
Learning problem space metrics for motion primitive selection

Marcela Poffald, Yajia Zhang, and Kris Hauser

Abstract— Because computing solutions to optimal control
and motion planning problems from scratch can be slow and
inefficient, many researchers have proposed using a motion
library, which contains precomputed example motions that
can be adapted quickly to solve novel problems. This paper
considers the task of selecting a “good” solution to adapt to
a new problem, which we approach in a general machine
learning framework. Our approach is to learn a metric in
problem feature space for which proximity in space correlates
highly with suitability for solution adaptation. With such a
metric, motion primitive retrieval becomes a nearest neighbor
query. We empirically compare the adaptation performance
of several metric learning techniques on both synthetic and
optimal motion planning datasets.

I. INTRODUCTION

With recent developments in real-time robotics applica-
tions such as self-driving cars, human-robot interaction, and
legged robots, it has become apparent that the computa-
tional expense of motion optimization is a major roadblock.
These optimization problems are high-dimensional and time-
sensitive, and solving these problems from scratch using tra-
ditional techniques is impractically computationally expen-
sive. A promising approach for real-time optimization is that
of reusing existing solution information so that new problems
are not computed from scratch every time. The goal of such
a method is to reduce online computational cost without
sacrificing the quality of solutions. One such approach for
this is the method of the motion library [5], which makes
use of stored knowledge about optimal solutions in order
to reduce online computation time required to generate new
solutions.

The motion library approach in general consists of two
phases: an offline phase, in which selected problems are
solved and stored as motion primitives, and an online phase,
in which a new problem is matched to a primitive and its
solution is computed by adaptation from this primitive. In
this paper we consider the primitive retrieval problem, that is,
upon observing a new problem online, to select a solution to
a previously-seen problem to be adapted to the new problem.
The idea of this work is that for the adaptation to succeed
well, the two problems should be, in some sense, similar. But,
measuring similarity between problems is challenging. Naive
approaches, e.g., euclidean distance in problem feature space,
are unlikely to succeed without impractically huge motion
libraries, because they fail to consider significant aspects of
problem space, e.g., many irrelevant features, such as the

*This research is partially supported by NSF Grant No. 1218534.
School of Informatics and Computing, Indiana Uni-

versity at Bloomington, Bloomington, IN 47405 USA {
mpoffald,zhangyaj,hauserk } @indiana.edu

positions of far-away obstacles. Other authors have relied
on special-purpose heuristics, the design of which is more
art than science. The primary contribution of this work is a
new method for retrieving good motion primitives via metric
learning on a problem feature space.

Unlike special-purpose heuristics, a learning approach
allows our method to work with general problem represen-
tations and solution adaptation procedures. It relies on a
relatively weak assumption, that the given solution adaptation
method works better (i.e., more efficiently and yielding
higher-quality solutions) when the source and destination
problems are relatively similar, and works worse otherwise.
In this work, we learn a metric that explicitly matches up
new problems with the primitives in the library that are
well-suited for solution adaptation. The online phase uses
this metric to determine the best primitive using a nearest
neighbor query. The intended result is that online solutions
to novel problems will be adapted quickly and at a low
computational expense.

Our distance metric learning approach uses a training
set of problems that are well-paired with primitives in a
given motion library. The training phase learns a metric
that encourages the assignment of new problems to prim-
itives for which adaptation yields high quality solutions, and
discourages the pairing of problems for which adaptation
is unsuccessful or solution is low-quality. We consider two
general forms for the metric. A global approach uses a single
metric function across the entire problem space, while a local
approach assigns a local metric around each primitive. We
evaluate their efficacy by looking at the resulting adaptation
cost of the pairings generated by the 1NN classification to
see if the overall cost decreases as a result of using the
metrics. A decrease in adaptation costs indicates that the
metric learning procedures are helping to encourage good
pairings for adaptation.

Experiments compare several learning techniques against a
baseline of Euclidean distance on both synthetic datasets and
real motion planning datasets. Results suggest that learned
distance metrics indeed improve performance significantly
over the Euclidean baseline. We conclude with suggestions
for future work in this area.

II. EXISTING WORK

Existing work in both the offline and online aspects of
the motion library approach focus on the aspects of problem
representation [11], [13], [6], [2] and adaptation [10], [6].
Some work has been done on the retrieval and use of
appropriately-matched primitives, such as in [2] and [10].
In [2], the focus is on the construction of a hierarchical

graph structure in which nodes in a branch of the structure
all share similar courses of movement. The learning of new
tasks is executed via A? search of this graph, beginning at
the node corresponding to the start position and searching
for a path to the desired end position through the graph.
In [10], a mixture-of-experts approach is used to retrieve
primitives, each of which is weighted based on the prob-
ability of it being successful in the current context. This
probability is modelled by an exponential distribution whose
parameters are learned via linear regression, so that the
resulting probabilities are based on their outcome in previous
trials. Using these weights, primitives are then blended into
solutions to the new problem. In this paper, we investigate
the framing of the problem as a distance metric learning
task using a 1NN classification approach for the assignment
of new problems to a single primitive. This allows greater
leeway in handling non-blendable primitives (e.g., ones of
vastly different durations) or using more powerful adaptation
procedures (e.g., nonlinear warps, or processes that perform
light motion planning and validation).

Existing work in metric learning includes feature extrac-
tion approaches [16], [14] and global metric learning [12]. A
method to improve accuracy of binary classification [3] uses
the support vectors from SVM classification to estimate the
orientation of class boundaries, and then generates a local
weighting scheme from this information. In contrast to these
methods, our method does not focus on binary classification,
but rather focuses on identifying a single primitive from a
library. Primitive selection can be considered an extreme
version of multi-class classification, where every training
point is its own class. Local metric approaches are also
discussed in [1] [17], which use eigenvector analysis to
devise local weighting schemes that reflect feature variance.

III. PROBLEM DESCRIPTION

This section will describe the primitive selection problem
and the metric learning problem that we consider in this
paper.

A. Primitive selection

The primitive selection problem can be stated follows. We
are given a primitive library as a set of solved problems P =
{(p1,s1), . . . ,(pk,sk)}, where each primitive (pi,si) consists
of a problem pi annotated with a precomputed solution si. We
will assume that problems are specified (or approximated)
in a d-dimensional feature space Rd . We are also given an
adaptation function s ← adapt((pi,si), p) that attempts to
adapt si to a new problem p to produce a new solution s.
Since determining each solution from scratch is usually an
expensive proposition, we assume the adaptation function is
a much faster method that produces a near-optimal solution
for novel problems suitable for real-time use. For example,
one might simply use the prior solution directly (s = si),
perform a deterministic warping function [9], optimize a cost
function [4], or use the solution to bias a sampling-based
motion planner [15].

The primitive selection problem asks to choose a primitive
(pi,si) to be adapted to a novel problem p. Denoting the
selection procedure as g : Rd → {(p1,s1) . . . ,(pk,sk)}, the
end result to the motion planning problem is determined by
the procedure:

adapt(g(p), p) (1)

To define a metric for the “goodness” of the selection
/ adaptation process, let us define the adaptation quality
with a function adaptcost((pi,si), p) that gives a numerical
quality score for the process of adapting a primitive (pi,si)
to problem p. Typical functions would most likely include
a weighted combination of computational cost and success
rate of the adapt procedure, and motion quality of the
result s← adapt((pi,si), p). Lower values are preferred. The
adaptation cost should, for example, assign minimal cost to
an instant, reliable, and optimal adaptation. The tradeoffs
between these factors are application-dependent.

Theoretically, the ideal primitive is the result of the
expression:

g?(p) = arg min
(pi,si)∈P

adaptcost((pi,si), p). (2)

However, it would be foolhardy to evaluate g? directly, be-
cause it requires computing the adapt function in adaptcost
for every primitive. Although each adapt operation is rel-
atively fast compared to solving a problem from scratch,
this calculation would be prohibitively expensive in large li-
braries. Hence, we wish to produce a g(p) that approximates
g?(p) and is evaluated quickly.

B. Machine learning approaches

We can cast the primitive selection problem as a k-class
classification problem, where each primitive is a class. To
learn a classifier we are given a training set consisting of
examples D = {(x1,y1,c1), . . . ,(xM,yM,cM)} where each xi
is a problem sampled from problem space, yi is a primitive,
and ci = adaptcost(yi,xi). We also consider the optimal-
primitive dataset D̃= {(x1,y?i), . . . ,(xN ,y?N)} where each y?i is
the adaptation cost-minimizing primitive for xi. The learning
problem is to determine a k-class classifier g such that
g(p)= g?(p) over the entire problem space. (In a slight abuse
of notation we will consider a primitive and its index as
equivalent).

Whereas most existing metric learning techniques attempt
to minimize misclassification rate:

∑
(x,y?)∈D̃

I[y? 6= g(x)] (3)

for primitive selection, a more appropriate loss function is
adaptation cost:

∑
(x,y?)∈D̃

adaptcost(g(x),x)−adaptcost(y?,x). (4)

This is because adaptation cost captures the suboptimality of
a given primitive selector when applied to x.

Standard machine learning techniques for binary classifi-
cation can usually be adapted to the multiclass case either

(a) (b)

(c) (d)

(e) (f)

Fig. 1: Illustrating some of the compared metric learners on a
synthetic 5-primitive dataset in 3 dimensions, where the 3rd
dimension is irrelevant noise and is not depicted. (a) ground
truth optimal primitives. (b) Euclidean distance predictions
(48% accuracy). (c) Direct adaptation learning (82%). (d)
Local KISSME (75%). (e) Global LMNN (61%). (f) Local
LMNN (70%).

by training k one-vs-rest classifiers or O(k2) one-vs-one
classifiers and then merging the results of all classifiers, e.g.,
via voting. However, this approach has several drawbacks: 1)
training and evaluation is computationally expensive when k
is high, 2) such models are not human interpretable, and 3)
they cannot handle additions of primitives to the primitive
library without re-training over the entire dataset. Such
methods would prevent a robot from adapting its primitive
library to its environment, online. Hence we prefer a nearest
neighbor approach, for which nearest neighbor queries can be
accelerated using a variety of indexing data structures (e.g.,
ball trees) or by using approximate nearest neighbors queries.
However, since standard Euclidean distance is relatively poor
at identifying similar problems, we adopt a metric learning

approach.

C. Nearest neighbors selection

In particular, a nearest neighbor approach defines a prim-
itive selection model:

g(p) = argmin
i

d(pi, p) (5)

where d is a problem space metric Rd×Rd → R+.
For this model to have a low adaptation cost, the problem

domain must satisfy a few assumptions:
1) A problem’s solution is the best primitive for adapting

to the same problem.
2) For each primitive (pi,si), the set Pi = {p|i = g?(p)},

i.e., those problems for which primitive (pi,si) yields
the lowest-cost adaptation, is localized about pi.

3) All points in the Voronoi cell of pi have a low
adaptation cost.

The first two assumptions are reasonable because adapting
solutions to problems that are “far” will be less likely to
succeed. To clarify the third assumption, for each primitive
(pi,si), define the the set Pi,ε = {p|adaptcost(g(p), p)−
adaptcost(g?(p), p) < ε}, i.e., those problems for which
primitive (pi,si) yields an adaptation that is “good enough”,
with tolerance parameter ε . If, then, the Voronoi cell of pi is
contained within Pi,ε , we can ensure that the nearest neigh-
bors approach yields high quality adaptations everywhere.
This assumption is justifiable, as long as ε is sufficiently
high or the motion library populates problem space relatively
densely.

D. Metric Learning

We now turn to the question of generating a good dis-
tance metric d. The simplest form of metric is a squared
Mahalanobis distance:

dM(x,y;M) = (x− y)T M(x− y) (6)

with M a positive semidefinite matrix.
This approach is global in that the metric is applied

uniformly across the space. We also consider a local nearest
neighbors approach that defines a different metric per prim-
itive:

d(pi,y)≡ dMi(pi,y) = (pi− y)T Mi(pi− y) (7)

where each Mi , i = 1, . . . ,k is a positive semidefinite matrix
that defines the localized distance metric about each primitive
pi. At testing time, the classifier compares a new problem to
each primitive using that primitive’s distance metric, and is
assigned to the one to which its the closest. In other words,

g(p) = arg min
(pi,si)∈P

dMi(pi, p) (8)

The main advantage of a local metric is that it is able to
adapt much more closely to the decision boundaries between
near and far primitives. However, learning is much more
susceptible to overfitting, and the learned model is of size
O(kd2), which may be prohibitively large to store in memory
when the library or feature space is large.

Within these two metric classes we compare the following
metric learning methods:

1) Euclidean. M is the identity matrix.
2) Covariance learning. A quickly-trained method based

on sphering the covariance of points near a primitive.
We test it only in local form.

3) KISSME [8]. A method inspired by likelihood ratio
tests, which determines M as a difference between
precision matrices of “near” and “far” points. Although
the original publication only considers global metrics
we compare both global and local forms.

4) Large Metric Nearest Neighbors (LMNN) [12]. Opti-
mizes a loss function that measures the margin between
“near” and “far” points. This method is applied in both
global and local forms.

5) Direct adaptation loss minimization. A gradient de-
scent is applied to (4). Applied only in global form.

We note that covariance learning, KISSME, and LMNN
are trained by splitting training data into “near” and “far”
sets. To preprocess the dataset, we define a problem x as
“near” to the primitive y if the adaptation cost adaptcost(y,x)
is within a fraction of ε of the optimal (amongst examples
in D involving x). In this paper we use ε = 0.1. For each
primitive p j we define the set of near problems as Tj =
{x | (x, p j,z) ∈ D and z ≤ (1+ ε)g?(x)}. We also define
the set of far problems as T̄j = {x | (x, p j,z) ∈D and z >
(1+ ε)g?(x)}.

E. Local covariance metrics

The simplest local metric learning method uses the distri-
bution of each class to sphere the points belonging to each
class. The method computes the covariance matrix of near
pairs centered about p j:

A j = 1/|Tj| ∑
x∈Tj

(x− p j)(x− p j)
T (9)

and sets M j = A−1
j . In practice, it is important to avoid

singularities and protect against overfitting by adding a small
multiple of the identity matrix λ I to A j before performing
the inversion (we use λ = 0.1).

F. KISSME learning

KISSME is a refinement of the covariance learning tech-
nique that also learns the distribution of far points, and
discriminates the class of a new point using a likelihood
ratio test. It computes A j as above as well as the covariance
of far points:

B j = 1/|T̄j| ∑
x∈T̄j

(x− p j)(x− p j)
T (10)

and then defines the metric as the closest positive semidef-
inite matrix to

M̃ j = |Tj|A j−|T̄j|B j (11)

where M j is determined by projecting M̃ j to the subspace
of positive semidefinite matrices.

G. LMNN learning

The global and local LMNN algorithms described in [12]
search the cone of positive semidefinite matrices for a metric
that maximizes the margin between inputs belonging to one
class and the nearest inputs of any other class. Both the
global and local metric learning procedures utilize this same
framework. We discuss the global method first, and then
outline the modified local version.

The basic idea of the method is that if xi ∈ Tj and xl ∈ T̄j,
we would like the matrix M to measure xi as being closer to
p j than xl is. LMNN also attempts to enforce a unit margin
of 1 so that a perfect classifier would satisfy:

(p j− xi)
T M(p j− xi)+1 < (p j− xl)

T M(p j− xl)

∀xi ∈ Tj,∀xl 6∈ Tj,∀p j ∈ P
(12)

Because perfect classifiers are rare, LMNN uses a slack
variable approach. Thinking of the target neighbors for each
primitive as a cluster, LMNN penalizes the number of points
that invade the perimeter of clusters to which they were not
assigned. These intruding points are known as impostors.
Formally, an impostor is a point xl which violates (12) by
being closer to a primitive p j than a true neighbor of that
primitive, xi, as measured by the metric M. Formally, an
impostor is any point xl ∈ T̄j for which:

(p j− xl)
T M(p j− xl)≤ (p j− xi)

T M(p j− xi)+1 (13)
for some xi ∈ Tj (14)

holds.
So, LMNN minimizes the following loss function over the

values of M:

loss(M) =(1−µ) ∑
p j ,xi∈Tj

(p j− xi)
T M(p j− xi)+

µ ∑
p j ,xi∈Tj ,xl∈T̄j

max(1+(p j− xi)
T M(p j− xi)−

(p j− xl)
T M(p j− xl),0)

(15)
The first summand of this equation penalizes distances
between each primitive p j and its target neighbors Tj, and
acts to keep the value of M small. The second term penalizes
encroachment of impostors xl into each p j’s cluster by
summing the amount by which each impostor violates the
margin in (12). The tradeoff between these two objectives is
controlled by the parameter µ ∈ [0,1]. The LMNN learning
procedure uses a gradient-descent method to minimize this
function over the cone of positive semidefinite matrices.

The local LMNN procedure is similar, but any distance
involving a point xi ∈ Tj uses the metric assigned to the
cluster Tj, M j. In this manner, all metrics are trained in
relation to each other as a global optimization, and scaling
problems between metrics are averted. The new loss function,
with these cluster-centered metrics, is

loss(M1 . . .Mk) =(1−µ) ∑
p j ,xi∈Tj

(p j− xi)
T M j(p j− xi)+

µ ∑
p j ,xi∈Tj ,xl∈T̄j

[1+(p j− xi)
T M j(p j− xi)−

(p j− xl)
T Ml(p j− xl)]+

(16)
Again, gradient descent is used to minimize loss.

IV. DIRECT ADAPTATION LOSS MINIMIZATION

Because they were designed for classification problems,
KISSME and LMNN attempt to reduce misclassification rate
rather than the adaptation loss. We present a new formulation
that considers the loss of the closest primitive only against
the optimal primitive. This is similar to LMNN with an ε

of 0, except that loss is measured only with respect to the
worst impostor. The new loss function:

loss(M)=∑
xi

[min
p j

(p j−xi)
T M(p j−xi)−(y?i −xi)

T M(y?i −xi)]+

(17)
and is minimized using gradient descent over positive
semidefinite matrices.

V. EXPERIMENTS

For each learning method we evaluate adaptation loss (4)
for problems with variety of sizes and amounts of training
data. We note that although learning times were reasonable
for all tested cases (from seconds up to several hours),
our tests involve relatively small datasets (k ≤ 100 and
|D| ≤ 100,000). In the future, with much larger primitive
libraries, it is likely that one may choose a less accurate,
quickly-learned method over one that has higher accuracy but
impractical learning time. We note that our implementation
is in Python, so learning times could be significantly sped
up using a compiled language.

A. Synthetic dataset

We begin with a synthetic dataset that captures the ability
of a metric learner to adapt to nonlinearities and noise in
the mapping from problem space to adaptation costs. We
first generate k primitives p̃1, . . . , p̃k and N points x̃1, . . . , x̃N
at random in [0,1]10, and then apply a nonlinear transfor-
mation f (~̃x) to each point to obtain the primitive library
p1, . . . , pk and training points x1, . . . ,xN . As a proxy of
adaptcost(xi, p j) we use the Euclidean distance ‖x̃i − p̃ j‖
in the original problem space. In other words, the best
primitive for a given point is the nearest primitive in the
pre-transformation space.

As a deterministic nonlinear transformation we simply
apply a power to each component:

f (~̃x) = [x̃α
1 , x̃

α
2 , . . . , x̃

α
10] (18)

with the Basic dataset using α = 2. We also test a High Warp
transformation with α = 5 to investigate the effect of greater
nonlinearity on metric learner.

As a third Noisy transformation we consider the effect of
added irrelevant dimensions:

f (~̃x) = [x̃α
1 , x̃

α
2 , . . . , x̃

α
10,ε1,ε2,ε3] (19)

where each ε1,ε2,ε3 are random variables drawn from [0,1].
On a dataset with k = 10 primitives, 1000 training points,

and 100 testing points, we obtain the following average loss:
Learner Basic High Warp Noisy
Random 0.34 0.37 0.38
Euclidean 0.030 0.15 0.065
Direct learning (global) 0.017 0.11 0.019
Covariance local 0.016 0.089 0.038
KISSME global 0.025 0.12 0.030
KISSME local 0.13 0.11 0.13
LMNN global 0.034 0.15 0.026
LMNN local 0.048 0.16 0.078

We observe that local methods are better at the High Warp
datasets due to its high nonlinearity. Irrelevant dimension of
the noisy dataset most significantly degrade performance of
the Euclidean and local covariance methods.

Next, to evaluate susceptibility to overfitting, we varied
the proportion of training points per primitive:

Dataset primitives training testing
×10 10 10,000 1,000
baseline 10 1,000 1,000
/ 10 10 100 1,000
and the sparseness of the dataset, i.e., by subsampling

edges in the training set:
Dataset primitives training testing edges
baseline 10 1,000 1,000 10,000
20% 10 1,000 1,000 2,000
5% 10 1,000 1,000 500
Using the Noisy dataset as a baseline, we obtain the

following average test loss for the modified datasets:
Learner ×10 baseline / 10 20% 5%
Random 0.36 0.38 0.33 0.36 0.36
Euclidean 0.078 0.065 0.068 0.064 0.079
Direct 0.019 0.019 0.028 0.023 0.071
Cov. l 0.025 0.038 0.080 0.079 0.16
KISSME g 0.04 0.030 0.045 0.051 0.45
KISSME l 0.13 0.13 0.13 0.16 0.39
LMNN g 0.039 0.026 0.037 0.041 0.18
LMNN l 0.058 0.078 0.12 0.28 0.39
Obviously more data is beneficial overall, but local meth-

ods in particular degrade faster with smaller datasets. This
is fairly expected, since they are prone to overfitting.

B. Motion Primitive Dataset

Next, we test the performance of metric learning algorithm
on a toy motion planning scenario. We consider a 4-link robot
that moves from a fixed start to goal configuration among
circular obstacles (see Fig. 2 left).

Problems are sampled by randomizing the number of
obstacles and their positions. The problem feature vector is
obtained by first dividing the 2D task space into a 10× 10
grid, and recording the distance from each grid point to the
nearest obstacle, or 0 if it is within the obstacle (Fig. 2 right).
An asymptotically-optimal motion planner PRM* [7] is run

Fig. 2: Left: A toy motion planning problem that asks to connect
the start configuration (blue) to the end configuration (dark red)
without colliding with obstacles (dark circles). Right: Feature
representation of a problem. Each vertex in the grid yields a feature
equal to its distance to the nearest obstacle.

with a 1s cutoff on each problem to obtain a solution path.
If no solution is found the problem is discarded.

To adapt a motion primitive s to a novel problem q, we first
consider applying s directly via collision checking with the
obstacles in q, up to some resolution e. If there is no collision,
we admit s as a solution. If a collision occurs on some
intermediate configuration(s), then we randomly perturb the
joint angles to retract the configurations in collision. The
perturbation angles are drawn from a zero mean Gaussian
distribution with standard deviation 5◦. This procedure is
performed recursively, and terminates if no solution is found
within a given cutoff time t (0.1 s in our implementation).
Our adaptation costs are measured by the failure rate, as
measured by 100 adaptation attempts (hence, we wish to
maximize adaptation success rate).

We evaluated all learners on a library of 100 primitives,
with 500 test problems, 500 training problems, and |D| =
10,000, obtaining the following results:

learner avg train loss avg test loss
Random 0.29 0.28
Euclidean 0.33 0.33
Direct learning (global) 0.007 0.24
Covariance local 0.042 0.11
KISSME global 0.30 0.29
KISSME local 0.0053 0.11
LMNN global 0.17 0.25
LMNN local 0.10 0.22
suggest that direct learning and LMNN methods appear

to have overfit to the data. The local covariance learning
and local KISSME methods performed the best, yielding
nearly indistinguishable performance on the test set. Global
KISSME did not perform well, which suggests that local
methods are needed to learn nonlinearities in the data set.

Here, average loss is equivalent to the expected failure rate
of adapting a selected motion primitive to a new problem.
Clearly, local methods perform better than global ones on this
dataset, with KISSME leading to a reduction of the failure
rate by 67% beyond Euclidean distance. The significance
of this is that if one were to use the motion primitive
approach, with a from-scratch plan as a backup in case
primitive adaptation failed, the total running time would be

0.89× 0.1s+ 0.11× 1s = 0.199s on average. This gives a
five-fold speedup beyond planning from scratch.

VI. CONCLUSION

In this paper, we tested metric learning methods for
selecting motion primitives in a motion library for adaptation
to novel problems. We compared several local and global
metric learning algorithms on synthetic datasets as well as a
toy motion planning example. Our experiments suggest that
learned metrics can reduce the cost of a selected primitive
by several times beyond the one selected by Euclidean
distance. Local metrics appear to perform better on large
datasets but global metrics guard against overfitting. Future
work will include tests on much larger libraries of motion
primitives with higher-dimensional feature vectors to better
assess performance and scalability trends. We will also
investigate algorithms that can more flexibly balance fitting
and overfitting.

REFERENCES

[1] Anna Atramentov and Steven M LaValle. Efficient nearest neighbor
searching for motion planning. In Int. Conf. on Robotics and
Automation, volume 1, pages 632–637. IEEE, 2002.

[2] Miha Deniša, Tadej Petric, Tamim Asfour, and Aleš Ude. Synthesizing
compliant reaching movements by searching a database of example
trajectories. In Int. Conf. on Humanoid Robots, 2013.

[3] Carlotta Domeniconi and Dimitrios Gunopulos. Efficient local flexible
nearest neighbor classification. In SDM, 2002.

[4] Keith Grochow, Steven L Martin, Aaron Hertzmann, and Zoran
Popović. Style-based inverse kinematics. ACM Transactions on
Graphics (TOG), 23(3):522–531, 2004.

[5] Kris Hauser. Toward a ”google” for robot motions. In Proc. Workshop
on Robotics Challenges and Vision, pages 5–8, 2013.

[6] Nikolay Jetchev and Marc Toussaint. Fast motion planning from ex-
perience: trajectory prediction for speeding up movement generation.
Autonomous Robots, 34(1-2):111–127, 2013.

[7] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for
optimal motion planning. Int. J. Robotics Research, 30(7):846–894,
2011.

[8] Martin Koestinger, Martin Hirzer, Paul Wohlhart, Peter M. Roth,
and Horst Bischof. Large scale metric learning from equivalence
constraints. In Int. Conf. on Computer Vision and Pattern Recognition,
2012.

[9] Alex X Lee, Sandy H Huang, Dylan Hadfield-Menell, Eric Tzeng, and
Pieter Abbeel. Unifying scene registration and trajectory optimization
for learning from demonstrations with application to manipulation of
deformable objects. In Int. Conf. Intelligent Robots and Systems, 2014.

[10] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters.
Learning to select and generalize striking movements in robot table
tennis. Int. J. Robotics Research, 32(3):263–279, 2013.

[11] Martin Stolle, Hanns Tappeiner, Joel Chestnutt, and Christopher G
Atkeson. Transfer of policies based on trajectory libraries. In Int. Conf
on Intelligent Robots and Systems, pages 2981–2986. IEEE, 2007.

[12] Kilian Weinberger, John Blitzer, and Lawrence Saul. Distance metric
learning for large margin nearest neighbor classification. Advances in
neural information processing systems, 18:1473, 2006.

[13] Elly Winner and Manuela Veloso. Automatically acquiring planning
templates from example plans. In Proc. AIPS-2002 Workshop on
Exploring Real-World Plans, 2002.

[14] Jie Xu, Jian Yang, and Zhihui Lai. K-local hyperplane distance nearest
neighbor classifier oriented local discriminant analysis. Information
Sciences, 232:11–26, 2013.

[15] Katsu Yamane, James J Kuffner, and Jessica K Hodgins. Synthesizing
animations of human manipulation tasks. ACM Transactions on
Graphics (TOG), 23(3):532–539, 2004.

[16] Liu Yang and Rong Jin. Distance metric learning: A comprehensive
survey. Michigan State Universiy, 2, 2006.

[17] Liu Yang, Rong Jin, Rahul Sukthankar, and Yi Liu. An efficient
algorithm for local distance metric learning. In AAAI, volume 2, 2006.

