
Learning Cost Functions For Motion Planning From Human
Preferences

Artem Gritsenko1 and Dmitry Berenson1

I. INTRODUCTION

Contemporary motion planners usually calculate the cost
of the solution independently of the robot task. However,
if we observe how humans perform motion, it seems that
in many tasks some features of the trajectory are more
important than others. For example, if you are manipulating a
mattress in a house you may not pay attention to the distance
to the obstacles that much due to the fact that the mattress is
deformable, but you probably care about the execution time
of the trajectory as the mattress is heavy. On the other hand,
manipulation of some light and fragile object like a vase
in the same house could consider the distance to obstacles
more important than the execution time. Inspired by human
behavior, we seek to improve the quality of motion planning
by making the cost function task specific.

The problem of learning the cost function from human
demonstration has been approached by Inverse Optimal
Control (IOC) and Inverse Reinforcement Learning (IRL)
techniques. The common idea in these methods is to learn
the underlying Markov Decision Process [1] [2] [3] model
of the observed motion. [4] uses linearly solvable MDPs and
performs much faster than the previous algorithms by not
solving the forward MDP optimization problem. The work in
[5] is based on the Relative Entropy Policy Search and is able
to learn good policies from a small number of demonstrations
without any assumptions on an underlying dynamic model.
Recent work in [6] tries to approach the problem in the local
setting assuming the local optimality of demonstrated trajec-
tories. In contrast to the previous work our approach does not
solve MDP optimization problem, but uses the features of the
trajectories and their ranking to produce the desired model.
[7] and [8] learn the cost function by combining human
preferences and Reinforcement Learning. [9] uses a human
expert to provide a preference feedback without necessity to
provide an optimal trajectory. [9] assumes the cost function
is a linear combination of features, while we extend the cost
function definition to any kind of function.

II. LEARNING A MODEL OF THE COST
FUNCTION

A. Problem Statement

A common way to estimate the quality of a trajectory pro-
duced by a motion planning algorithm is to evaluate its cost
using a function designed by the programmer. In our case
we want to learn the cost function, so we need an alternative

1Worcester Polytechnic Institute, Worcester, MA
avgritsenko@wpi.edu, dberenson@cs.wpi.edu

Fig. 1. (a) PR2 manipulating the wheel for unhang and put down actions in
the OpenRave simulator; (b) GUI used for pairwise trajectory comparisons.

way to evaluate the robot motion when collecting training
data. We propose to use human preferences to estimate the
quality of a trajectory during training. As shown in previous
work [10], humans are able to reliably choose between two
alternative robot motions. So, we can provide a human with
videos of two robot motions and allow him/her to pick the
one that looks more appropriate. We can then aggregate the
results of these pairwise comparisons to produce a ranking
of the trajectories.

Let a set of trajectories for a given task be represented
by a set of feature vectors F = {f1, ..., fm}. From pairwise
comparisons, we obtain a ranking of the trajectories R =
{r1, ..., rn} where ri is the rank of trajectory i. We wish to
build a model of the cost function that explains the human-
based ranking, or in a more mathematical definition, to find
the mapping a:

a(F ) = R. (1)

B. Proposed Method

The first step is to generate the set of trajectories for a
specific task. We used a task where robot needed to unhang
a wheel from a car and put it down in front of it (Fig.1a).
The features that are extracted from the generated trajectories
are: 1) trajectory duration, 2) distance to the obstacles and
3) the length of the path that the wheel traveled.

To calculate the distance to the obstacles we used the
Signed Distance Field in the workspace. The value of the dis-
tance feature in a certain robot configuration is the minimal
distance to the obstacles along all the links of the robot we
are interested in (usually links of the active manipulator). The
value of the distance to obstacles feature for the trajectory
is the sum of the values of the feature in each waypoint.
The third feature captures the length of the path in terms
of translation of the wheel. In many cases, this does not
correlate with the trajectory duration (feature 1).



Fig. 2. (a) Distribution of the features according to the classes in the
generated model. From bottom to top: number of instances for each of the
classes; distribution of the data by time; distribution of data by distances,
in color the number of instances assigned to each class is shown; (b)
trajectories used for simulation experiments, which are generated for PR2
unhang and putdown wheel actions in OpenRave.

To produce the ranking we constructed a GUI that provides
a human with two trajectories of the motion and allows
him/her to pick between them (Fig.1b). To aggregate the
pairwise comparisons into the total ranking of the trajectories
the merge sort approach was used.

The next step is to find the mapping between features and
ranking (Eq.1). We represent the trajectory ranking in two
ways: as continuous values and as the class labels. In the
first case we assign each trajectory a cost c in the range
[0,1] such that 1 is the best rank and 0 is the worst. The
second way of representing the ranking assigns a class label
to each trajectory based on its rank. The problem here is that
we need to define the number of classes and the threshold for
every class. It could be done by assigning classes arbitrary
or by making an additional run of demonstrations for the
human judge that will allow choosing the thresholds for
the classes. So far, we decide the number of classes and
thresholds manually.

We propose to learn the model of the cost function using
a decision tree-based approach. The main advantage of deci-
sion trees is that they implicitly perform feature selection by
discarding irrelevant features. Decision trees can also capture
nonlinear dependencies between variables, as opposed to,
say, linear regression. For the class-based ranking we used
conventional decision trees (C4.5 algorithm) [11]. For the
continuous-cost ranking the model trees M5P algorithm [12]
was used. This algorithm builds linear models in the leaves
of the tree.

III. EXPERIMENTS

We tested the proposed method in two ways: 1) using data
generated from a known distribution and 2) using data from
a real planner and human comparisons.

A. Experiments with data from a known distribution

The first set of experiments was done to show that the
approach works in principal. For this case we generated
the set of trajectories’ features (distance to obstacles and
trajectory duration) from the normal distribution. The data
were ranked with a simple cost function model that could
reflect real world preferences (Fig. 2a). For example, if
distance to the obstacles is very low (lower than 150mm)
then the trajectory was assigned to the worst class and ranked

TABLE I
EXPERIMENTAL RESULTS

Classification problem
Data
from

known
distribu-

tion

Human-
ranked

data
(training)

Human-
ranked data

(cross-
validation)

Accuracy 99.96% 90.62% 68.75%
Regression problem

PCC 0.99 0.90 0.68
RAE 1.17% 41.7% 48.6%

TABLE II
CONFUSION MATRIX

FOR

HUMAN-RANKED

DATA (CROSS-
VALIDATION)

classified as
a b c d

7 1 0 0 a
1 4 3 0 b
1 2 4 1 c
0 1 0 7 d

descending by distance. On the other hand, if the distance
was bigger than some threshold (for example 260mm) then
distance is not very important and trajectories were ranked by
time. We hypothesize that such splits can reflect real human
preferences.

Experiments with 10,000 datapoints from the known dis-
tribution showed that decision and model trees can reproduce
the underlying model of the cost function very reliably (Tab.
I), which means that if our hypothesis about human prefer-
ences was true then our decision tree model can represent
the cost function. For classification problem we use accuracy
and confusion matrices as the measures of performance. For
the continuous output the Pearson Correlation Coefficient
(PCC) between the ground-truth and estimated score vectors
is calculated as well as the Relative Absolute Error (RAE).

B. Experiments with human-ranked trajectories

To generate data for human comparisons the robot planned
to unhang the wheel from the hub and put it down. This
task contains complicated dual-arm constrained manipula-
tion, which is non-trivial motion planning problem itself.
32 trajectories were generated with the CBiRRT planner
[13] (Fig.2b). The following features of the trajectories were
extracted: 1) distance to obstacles and 2) the length of the
path that the wheel traveled (the trajectory duration feature
was removed by correlation-based feature selection). We
evaluated the decision trees learned from the ranked training
data both on the training data and using leave-one-out cross-
validation. The results are summarized in the Table I. Though
for the classification problem the accuracy of cross-validation
is not very high, we can notice from the confusion matrix
(Tab. II) that misclassified instances are labeled with the class
adjacent to the original. This could be caused by some noise
in human pairwise comparisons or by the small size of the
training data.

IV. CONCLUSION

We have presented an approach for learning a cost function
for robot motion based on human preferences. Our method
is based on the human ranking of the trajectories that is
used as training data for decision trees. We have tested it
on simulated trajectories for the PR2 robot performing tire
manipulation. The results showed that the algorithm works in
principal for ’perfect’ data and can reproduce the underlying



model of the cost function. On the human-ranked data the
accuracy was not as high, but still very promising.

REFERENCES

[1] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[2] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement
learning,” Urbana, vol. 51, p. 61801, 2007.

[3] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in AAAI, 2008, pp. 1433–
1438.

[4] K. Dvijotham and E. Todorov, “Inverse optimal control with linearly-
solvable mdps,” in Proceedings of the 27th International Conference
on Machine Learning (ICML-10), 2010, pp. 335–342.

[5] A. Boularias, J. Kober, and J. R. Peters, “Relative entropy inverse
reinforcement learning,” in International Conference on Artificial
Intelligence and Statistics, 2011, pp. 182–189.

[6] M. Kalakrishnan, P. Pastor, L. Righetti, and S. Schaal, “Learning
objective functions for manipulation,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE, 2013, pp.
1331–1336.

[7] J. Fürnkranz, E. Hüllermeier, W. Cheng, and S.-H. Park, “Preference-
based reinforcement learning: a formal framework and a policy iter-
ation algorithm,” Machine Learning, vol. 89, no. 1-2, pp. 123–156,
2012.

[8] R. Akrour, M. Schoenauer, and M. Sebag, “April: Active preference
learning-based reinforcement learning,” in Machine Learning and
Knowledge Discovery in Databases. Springer, 2012, pp. 116–131.

[9] A. Jain, B. Wojcik, T. Joachims, and A. Saxena, “Learning trajectory
preferences for manipulators via iterative improvement,” in Advances
in Neural Information Processing Systems, 2013, pp. 575–583.

[10] M. Zucker, J. A. Bagnell, C. G. Atkeson, and J. Kuffner, “An
optimization approach to rough terrain locomotion,” in Robotics and
Automation (ICRA), 2010 IEEE International Conference on. IEEE,
2010, pp. 3589–3595.

[11] J. R. Quinlan, C4. 5: programs for machine learning. Morgan
kaufmann, 1993, vol. 1.

[12] Y. Wang and I. H. Witten, “Inducing model trees for continuous
classes,” in Proceedings of the Ninth European Conference on Machine
Learning, 1997, pp. 128–137.

[13] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manipu-
lation planning on constraint manifolds,” in Robotics and Automation,
2009. ICRA’09. IEEE International Conference on. IEEE, 2009, pp.
625–632.


