

> > Max Planck Institute for Intelligent Systems

Motivation

Source: Movie iRobot

Uncertainty in tasks and environment

Motivation

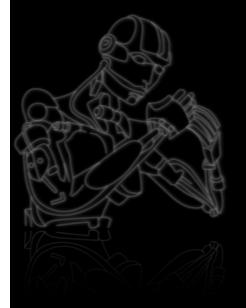
Adapt to humans

Programming complexity beyond human imagination

How can we fulfill Hollywood's vision of future robots?

- Smart Humans? Hand-coding of behaviors has allowed us to go very far!
- Maybe we should allow the robot to learn new tricks, adapt to situations, refine skills?
- "Off-the-shelf" machine learning approaches? Can they scale?

We need to develop skill learning approaches for autonomous robot systems!



Important Questions

- I. How can we develop efficient motor learning methods?
- II. How can anthropomorphic robots learn basic skills similar to humans?
- III. Can complex skills be composed with these elements?

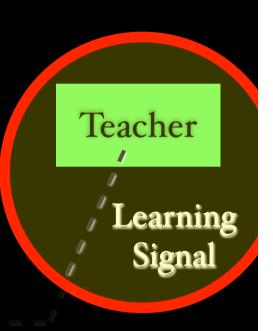
Outline

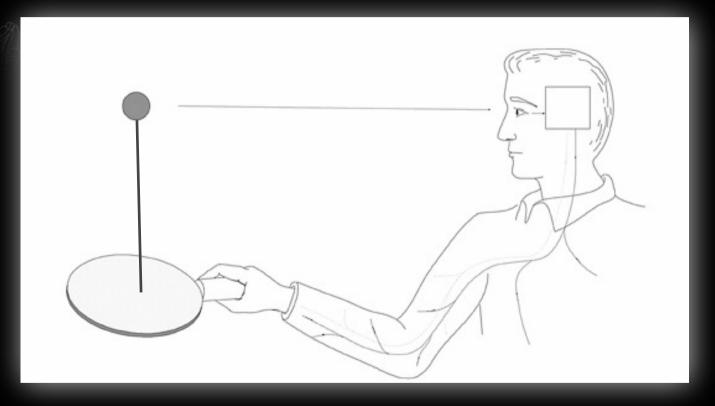
- I. Introduction
- 2. How can we develop efficient motor learning methods?
- 3. How can anthropomorphic robots learn basic skills similar to humans?

Current State

Task Parameters

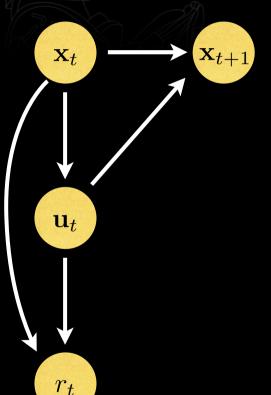
- 4. Can complex skills be composed with these elements?
- 5. Outlook
- 6. Conclusion





Internal and external state x_t , action u_t .

Modeling Assumptions



Autonomous Learning System: Modeled by a policy that generates action \mathbf{u}_t in state \mathbf{x}_t .

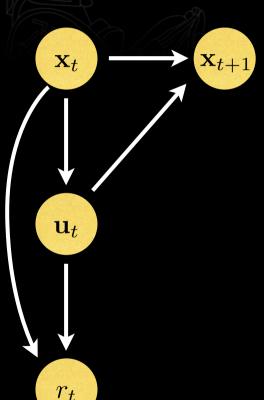
Teacher: Evaluates the performance and rates it with r_t .

Environment: An action \mathbf{u}_t causes the system to change state from \mathbf{x}_t to \mathbf{x}_{t+1} .

Model in a perfect world: $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$

Model in the real world: $\mathbf{x}_{t+1} \sim p(\mathbf{x}_{t+1}|\mathbf{x}_t,\mathbf{u}_t)$

Modeling Assumptions



Autonomous Learning System: Modeled by a policy that generates action \mathbf{u}_t in state \mathbf{x}_t .

How can we model a behavior with "rules"?

Can we use a deterministic function $\mathbf{u}_t = \pi(\mathbf{x}_t)$?

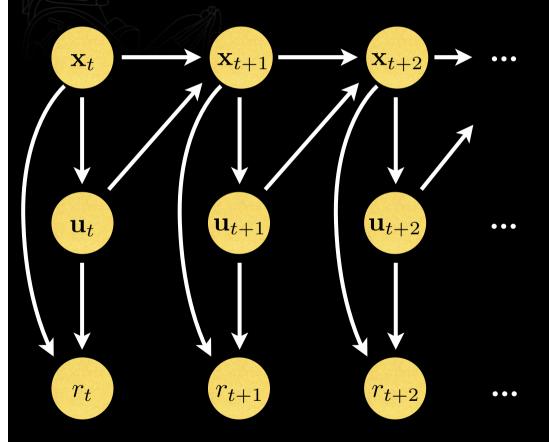
NO! Stochasticity is important:

- needed for exploration
- eases algorithm design
- reduces the complexity
- optimal solution can be stochastic
- can model variance of the teacher

Hence, we use a stochastic policy:

 $\mathbf{u}_t \sim \pi(\mathbf{u}_t|\mathbf{x}_t) = p(\mathbf{u}_t|\mathbf{x}_t)$ Allow learning!

Let the loop roll out!



Trajectories

$$oldsymbol{ au} = [\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1 \dots, \mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{x}_T]$$

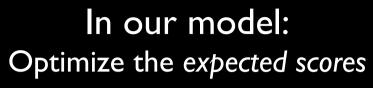
Path distributions

$$p(\tau) = p(\mathbf{x}_0) \prod_{t=0}^{T-1} p(\mathbf{x}_{t+1}|\mathbf{x}_t, \mathbf{u}_t) \pi(\mathbf{u}_t|\mathbf{x}_t)$$

Path rewards:

$$r(\boldsymbol{ au}) = \sum_{t=0}^{T} \alpha_t r(\mathbf{x}_t, \mathbf{u}_t)$$

What is learning?



$$J(heta)=E_ au\{r(au)\}=\int_\mathbb{T} p_ heta(au)r(au)d au$$
 of the teacher.

Peters & Schaal (2003). Reinforcement Learning for Humanoid Robotics, HUMANOIDS

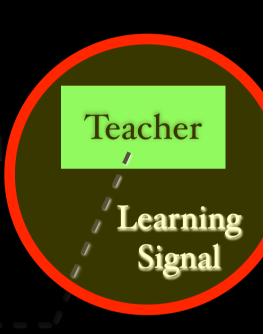
Outline

- I. Introduction
- 2. How can we develop efficient motor learning methods?
- 3. How can anthropomorphic robots learn basic skills similar to humans?

Current State

Task Parameters

- 4. Can complex skills be composed with these elements?
- 5. Outlook
- 6. Conclusion





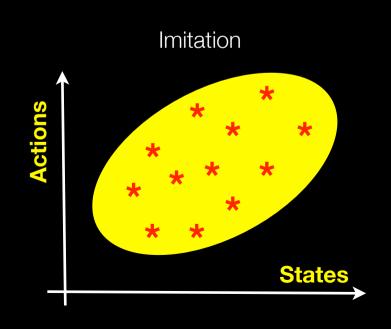
Imitation Learning

Given a path distribution, can we reproduce the policy?

• match given path distribution p(T) with a new one $p_{\theta}(T)$, i.e.,

$$D(p_{\boldsymbol{\theta}}(\boldsymbol{\tau})||p(\boldsymbol{\tau})) \to \min$$

- only adapt the policy parameters θ
- model-free, purely samplebased
- results in one-shot and expectation maximization algorithms



Reinforcement Learning

Given a path distribution, can we find the optimal policy?

- Goal: maximize the return of the paths r(T) generated by path distribution $p_{\theta}(T)$
- Optimization function is the expected reward

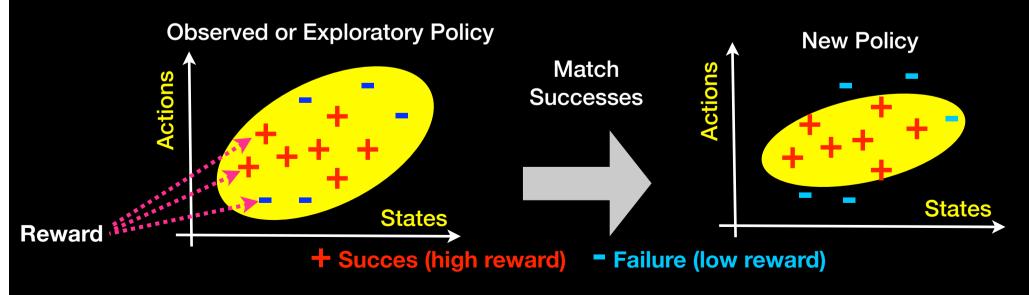
$$J(\boldsymbol{\theta}) = \int_{\mathbb{T}} p_{\boldsymbol{\theta}}(\boldsymbol{\tau}) r(\boldsymbol{\tau}) d\boldsymbol{\tau}$$

- This part usually results into a greedy, softmax updates or a `vanilla' policy gradient algorithm...
- Problem: Optimization Bias

Success Matching

"When learning from a set of their own trials in iterated decision problems, humans attempt to match not the best taken action but the reward-weighted frequency of their actions and outcomes" (Arrow, 1958).

Can we create better policies by matching the reward-weighted previous policy?





Reinforcement Learning by Reward-Weighted Imitation

Matching successful actions corresponds to minimizing the Kullback-Leibler 'distance'

$$D(p_{\boldsymbol{\theta}}(\boldsymbol{\tau})||r(\boldsymbol{\tau})p(\boldsymbol{\tau})) \to \min$$

For a Gaussian policy $\pi(\mathbf{u}|\mathbf{x}) = \mathcal{N}(\mathbf{u}|m{\phi}(\mathbf{x})^Tm{ heta}, \sigma^2\mathbf{I})$, we get the update rule

$$heta_{k+1} = (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{R} \mathbf{U}$$
New Policy Parameters Features Rewards Actions

Reduces Reinforcement Learning onto Reward Weighted Regression!

This insight has allowed us to derive a series of new reinforcement learning methods:

- Reward-Weighted Regression (Peters & Schaal, ICML 2007)
- PoWER (Kober & Peters, NIPS 2009)
- LaWER (Neumann & Peters, NIPS 2009+ICML 2009)
- CrKR (Kober, Oztop & Peters, R:SS 2010; IJCAI 2011)

All of these approaches are extensions of this idea.

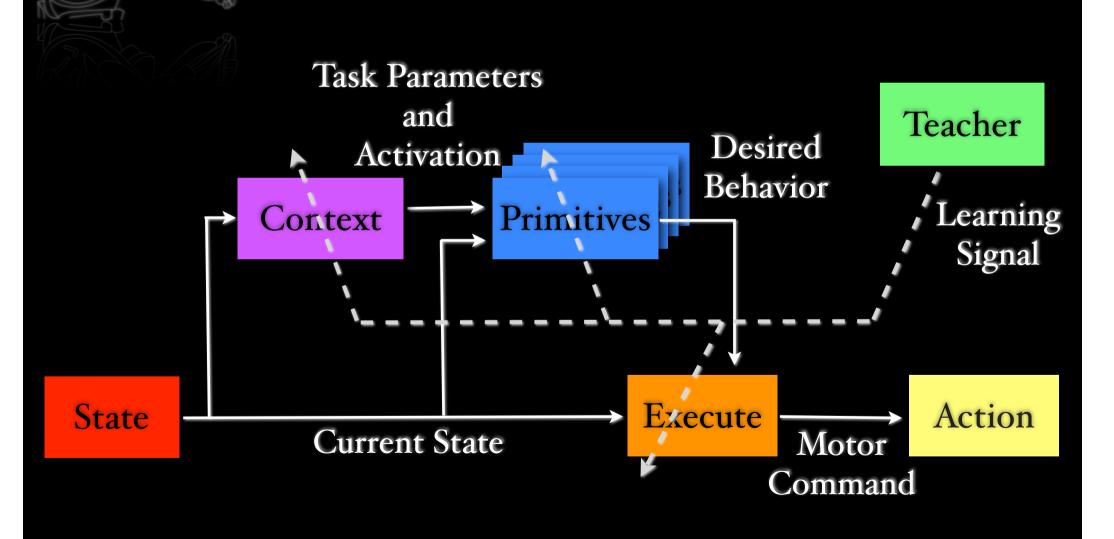
Our follow-up approach "Relative Entropy Policy Search" (Peters et al., AAAI, 2010; Daniel et al., AIStats 2012) also relies on most of these insights.

Outline

- I. Introduction
- 2. How can we develop efficient motor learning methods?
- 3. How can anthropomorphic robots learn basic skills similar to humans?
- 4. Can complex skills be composed with these elements?
- 5. Outlook
- 6. Conclusion

Action

A Blue Print for Skill Learning?

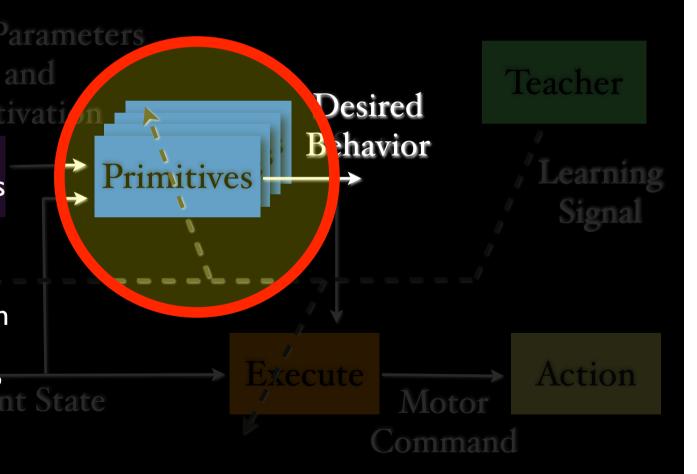


Outline

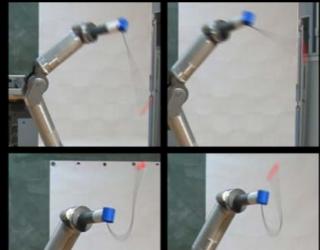
- How can robots learn elementary behaviors?

- How can behaviors be adapted to new situations?

How can execution on an unknown system be learned?



Motor Primitives



How can we represent, acquire and refine elementary movements?

- Humans appear to rely on context-driven motor primitives (Flash & Hochner, TICS 2005)
- Many favorable properties:
 - Invariance under task parameters
 - Robust, superimposable, ...

Resulting approach:

- Use the dynamic system-based motor primitives (Ijspeert et al. NIPS2003; Schaal, Peters, Nakanishi, Ijspeert, ISRR2003).
- Initialize by Imitation Learning.
- Improve by trial and error on the real system with Reinforcement Learning.

Motor Primtives

Task/Hyperparameter

Trajectory Plan Dynamics

$$\begin{cases} \dot{z} = \alpha_z (\beta_z(g - y) - z) \\ \dot{y} = \alpha_y (f(x, v) + z) \end{cases}$$

Canonical Dynamics

where
$$\dot{v} = \alpha_v (\beta_v (g - x) - v)$$
Linear in learnable
$$\dot{x} = \alpha_x v$$

$$\dot{x} = \alpha_x v$$

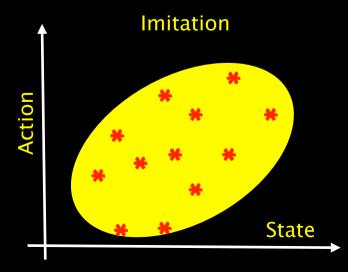
Local Linear Model Approx.

$$\begin{cases} f(x,v) = \frac{1}{\sum_{i=1}^{k} w_i} \\ w_i = \exp\left(-\frac{1}{2}d_i(\bar{x} - c_i)^2\right) \text{ and } \bar{x} = \frac{x - x_0}{g - x_0} \end{cases}$$

Acquisition by Imitation

Teacher shows the task and the student reproduces it.

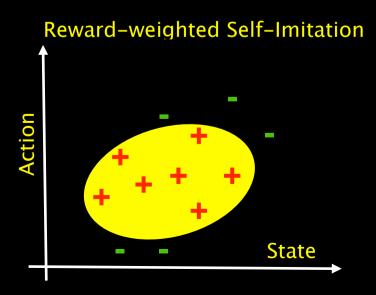
maximize similarity



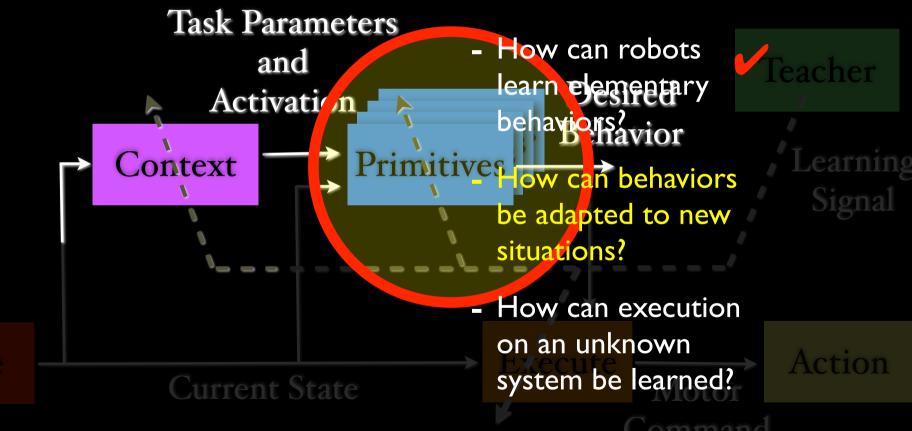
Self-Improvement by Reinforcement Learning

Student improves by reproducing his successful trials.

 maximize reward-weighted similarity



Outline



Motor Primtives

Task/Hyperparameter

Trajectory Plan Dynamics

$$\begin{cases} \dot{z} = \alpha_z (\beta_z(g - y) - z) \\ \dot{y} = \alpha_y (f(x, v) + z) \end{cases}$$

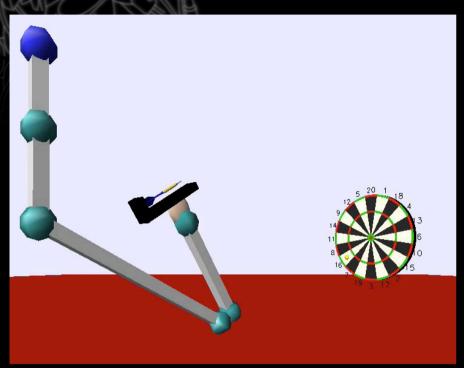
Canonical Dynamics

where
$$\dot{v} = \alpha_v (\beta_v (g - x) - v)$$
Linear in learnable
Policy Parameters

Local Linear Model Approx.

$$f(x,v) = \frac{\sum_{i=1}^{k} w_i b_i v}{\sum_{i=1}^{k} w_i}$$

$$w_i = \exp\left(-\frac{1}{2}d_i(\bar{x} - c_i)^2\right) \text{ and } \bar{x} = \frac{x - x_0}{g - x_0}$$

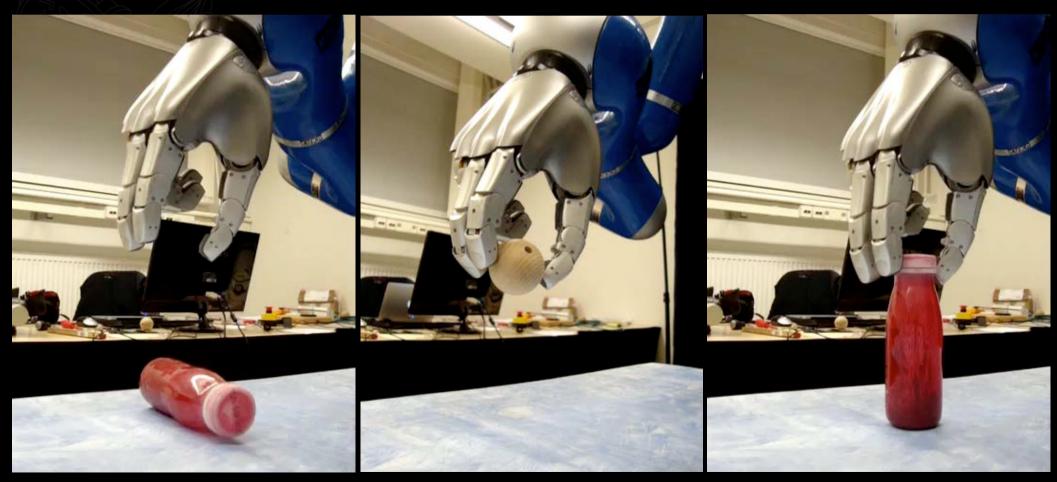


Adjusting Motor Primitives through their Hyperparameters:

- I. learn a single motor primitive using imitation and reinforcement learning
- 2. learn policies for the goal parameter and timing parameters by reinforcement learning

Throwing and Catching...

Grasping and Manipulation

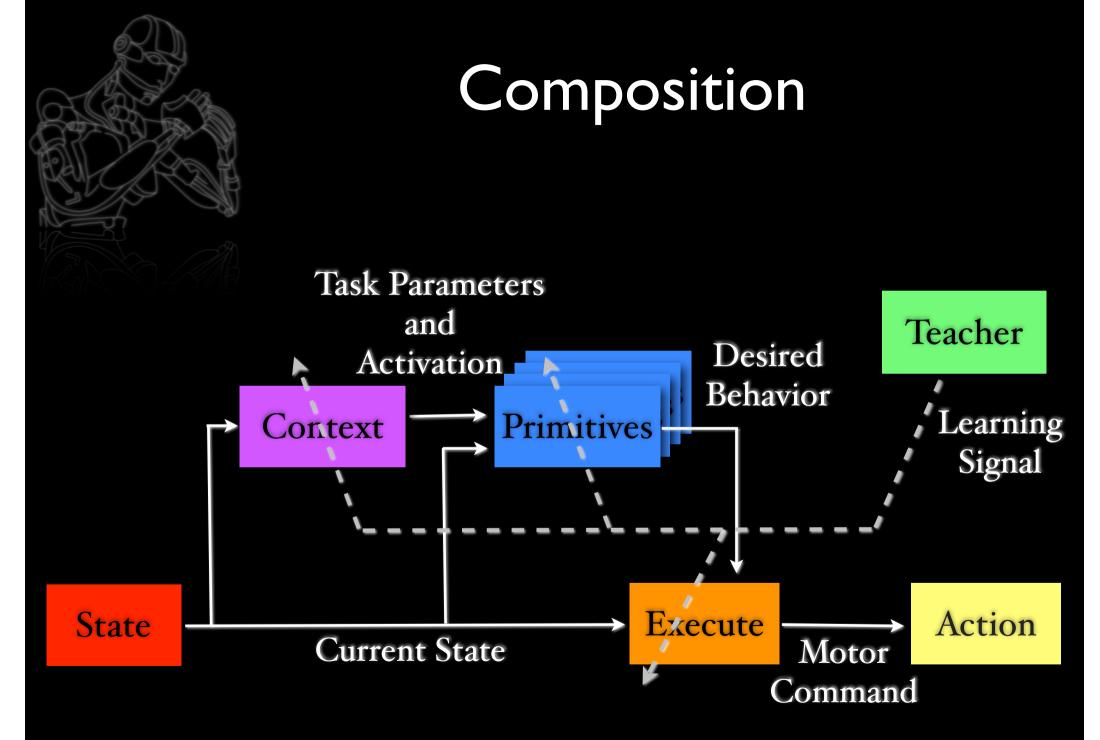


Kroemer, O.; van Hoof, H.; Neumann, G.; Peters, J. (2014). Learning to Predict Phases of Manipulation Tasks as Hidden States, Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA).

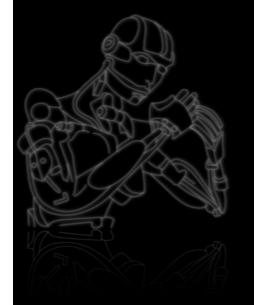
Outline

- I. Introduction
- 2. How can we develop efficient motor learning methods?
- 3. How can anthropomorphic robots learn basic skills similar to humans?
- 4. Can complex skills be composed with these elements?
- 5. Outlook
- 6. Conclusion

Action



Let us put all these elements together!



Applying the Whole Framework

Steps to Learned Table Tennis Player:

- I. Learn several motor primitives by imitation.
- 2. Self-Improvement on repetitive targets by reinforcement learning.
- 3. Generalize among targets and hitting points.

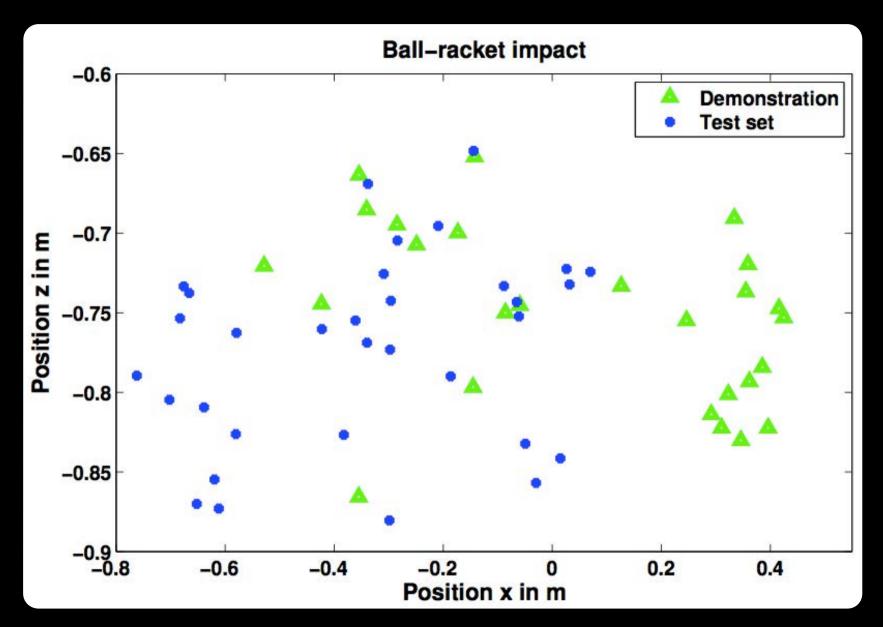
Demonstrations

Demonstrations with Kinesthetic Teach-In

Select & Generalize

From Imitation Learning we obtain 25 Movement Primitives

Covered Situations

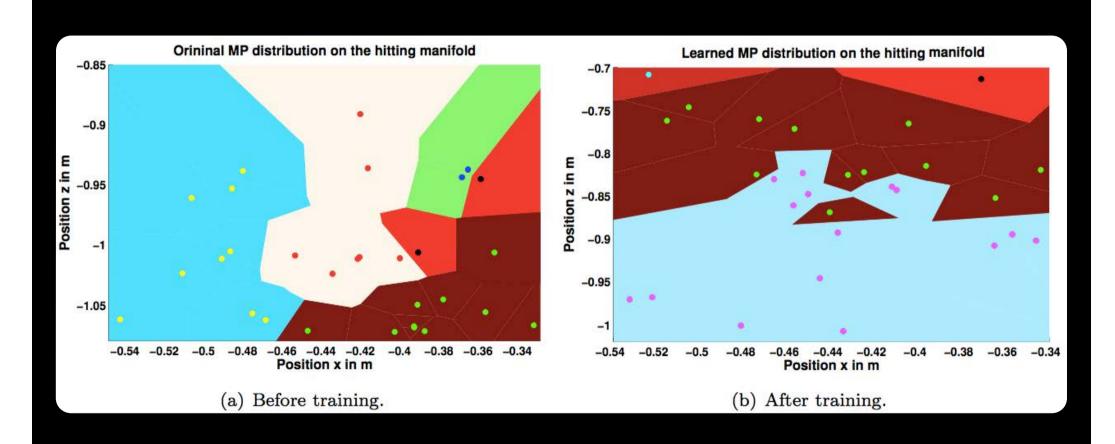


Mülling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning to Select and Generalize Striking Movements in Robot Table Tennis, International Journal on Robotics Research.

Self-Improvement

Training a Hitting Region with an Initial Success Rate of 0%

Changed Primitive Activation



Current Gameplay

Final Challenge: Match against a Human

Current Problems

Problem 1: Workspace is too limited.

Problem II: Arm accelerations are too low.

Problem III: Limited reaction time.

Problem III: Reaction Time

Reactive Opponent Prediction IDDM GPR error in cm re hit) 0.3 Osserior 0.3 Osserior Wang, Z. et al. Probabilistic Mo of Human Mover for Intention Infe R:SS 2012, IJRP 320 240 160 80 time in ms before opponent returns ball

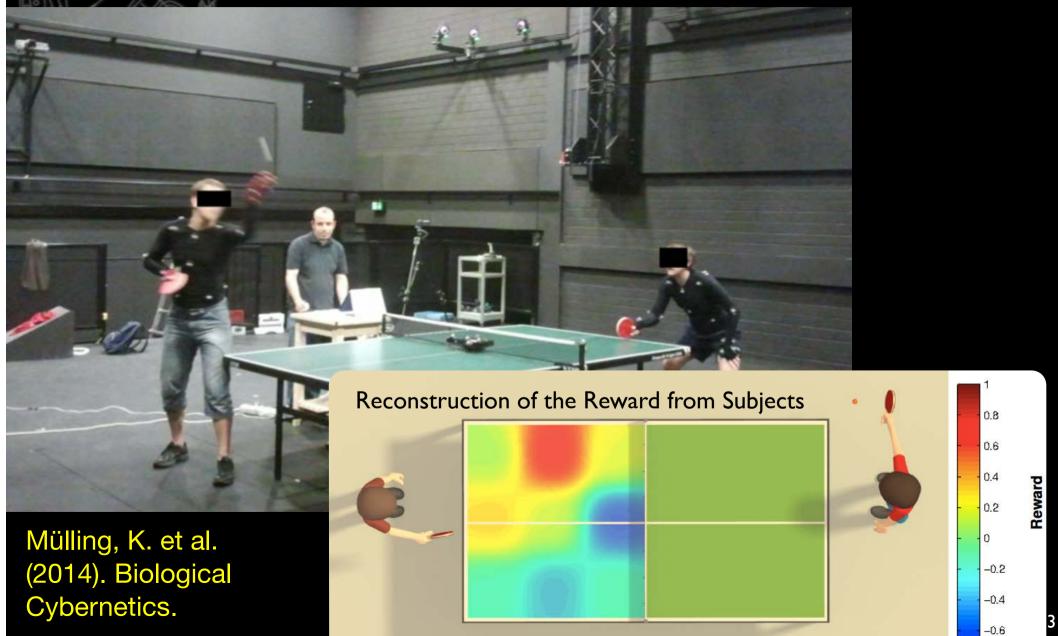
Opponent Predictiom

Probabilistic Modeling of Human Movements for Intention Prediction

prototype system

Z. Wang, K. Muelling, M. Deisenroth, B. Schoelkopf, and J. Peters

Extracting Strategies from Game Play



Extracting Strategies from Game Play

Weights of the most relevant features!

Weights of the individual reward features

1.5

1

0.5

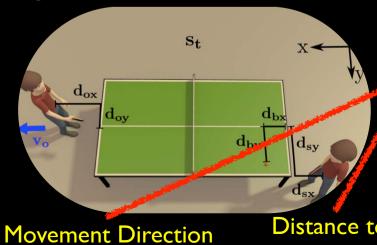
-0.5

-1.5

-2 δ_{tx} δ_{ty} δ_{ox} δ_{oy} $\delta_{$

Distance to the Edge of the Table

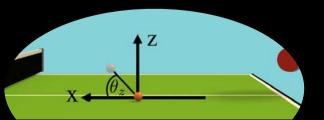
of the Opponent



Distance to the Opponent

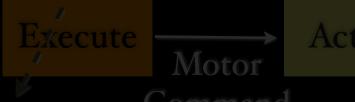
Velocity of the Ball

Mülling, K. et al. (2014) Biological Cybernetics. Angle of Incoming Bouncing Ball



Outline

- I. Introduction
- 2. How can we develop efficient motor learning methods?
- 3. How can anthropomorphic robots learn basic skills similar to humans?
- 4. Can complex skills be composed with these elements?
- 5. Outlook
- 6. Conclusion



It's not all Table Tennis...

Industrial Application: Key bottleneck in manufacturing is the high cost of robot programming and slow implementation.

Bosch: If a product costs less than 50€ or is produced less than 10.000 times, it is not competitive with manual labor.

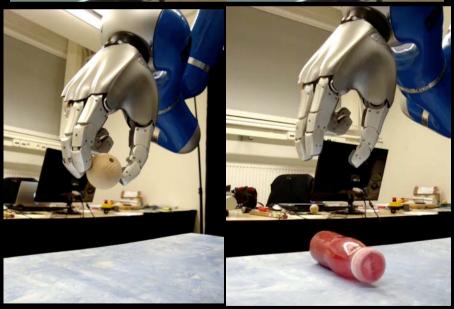
Assistive Robots: In hospital and rehablitation institutions, nurses need to "program" the robot – not computer scientists.

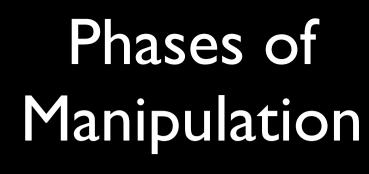
Robots@Home: Robots need to adapt to the human and "blend into the kitchen".

Grasping with Dynamic Motor Primitives

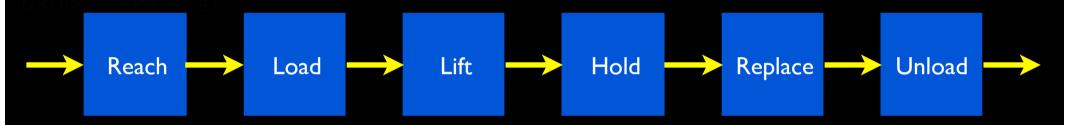
- Hitting a ball: Velocity at hitting point
- Reaching and grasping
 - Avoiding obstacles
 - Approach direction
 - Adjusting fingers to object



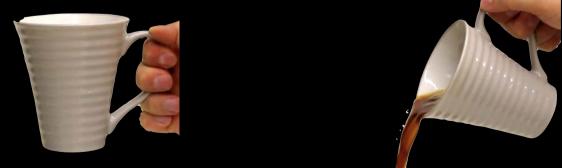




Manipulations consist of sequences of phases*



• Effects of actions depend on the current phase



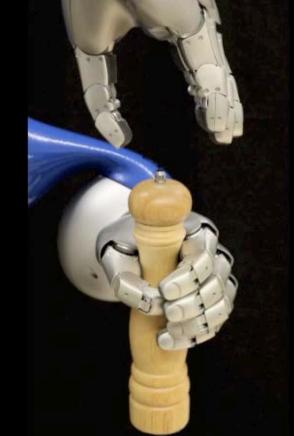
Phase transitions are constraints and subgoals of tasks

Transfer from Robot Table Tennis: First Examples

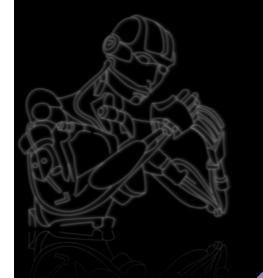
Demonstration of Pouring

Kroemer, O.; van Hoof, H.; Neumann, G.; Peters, J. (2014). Learning to Predict Phases of Manipulation Tasks as Hidden States, Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA).

Lioutikov, R.; Kroemer, O.; Peters, J.; Maeda, G. (2014). Learning Manipulation by Sequencing Motor Primitives with a Two-Armed Robot, Proceedings of the 13th International Conference on Intelligent Autonomous Systems (IAS).



Phase: I



Outlook

Robotics and Control

Robot Skill Learning Biological Inspiration and Application

Machine Learning

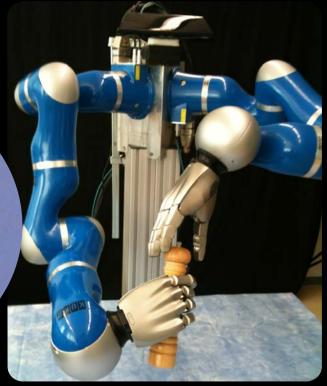
Robotics & Control of Grasping

Robot Grasping and Manipulation (Krömer, Peters, Robotics & Autonomous Systems, 2010)

Robotics

and

Control

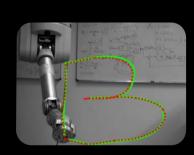


Real-Time Software & Simulations for Robots

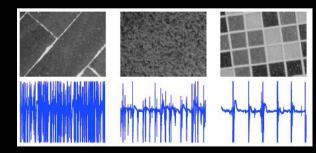


High-Speed Real-Time Vision

(Lampert & Peters, Journal of Real-Time Vision)



Nonlinear Robot Control (Peters et al, Autonomous Robots, 2008)



Tactile Sensing & Sensory Integration

(Kroemer, Lampert & Peters, IEEE Trans. Robotics, 2011)

Physics as prior for Learning in Planning & Control (Nguyen-Tuong & Peters, ICRA 2010)

Optimal Control (Kroemer & Peters, NIPS 2011)

Machine Learning

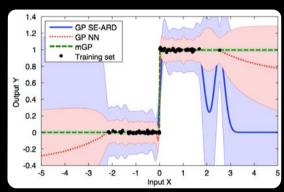
Bayesian
Optimization
(Calandra et al, 2014)

Much more Reinforcement Learning...

(Peters et al, Neural Networks 2008; Neurocomputing 2008)

Model Learning

(Nguyen-Tuong & Peters, Advanced Robotics 2010)



Maximum Entropy

Parameters θ

(Peters et al., AAAI 2010; Daniel, Neumann & Peters, AlStats 2012)

True objective

Probabilistic Movement Representation (Paraschos et al. NIPS 2013)

Manifold Gaussian Processes

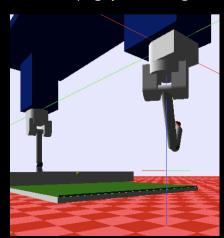
(Calandra et al, 2014)

Policy Gradient Methods

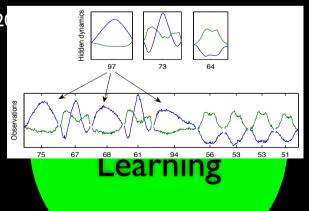
(Peters et al, IROS 2006)

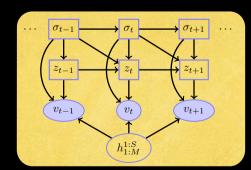
Real-Time Regression

(Nguyen-Tuong & Peters, Neurocomputing 20



Machine Learning for Motor Games (Wang, Boularias & Peters, AAAI 2011)





Pattern Recognition in Time Series

(Alvarez, Peters et al., NIPS 2010a; Chiappa & Peters, NIPS 2010b)

Biological Inspiration and Application

Brain-Computer Interfaces with ECoG for Stroke Patient Therapy

(Gomez, Peters & Grosse-Wentrup, Journal of Neuroengineering 2011)

Brain Robot Interfaces

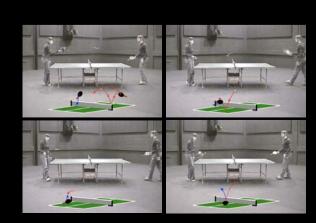
(Peters et al., Int. Conf. on Rehabilitation Robotics, 2011)

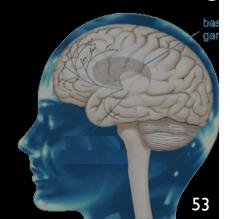
Biological Inspiration and Application

Computational Models of Motor Control & Learning

Understanding
Human Movements
(Mülling, Kober & Peters,

Adaptive Behavior 2011)





Outline

- I. Introduction
- 2. How can we develop efficient motor learning methods?
- 3. How can anthropomorphic robots learn basic skills similar to humans?
- 4. Can complex skills be composed with these elements?
- 5. Outlook
- 6. Conclusion

Action

Conclusion

- Motor skill learning is a promising way to avoid programming all possible scenarios and continuously adapt to the environment.
- We have efficient Imitation and Reinforcement Learning Methods which scale to anthropomorphic robots.
- Basic skill learning capabilities of humans can be produced in artificial skill learning systems.
- We are working towards learning of complex tasks such as table tennis.
- Many interesting research topics benefit from this work!

