
Adaptive Real-time Nonlinear Model Predictive Motion Control

Michael Neunert, Farbod Farshidian and Jonas Buchli

Abstract— In this paper we present a framework for real-
time, full state feedback, nonlinear model predictive motion
control of autonomous robots. The proposed approach uses
an iterative optimization algorithm, namely iterative Linear
Quadratic Gaussian (iLQG) to solve the underlying nonlinear
optimal control problem, simultaneously deriving feedforward
and feedback terms. The resulting motion controller is up-
dated online by continuously rerunning the solver in a model
predictive control (MPC) setting. An additional optimization
loop around the optimal control algorithm allows for a real-
time, situation-dependent adaptation of the solver’s parameters.
This adds the possibility to influence the high level behavior of
the system such as adapting the controllers time horizon or
cost function. The performance of the proposed approach is
validated in simulation and on the ball balancing robot Rezero.
Therefore, this work presents one of very few implementations
of full-state feedback, nonlinear, model-predictive control for
motion control on a real robot. Results show that the framework
is able to produce an optimized behavior of the system that
is robust to large disturbances. The efficient implementation
allows us to run the framework at high frame rate in real-time
on standard computer hardware.

I. INTRODUCTION
In robotics control the goal is to drive a system to a desired

state via an optimized trajectory. In classical approaches this
task is decomposed into two steps. The first step is finding
a feasible, constraint compliant and near optimal trajectory.
In the second step, a tracking controller is derived which
ensures that the system follows this trajectory in presence
of model inaccuracies or disturbances. While this separation
simplifies the problem, both elements can have conflicting
goals and the combination of both is often suboptimal.
Hence, algorithms have been developed that simultaneously
design feedforward and feedback control laws that implicitly
encode an optimized trajectory and a matching control strat-
egy. We refer to this combined approach as motion control.

As this combined approach uses a single optimization
process, it can lead to improved performance, e.g. with
respect to smoothness or tracking behavior of the controller.
However, stability can usually still only be guaranteed in
the vicinity of the predicted trajectory. In case of large
disturbances the stability boundaries might be exceeded. But
even if the boundaries are not exceeded, disturbances might
lead to decreased performance. One approach to handle
disturbances is to continuously solve an optimal control
problem based on the current state of the system. This
approach is known as model predictive control (MPC).

In our approach we apply full-state feedback nonlinear
MPC. To solve the optimal control problem of MPC we use

Michael Neunert, Farbod Farshidian and Jonas Buchli are with the Agile
& Dexterous Robotics Lab at the Institute of Robotics and Intelligent
Systems, ETH Zurich, Switzerland. {neunertm, farbodf, buchlij}@ethz.ch

iterative Linear Quadratic Gaussian (iLQG) [1]. While it is a
local optimization approach, it can be efficiently initialized
to speed up convergence. Furthermore, as it only requires
first order derivatives of the system dynamics, it can be
implemented efficiently. However, other optimizers could be
used here as well [2].

One contribution of our work is an additional adaptation
loop around the MPC algorithm that can influence the high-
level behaviour of the system. In this adaptation layer, the
main elements of the MPC controller like the cost function,
the time horizon, the initial control guess or the underlying
system dynamics can be changed online. This allows for
changes in the behavior that are difficult or even impossible
to encode statically in a cost function such as context knowl-
edge or high-level sensor feedback (e.g. visual perception).
This way, we can transform the finite time horizon optimal
control into an adaptive time horizon optimization.

Furthermore, we validate the performance of our approach
on the ball balancing robot, Rezero. In contrast to other
implementations e.g. [3] or [4], we directly design the control
input to the system without an additional tracking loop, i.e.
we implement full-state feedback, nonlinear MPC. Thus, this
work is one of the very few demonstrations of full-state
feedback, nonlinear MPC on hardware requiring high update
rates (as is the case with autonomous robots).

While we demonstrate our approach on one specific robot
the implementation of the described framework does not
make any assumptions on the type of robot or its task.
Therefore, it can be applied to various systems. As the
framework is general, the user still simply has to provide
a general robot description, a cost-function (including its
derivatives with respect to state and control), and if desired
a task-specific adaptation rule.

II. RELATED WORK

MPC has been used for decades in the control community
mostly on systems with slow dynamics such as chemical
plants [5]. As MPC is known to be computationally ex-
pensive, its application in robotics has been rather limited.
However, the increase of computational power in recent times
enables the usage in this field. MPC applications in robotics
cover a broad spectrum of topics such as manipulators [4]
aerial [2], [6] and ground vehicles [7], [8], [9] as well as
legged robots [10], [11] naming only a few examples.

Solving MPC problems in real-time can be hard and
computationally expensive. This is especially true in high
dimensional state space or at relatively high update rates.
Hence, in the previously mentioned examples different tech-
niques are used to simplify solving the MPC problem.



Hardware/Simulation

State
Prediction

Model
Predictive

Control

Feedforward &
Feedback
Controller

Desired
Behavior

StateControl

Predicted
State

Feedforward/
Feedback Gains
(time indexed)

Adaptation

Settings/
Hyper-Parameters

Gains
(time indexed)

Simulation

Predicted
State

Predicted
Behavior

Fig. 1. Structure of our adaptive, real-time motion control framework.
A standard full-state feedback controller (green) is complemented with
an optimization-based, model predictive controller (yellow). Through an
additional adaptation layer (red) higher-level behaviors can be specified.

In [2], [6], [11], [9] and [4] a linear model of the dynamics
is assumed. This allows for solving the MPC at very high
rates. However, these approaches might have decreased per-
formance on strongly nonlinear systems. Another common
simplification is to design a trajectory and add a tracking
controller. This idea is used in e.g. [4] and [3]. While a low-
level tracking controller can perform well, it is usually not
taken into account by the MPC algorithm which might lead
to decreased performance or constraint violations.

The approach used in this paper is similar to the one used
in [10] and [12]. Both publications illustrate the capabilities
of the underlying approach. However, the examples presented
in [10] and [12] are in simulation only. As simulations do
not perfectly replicate real physics (e.g. unmodelled motor
dynamics) and as the latter are sometimes even excessively
violated (e.g. no self-collision checking in [10]) it is not clear
how these approaches perform on real systems.

III. REAL-TIME MOTION CONTROL FRAMEWORK

A. Motion Control Problem

In this work, we are trying to solve a closed-loop motion
control problem. We assume that the underlying system can
be described as a nonlinear, control-affine system

ẋ = f(x) + g(x)(u+ ε) (1)

where f(x) and g(x) denote the transition vector and the
control gain matrix respectively. We assume that the control
input u is perturbed by zero-mean Gaussian noise ε. Both
f(x) and g(x) are assumed to be continuously differentiable
with respect to state x and to control input u.

The goal is to find a linear, time-varying feedback and
feedforward controller of the form

u(x, t) = K(t)Tx′(t) (2)

where x′(t) = [1 x(t)]T denotes the augmented state vector
such that the control gain matrix K(t) can contain both
feedforward and feedback gains.

B. Description of the Motion Control Framework

In order to solve these motion control problems, we have
implemented an adaptive, real-time motion control frame-
work (see Figure 1). In this framework an optimization-
based, model predictive controller (yellow background) is
used to modify the gains of a standard feedback controller
(green background). An additional adaptation layer (red
background) allows to specify and change the desired behav-
ior of the system by modifying settings or hyper-parameters
(e.g. the time horizon) used in the MPC controller at runtime.

Usually, MPC designs a feedforward control input. Feed-
back control is then provided by closing the MPC loop.
Thus, for highly dynamic systems this loop has to be run
at a high frequency. In addition to a feedforward input, our
MPC step also designs feedback gains. An inner, linear state
feedback loop is then implemented using these gains. As the
linear feedback control law allows for computing the control
input very efficiently, the inner feedback loop can be run
at very high rates. Therefore, the MPC loop is not required
to be run at high update rates to ensure good performance.
An additional outer adaptation loop can be used for altering
parameters of the MPC solver, e.g. the time horizon or the
cost function, to describe different tasks. This adaptation can
be run at the same or at a lower rate than the MPC loop.

This hierarchical approach allows for rejecting distur-
bances and for adjusting to changes in the environment ac-
cording to their time scales. Low amplitude, high frequency
disturbances as well as system noise are handled by the
feedback controller while larger amplitude, lower frequency
disturbances are compensated for by the MPC loop. Slowly
varying parameters, e.g. goal states provided from user input,
can be adjusted to in the adaptation layer by modifying the
hyper-parameters or cost function of the MPC loop.

C. State Prediction

Complex computations during the MPC or adaptation step
can lead to an increased delay between the time of the state
measurement and the time at which the new controller is
computed and available to the feedback loop. By the time the
control gains get applied, the state might have diverged from
the measured state that the controller was initially designed
for, leading to a decrease in performance.

As a countermeasure, we are predicting the state at the
time of the estimated end of the controller gain calculation.
This predicted state is then used as the initial state for the
controller design step. The accuracy of this prediction is
highly dependent on the model accuracy and the solver. How-
ever, when a good model is available and delays are short,
an accurate prediction can be obtained. The time horizon for
the state-prediction can be fixed, measured (online or offline)
or inferred from a combination of both methods.

In our experiments, a good model of Rezero is available
and its efficient implementation allows us to run the simu-
lation in real-time at more than 1 kHz using a fourth-order
Runge-Kutta integrator. As an estimate for the time horizon
of the prediction step, we assume a fixed delay for communi-
cation delays based on the theoretical transmission speed of



the involved interfaces. Additionally, we measure the delay
introduced by the controller computation online and assume
it being constant over two subsequent iterations. Thus, the
prediction can adapt to medium-fast varying execution times,
which can result from changes in the adaptation layer (e.g.
changes in settings, hyper-parameters or the cost function
can lead to different runtimes).

D. Adaptation
Through an efficient implementation of iLQG as well as

the involved system dynamics and derivatives, we are able
to run MPC at a very high rate (see Section V). Thus we can
add an adaptation layer above the model predictive controller.
This adaptation layer can be used to specify higher level
behaviors that cannot be represented in the cost function.

In the current implementation, we are using this adaptation
layer to vary the time horizon of the finite horizon optimal
control problem to improve the control performance. Further-
more, we modify the cost function by altering the final costs
of for the optimization (see Section V for more details).

While not used yet, the existing implementation would al-
lows us to optimize additional settings and hyper-parameters
of the optimal control problem such as changing parameters
of the system dynamics (e.g. when running a parameter
estimation in parallel) or modifying the initial guess for the
controller (e.g. using pre-optimized motions). As a forward
simulation is available in the adaptation layer, we can directly
assess the control performance for the chosen parameters.

E. iLQG Algorithm
iLQG [1] is an iterative nonlinear optimal control algo-

rithm. This method optimizes a time-indexed feedforward
plus state feedback control law. The main idea behind this
algorithm is to iteratively design a linear quadratic Gaussian
regulator (LQG) for the linearized system over the latest
estimation of the optimal trajectory. In many cases the costs
in the iLQG algorithm converges rapidly to a local minimum
which makes this algorithm a suitable choice for online
optimization frameworks. Furthermore, the cost function in
the iLQG algorithm has a general form which makes the
design simpler and more flexible. This function is defined as

J = E

[
h (x(tf )) +

tf−1∑
t=0

l (x(t), u(t))

]
(3)

where l(x, u) and h(x) are intermediate and terminal costs
respectively and x and u are state and control input vectors

As iLQG uses the second order approximation of the cost
function, it is considered a local optimization algorithm. Be-
ing a local optimizer, this algorithm requires to be initialized
from a stable condition. Therefore, in this work we use a
previously derived linear quadratic regulator (LQR) [13] as
an initial control guess.

F. MPC Framework
MPC is based on iterative, finite-time-horizon optimization

of a task cost function under the system dynamics con-
straints. The iterative scheme of this algorithm allows to re-
plan the control law with respect to the last observed state.

Fig. 2. Photograph of the ball
balancing robot Rezero which is used
during our experiments for validating
the performance of the proposed ap-
proach. Due to its static instability
and non-minimal phase behavior, it
poses interesting challenges in terms
of dynamics to the control approach.
Photo: Gerhard Born, Ringier AG

Therefore, instead of solving the optimal control problem
in the whole state space, this method locally designs the
control law around the estimated trajectory initialized with
the current state. Then by closing the loop over this local
optimizer, it approximates the global controller.

In this work, we use the iLQG algorithm as a local
optimizer. There are two options for initializing iLQG in an
MPC loop. The first method is to use warm starting where
iLQG is initialized with the controller calculated during
the previous iteration of MPC. The second approach is to
initialize iLGQ with a fixed initial guess. As we vary the
time horizon of iLQG, the number of time-indexed control
gains can be different between subsequent MPC iterations.
Therefore, there is no clear way to warm start iLQG using
the previous controller. However, iLQG still converges within
few iterations when initialized with time-constant LQR gains.

G. Implementation
To allow fast execution suitable for real-time control, the

entire framework is implemented in C++. The dynamics and
derivatives for Rezero are generated using MATLAB’s sym-
bolic and code generation toolboxes. However, the motion
control framework can also use forward dynamics generated
by the Robotics Code Generator [14] as dynamics and nu-
merical derivatives. Thus, the user only has to specify a text
file based robot description, a cost function and its derivatives
with respect to state and control to run the framework on
most rigid body systems. In the future, we plan to add auto
differentiation to replace the numerical derivatives and avoid
any manual derivation of the cost function.

The same dynamics are used in several places of the tool-
box, namely the state prediction, the adaptation (if required),
the MPC (optimal control) algorithm and, if not run on real
hardware, the simulation. However, simulation parameters
like step length or solver type can be different for each use
case. For solving the differential equation of the dynamics,
we use ODEint [15] which provides a wide range of fixed
and variable step solvers.

For iLQG and MPC we have customized implementation
which are proven to work at reasonable speed (see Section
V), even though they are not yet optimized for speed and
hence still single core implementations.

IV. HARDWARE

For hardware tests, the ball balancing robot (“ballbot”)
Rezero (shown in Figure 2) is used. Even though the state



space is not as large as e.g. legged robots, Rezero still
has very interesting dynamics that make it a very suitable
platform for the validation of the framework. First of all, the
robot is statically unstable. This means it has to be stabilized
at all times and also iterative control algorithms have to be
initialized with a stable controller. Furthermore, it is a non-
minimum phase system which does not allow to use simple
motion planning algorithms. Additionally, the robot is fully
torque controlled. This allows us to directly optimize over
control torques rather than designing a trajectory. Last but
not least, Rezero is a highly dynamic robot which requires
fast real-time control loops.

A. Robot Model

For the simulation and the derivation of controllers a full
nonlinear 3D system model of Rezero has been analytically
derived [13]. This model describes the robot as two rigid
bodies: the ball and the upper body. Furthermore, it assumes
that no slip and no friction occurs. Furthermore, the actuation
dynamics are neglected. The robot’s state is defined as

x =
[
θx θ̇x θy θ̇y θz θ̇z ϕx ϕ̇x ϕy ϕ̇y

]T
which consists of the body angles with respect to gravity
(θx, θy , θz) and its derivatives (θ̇x, θ̇y , θ̇z) which represent
the angular velocities. Furthermore, the state includes the
rotational angles of the ball (ϕx, ϕy) as well as their deriva-
tives (ϕ̇x, ϕ̇y). These states represent the ball’s position with
respect to a reference position (e.g. start position) and the
ball’s velocity respectively. The control output is represented
by u which consists of the three motor torques (τ1, τ2, τ3).
Through onboard sensors (an inertial measurement unit and
motor encoders) full-state feedback is provided. For the full
description of the model see [13].

B. Computational Hardware

The low-level feedback loop (green box in Figure 1)
is implemented on an ARM Cortex M4 micro-controller
and runs in hard-real-time at 200 Hz. The motion planning
framework (yellow box in Figure 1) is implemented in soft-
real-time on regular PC hardware using an Intel Core i7
processor. Control gains and measured states are exchanged
via serial communication between both computers.

V. EXPERIMENTS

To verify the performance of the proposed approach, we
run experiments on the physical hardware of Rezero. Due to
the design of feedback controllers iLQG is able to handle
modelling errors on Rezero quite well [16]. However, large
disturbances still pose a problem since the control gains
(both feedforward and feedback) are not recomputed. To
assess to what extend MPC can improve the situation, we are
performing tests with go-to tasks where the robot is supposed
to reach a desired state in a cost-efficient way. In a first test,
the goal state is kept constant while in a second test it is
varied through user inputs. During both tests, the robot will
be disturbed significantly by pushing/dragging it far away
from its desired state.

A video summarizing the results can be found at
http://youtu.be/WzKu_IiX2xw.

A. Cost Function
During all experiments, the following cost function is used

during the iLQG optimization step

l (x, u) = xTQx+ uTRu

h (x) = 10(x− xd)TH(x− xd)
where Q, R, H and xd are defined as:

Q = diag(0.05, 0.1, 0.05, 0.1, 10, 0, 0.0025, 0, 0.0025)

R = diag(1.75, 1.75, 1.75)

H = diag(1, 2, 1, 2, 1, 2, 10r2, 4r2, 10r2, 4r2)

xd =
[
0 0 0 0 0 0 3/r 0 1/r 0

]T
where r denotes Rezero’s ball radius. In the final costs, a
desired state xd can be encoded. The intermediate cost limits
the control effort and changes in orientation (yaw angle and
rate). This cost function is very similar to the on used in our
previous work [16] but in this work we additionally penalize
the tilt angles, tilt angle velocities and ball velocities in x
and y direction to produce less aggressive maneuvers.

B. Adaptation
During our experiments we push the robot far away from

the goal state. When the robot gets pushed away far from
its goal state, a constant finite horizon during optimization
would lead to a more aggressive as the robot tries to reach
the goal in time. However, with only one contact point
to the ground, Rezero’s tilt angle (directly proportional to
the required acceleration for dynamic stability) is limited.
Hence, an aggressive controller can make the system un-
stable. This is actually the case for Rezero’s original LQR
controller which becomes unstable for far setpoints (see
video attachment). To avoid this issue, one could always
choose a large time horizon. However, a large time horizon
is computationally more expensive adding additional delay.
Furthermore, as the goal state is only enforced through final
costs, the robot will try to minimize control effort (the
immediate costs) in the beginning of the trajectory. In a task
where Rezero has to simply keep its current position, this
would lead to larger drift in the early part of the execution.

To avoid this behavior we set the time horizon propor-
tionally to the geometric distance of Rezero to the goal
position. This can be seen as an approximation to setting an
average velocity as we are fixing the distance to time ratio.
To avoid high gains when Rezero is already at the desired
position, we clamp the time horizon at a minimum value of
0.5 s. Through this approach we can avoid changing the cost
function to achieve lower gains (even though the adaptation
would allow to do so). Especially, in this case tuning the
more intuitive time horizon seems easier than tuning the
artificial cost function.

For the second test, we want to vary the goal state.
This is a common task for autonomous robots in dynamic
environments. To achieve this, the adaptation layer modifies
the final cost that encodes the desired state.

http://youtu.be/WzKu_IiX2xw


x

y

t0=0

tf=5.2

Fig. 3. Overhead plot of continuously recomputed, predicted MPC paths
(blue to red gradient) and the executed path (green) of a go-to task on
Rezero. The time horizon is adapted online based on the goal distance.

C. Settings

For our hardware tests and the benchmark of our al-
gorithm, we use the settings described in this paragraph.
Usually iLQG converges after a maximum of 3 iterations.
To have a small safety margin, we run iLQG for 4 iterations.
During each iteration, iLQG computes 50 feedforward and
feedback control gains per simulated second. This means
that each set of control gains is applied for 0.02 s. For the
integration, we have chosen a fixed-step fourth order Runge-
Kutta implementation as it provides good accuracy at fixed
computational costs.

D. Experiment 1: Fixed Go-To Task under Disturbance

In the first experiment, Rezero is given the task to stay
at its initial state. This desired state is encoded in the final
costs of the cost function. To allow for an accurate tracking
of the desired state but still ensure a graceful approach even
for large disturbances, we use our adaptation scheme to vary
the time horizon of the finite time horizon controller. During
the test we perturb the robot manually to various distances to
the initial state. These disturbances would exceed the stability
margin of a most static feedback controllers (see comparison
with LQR in the video attachment) unless they are low-gain
and hence show bad tracking performance.

As can be seen in the video attachment, even when
perturbed significantly, Rezero is able to gracefully return
to its initial position. Due to the MPC structure, Rezero is
able to quickly adapt to disturbances during runtime, such
that it can be disturbed any time.

In Figure 3 an overhead position plot of one return to the
initial position after a perturbation is illustrated. The black
circles indicate the starting point (after the perturbation has
finished) and the final position. The optimized, predicted
trajectories are indicated using a gradient that starts with
blue (beginning of the trajectory) and ends in red (end
of trajectory). These trajectories are obtained by forward
simulating a noiseless model of the system dynamics. In
green, the actually executed trajectory is shown. As seen
in the plot, the MPC controller gradually adjusts the plan
to a circular ”swing-in“ motion. This behavior seems to be
favourable in terms of the cost function as it allows a more
graceful approach. Due to the limited time horizon, the initial
optimization does not converge this solution but prefers a
straight goal approach. Ultimately, the controller converges
to a circular balancing trajectory. This trajectory can also be
observed in tests with the LQR controller which suggests
that this behavior emerges from the system dynamics.

During the approach to the goal state, the time horizon
is varied according to the presented adaptation scheme. This

0 1 2 3 4 5
0

2

4

Time [s]

T
im

e 
H

or
iz

on
 [s

]

Fig. 4. Scaling of the time horizon for the finite time optimal control
algorithm (iLQG). While approaching the goal, it is reduced (limited to a
lower boundary of 0.5 s) to ensure a good position tracking.

0 1 2 3 4 5
0

2

4

Time [s]

G
ai

ns

 

 
θ

x

θ
y

φ
x

φ
y

Fig. 5. Evolution of tilt angle and ball rotation angle feedback gains during
a go-to task. The slowly varying gains validate the smooth behavior that the
MPC structure generates.

scheme increases the time horizon for larger distances and
clamps it at a lower boundary. In Figure 4 the time horizon
is plotted over time for the same sequence previously used in
Figure 3. As simple heuristics for changing the time horizon
and the cost functions are used in the adaptation loop, we
are varying these parameters at the same rate as running the
MPC algorithm (which is at maximum 200 Hz).

Since the feedback control loop on Rezero runs at 200
Hz, the MPC rate is limited to 200 Hz. Our benchmarks
(see Section V-F) show, that the MPC loop cannot keep
this rate for large prediction time horizons. However, our
approach produces gains that are smooth over time. This is
illustrated in Figure 5 where we show the gain variation for
the feedback gains of the robot’s tilt angles as well as its
ball angles during execution. Due to this smooth variation,
the MPC loop can run at much lower rates than the feedback
controller. Note that Figures 4 and Figure 5 are based on the
same dataset. This shows that the gains are well behaved
also during a smooth variation of the time horizon.

E. Experiment 2: Varying Go-To Task under Disturbance
In the previous experiment we have shown the behavior

of our motion control framework under disturbances but for
a constant goal point. To show that our approach is also
able to handle faster varying changes of the goal state and
therefore also the cost function, we conduct a test where the
goal state is set by an operator on a joystick. The commands
given consist of different kind of variations of the goal point
including ramp and step inputs.

The resulting behavior can best be observed in the video
attachment. The robot is still able to handle disturbances
robustly, even under dynamic changes of the cost function.

F. Implementation Benchmark
To verify the speed of the implementation, we conduct

a speed test. For this test, we use the parameters described
in Subsection V-C. We fix the time horizon to 3 seconds
during the test. Furthermore, we use artificial initial states for
iLQG. Rezero’s dynamics and the corresponding derivatives
are implemented based on the analytical model.



37.2%

26.8%

17.1%

14.6%
4.3%

Controller
Design

Derivatives
of Dynamics

Forward
Simulation
Cost-to-go
Computation

MPC 
Overhead

Fig. 6. Runtime fractions of the MPC framework. The largest fractions are
forward dynamics and derivatives (> 60%) and the iLQG algorithm itself
(∼30%) while the overhead of MPC is low (∼4%).

The benchmark results show that for the given settings
MPC can be run at a loop rate of around 75 Hz. As it
can be assumed from the implementation, the runtime scales
approximately linearly in time horizon, iLQG frequency
and iterations. Assuming all other parameters constant, tests
verify that a time horizon of 5 seconds leads to an achievable
MPC rate of 45 Hz, while at a time horizon of 0.5 seconds
we can run the loop well above 300 Hz. While not required
for our application, one could change almost any parameter,
e.g. iLQG frequency, integrator type or number of iterations
to speed up the implementation. Also, our implementation is
not yet speed optimized and still runs on a single core.

With the help of a profiler, we have also investigated how
much time the implementation requires for the individual
steps. Our results, illustrated in Figure 6 show that most time
is spent for the calculation of the forward simulations and
derivatives used within the iLQG algorithm. The computation
of the cost and the control design update step which are
also part of the iLQG algorithm account for about 30%
of the runtime. With 4% the overhead of MPC, the state
prediction and data handling remains low. These results
underline the importance of a fast implementation for dy-
namics and derivatives when using iLQG. While we can
auto-generate optimized code based on an analytical model
using the Robotics Code Generator [14], we will investigate
on automatic differentiation for the latter.

VI. CONCLUSION

This work presents an online implementation of full state
feedback, nonlinear MPC on an autonomous robot. In con-
trast to most of the MPC implementations on real hardware
that use a simplified or linear model of the system, we have
focused on a real-time implementation that leverages the full
knowledge of the nonlinear system dynamics. This allows us
to run MPC on the full state space, optimizing the feedback
and feedforward gains. Therefore, we directly optimize over
the control law rather than seperately designing a trajectory
and a tracking controller.

Furthermore, by introducing an adaptive scheme for the
MPC parameters, we can tackle the limitations resulting from
the finite-time horizon control problem. This adaptation helps
to maintain a short optimization horizon in absence of large
disturbances but still allows us to increase the time horizon
when needed. Additionally, we use the adaptation layer to
modify the cost function which allows us to interactively
change the robot’s task at runtime.

As experiments on the hardware show, the implemented
MPC structure results in a good performance. Even in the

presence of large, unmodelled disturbances and a varying
task (cost function), the controller remains stable and adjusts
its behavior in real-time. The combined design of feedback
and feedforward gains leads to a compliant controller that
can gently give in but also accurately tracks a goal position.

VII. FUTURE WORK

The presented approach has shown good performance on
Rezero subject to challenging dynamics. In the future, we
will assess the framework’s performance on more complex
systems like legged systems with increased nonlinear dy-
namics. The existing implementation already leaves enough
headroom for the use on such systems and can be further
improved if required. Furthermore, we plan to investigate
how well our approach can deal with hybrid dynamics.

ACKNOWLEDGEMENT
We gratefully acknowledge Péter Fankhauser and the Autonomous Sys-

tems Lab for their support with Rezero.
This research has been funded partially through a Swiss National Science

Foundation Professorship award to Jonas Buchli.

REFERENCES

[1] E. Todorov and W. Li, “A generalized iterative lqg method for locally-
optimal feedback control of constrained nonlinear stochastic systems,”
in IEEE American Control Conference, 2005.

[2] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model
predictive control on a quadrotor: Onboard implementation and exper-
imental results,” in IEEE International Conference on Robotics and
Automation, 2012.

[3] T. Erez, S. Kolev, and E. Todorov, “Receding-horizon online optimiza-
tion for dexterous object manipulation,” preprint available onliine.

[4] R. Ginhoux, J. Gangloff, M. de Mathelin, L. Soler, M. Sanchez, and
J. Marescaux, “Beating heart tracking in robotic surgery using 500 hz
visual servoing, model predictive control and an adaptive observer,”
in IEEE International Conference on Robotics and Automation, 2004.

[5] M. Morari and J. H Lee, “Model predictive control: past, present and
future,” Computers and Chemical Engineering, vol. 23, no. 4–5, 1999.

[6] K. Alexis, C. Papachristos, G. Nikolakopoulos, and A. Tzes, “Model
predictive quadrotor indoor position control,” in Mediterranean Con-
ference on Control Automation, 2011.

[7] N. Keivan and G. Sibley, “Realtime simulation-in-the-loop control for
agile ground vehicles,” in Towards Autonomous Robotic Systems, ser.
Lecture Notes in Computer Science. Springer, 2014.

[8] C. Ostafew, A. Schoellig, and T. Barfoot, “Learning-based nonlinear
model predictive control to improve vision-based mobile robot path-
tracking in challenging outdoor environments,” in IEEE International
Conference on Robotics and Automation, 2014.

[9] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applications
and Methods, 2014.

[10] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012.

[11] H. Diedam, D. Dimitrov, P. B. Wieber, K. Mombaur, and M. Diehl,
“Online walking gait generation with adaptive foot positioning through
linear model predictive control,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2008.

[12] T. Erez, Y. Tassa, and E. Todorov, “Infinite-horizon model predictive
control for periodic tasks with contacts,” Robotics: Science and
Systems VII, 2012.

[13] P. Fankhauser and C. Gwerder, “Modeling and control of a ballbot,”
Bachelor thesis, ETH Zurich, 2010.

[14] M. Frigerio, J. Buchli, and D. Caldwell, “Code generation of algebraic
quantities for robot controllers,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2012.

[15] K. Ahnert and M. Mulansky, “Odeint – solving ordinary differential
equations in c++,” in Proceedings of the AIP Conference, 2011.

[16] F. Farshidian, N. Neunert, and J. Buchli, “Learning of closed-loop
motion control,” 2014, in print: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).


	INTRODUCTION
	Related Work
	Real-Time Motion Control Framework
	Motion Control Problem
	Description of the Motion Control Framework
	State Prediction
	Adaptation
	iLQG Algorithm
	MPC Framework
	Implementation

	Hardware
	Robot Model
	Computational Hardware

	Experiments
	Cost Function
	Adaptation
	Settings
	Experiment 1: Fixed Go-To Task under Disturbance
	Experiment 2: Varying Go-To Task under Disturbance
	Implementation Benchmark

	Conclusion
	Future Work
	References

