
Leading the Way: An Efficient Multi-robot Guidance System

Piyush Khandelwal, Samuel Barrett, and Peter Stone
Department of Computer Science, The University of Texas at Austin

2317 Speedway, Stop D9500, Austin, TX 78712, USA
{piyushk,sbarrett,pstone}@cs.utexas.edu

Abstract— Traditionally, human guidance has been studied
using only a single robot, where the robot leads a human from
start to finish. However, most robots do not have sufficient
mobility yet to match a human’s speed or ease of navigation in
indoor environments. When it is necessary to guide the human
to his goal quickly and efficiently, multiple coordinated robots
may provide a superior solution. This paper formulates a multi-
robot treatment of the human guidance problem as a Markov
Decision Process (MDP). Solving the MDP produces a policy
to efficiently guide a human, but the size of the state space
makes it infeasible to optimally solve it. Instead, we use the
Upper Confidence Bound for Trees (UCT) planner to obtain
an approximate solution. Empirical comparisons demonstrate
the superiority of this solution to a heuristic approach and to
using a single guide robot.

I. INTRODUCTION

With recent advances in service robotics, it is becoming
increasingly plausible to deploy a large number of robots
in buildings such as shopping malls, airports, hospitals and
warehouses. The ubiquitous presence of robots in the envi-
ronment will present interesting challenges for their effective
use to aid humans. In this paper, we specifically study the
problem of how these robots can be used to efficiently guide
people unfamiliar with the environment to their destinations.

Prior approaches have used a single robot to guide peo-
ple [1], [2]. However, that single robot may not be nearby
when needed or may move more slowly than the people
it guides, especially in large or crowded environments.
In contrast, this paper considers a centralized multi-robot
solution that is designed to let the person move at his own
natural speed. Rather than requiring the person to stay with
the robot, robots are proactively sent to key locations in the
environment where the person is likely to need help.

This paper specifically studies how a lost human can be
efficiently guided to his goal. In this problem, a system has to
control some of the robots roaming the environment to assist
the human. The objectives of such a system are to help the
human reach his goal quickly and to use each robot’s time
as efficiently as possible. Due to the sequential nature of the
problem, we model it as a Markov Decision Process (MDP).
The first contribution of this work is the formulation of the
multi-robot human guidance problem as an MDP.

We then hypothesize that in environments where humans
are considerably faster than robots, such a solution can allow
the human to reach the goal faster than being led by a single
robot. Furthermore, in a multi-robot solution, each robot only
needs to be devoted to the task of guiding the person for a
short period of time, after which it can go back to performing

its other duties. If multiple robots take up less total time
assisting the human than a single robot, these robots can
perform more tasks in the same time and increase the overall
system throughput. We also hypothesize that a multi-robot
guidance solution can reduce the total time robots spend
guiding the human compared to having a single robot lead
the human from start to finish. The second contribution of
this paper is testing these two hypotheses.

The size of the state-action space for this MDP is suffi-
ciently large such that it is not feasible to solve the problem
using optimal MDP solvers such as Value Iteration [3].
Instead, we use a modified version of Upper Confidence
bounds for Trees (UCT) [4] to approximately solve this MDP.
The third contribution of this paper is an analysis of UCT
within a problem that has high action branching and high
costs associated with sub-optimal actions. We believe the
analysis of UCT here will be useful in other such planning
domains with these same two properties. All code in this
paper has been implemented using ROS [5] and is available
in the public domain1.

II. RELATED WORK

Using a robot to guide a human has been explored over the
last two decades, for applications such as leading tours [1]
or providing navigation assistance to the elderly and visually
impaired [6], [7]. Instead of using a single robot, this work
uses a multi-robot system to more efficiently guide people
in an indoor environment. Prior work has also used ambient
displays to influence human routes through a building in
order to encourage people to make healthier choices such
as taking the stairs rather than the elevator [8]. This work
uses the more direct approach of using moving robots in
order to guide humans’ short term navigation decisions.

In order to efficiently use robots to guide humans, it is
important to model how humans interact with autonomous
agents providing navigation instructions. One past line of
research investigated how humans interpret natural language
navigation instructions [9]. Additional work investigated how
these instructions can be interpreted by robots in order to
navigate to a goal [10]. In this work, we assume that robots
display directional arrows on a screen to guide people, and
this interface simplifies the formulation of the multi-robot
guidance problem as an MDP.

In preliminary work, we explored the initial problem of
selecting locations in the environment where robots should
be placed, under the simplifying assumption that they can

1https://github.com/utexas-bwi/bwi_guidance

move instantaneously [11]. While this assumption simpli-
fies the problem by making the robots’ current locations
irrelevant, it also renders the solution inapplicable to the
real world. This paper therefore introduces a much more
complete treatment of the multi-robot guidance problem with
a novel MDP formulation which includes a representation of
each robot’s motion and travel time.

III. PROBLEM STATEMENT

We assume that the multi-robot guidance system is given a
representation of the environment, the current locations of all
the robots, the destinations for tasks they may be currently
performing, and the start and goal locations of the human that
needs assistance. Furthermore, we assume the following:
• Each robot can direct the human by displaying an arrow.
• The system knows the path a robot will take to reach a

destination.
• Each robot has its own home base in the environment,

and it typically performs tasks close to this location.
• Robots and humans move at constant (but different)

speeds in the environment. Having variable speeds does
not affect the MDP formulation, but makes analysis
more difficult.

Given this problem, a multi-robot guidance solution should
fulfill the following two desiderata. The solution should
minimize 1) the time taken by the human to reach the goal
as well as 2) the utility loss suffered by the system caused
by the time required to temporarily reallocate robots to guide
the human. The relative weighting of these two desiderata is
a parameter of the environment.

IV. ENVIRONMENTAL REPRESENTATION AND PLANNING

This section outlines the topological representation of the
environment used to formulate the Markov Decision Process
(MDP) for the multi-robot guidance problem as well as a
modified version of UCT that is used to solve this MDP.

A. Topological Representation

To reason about human motion while guiding humans, it
is necessary to identify key locations in the environment
where humans might need assistance. Topological graphs
can provide a compact, discrete representation of the en-
vironment while still retaining information about all key
locations and the connectivity between those locations. We
follow the topological graph generation process described in
prior work [11] that converts a discretized grid representation
of the environment into a topological graph using Voronoi
diagrams [12]. The topological graph for an example envi-
ronment is illustrated in Fig. 1.

B. Planning - UCT

While planning exactly using Value Iteration provably
converges to the optimal policy, it can be too computationally
expensive to calculate in some scenarios. Therefore, it can
be advantageous to use a sample-based planner. Specifically,
we adopt the Upper Confidence bounds for Trees (UCT) [4]
planning algorithm. The UCT algorithm has been shown

(a) Voronoi diagram (b) Topological representation
Fig. 1. The Voronoi diagram and the topological representation for an
environment 29.6m × 18.4m in size.

to perform well on large domains with large numbers of
actions, such as Go [13] and large Partially Observable
MDPs (POMDPs) [14].

UCT is an anytime algorithm that continues improving
its policy estimation during an episode by planning more
between decisions. This planning is performed by simulating
a number of state-action trajectories from the current MDP
state, i.e. Monte Carlo rollouts. UCT stores information about
the state-actions in a tree such as the number of visits of the
pair and the estimate of the long term expected reward of
choosing that action from the given state. During planning,
when the state has been previously visited, the action with
the highest upper confidence bound on the estimated value
is selected, and actions are chosen randomly otherwise. This
approach balances exploring different actions with improving
the estimate of the currently superior actions.

To improve performance, this paper uses a modified
version of UCT [15]. The original UCT formulation in-
cluded the depth of the state (i.e. the number of actions
taken to reach the state) in its representation. However,
our formulation drops this extra information to merge more
states, which may relax the tree into a graph. If there is
a high level of non-determinism in the environment, this
non-determinism accumulates during the rollouts and makes
it unlikely that rollouts will re-visit previously seen states.
Therefore, estimates of the values of these states are likely
to be inaccurate. To mitigate this problem, it can be useful
to further merge states by removing some information from
the state representation stored in the UCT tree. These values
are still used in the rollouts, but not in aggregating the state-
action values. This change combines a large number of state-
action values in the lower portion of the tree where the non-
determinism accumulates. This change greatly speeds up the
convergence of values in the top portion of the tree.

In addition, when updating the estimated value of a state-
action, UCT only uses the reward accumulated from the
Monte Carlo rollout. In contrast, we use the eligibility trace
update used in Q learning, which combines the Monte Carlo
estimation with the current expected value of future states.
Let Q(s,a) be the estimate of the value of taking action a
from state s, nsa be the number of visits of the state-action
pair, s′ be the resulting state, and 0≤ γ ≤ 1 be the discount
factor of future rewards ri. Then the new value is given by:

δt+1 = λ

(
∑

i
γ

iri

)
+(1−λ)max

a′
Qt(s′,a′)−Qt(s,a)

Qt+1(s,a) = Qt(s,a)+
1

nsa +1
δt+1

where λ balances Monte Carlo versus Temporal Difference
(TD) updates. maxa′Qt(s′,a′) is the maximum value over
the experienced actions from the next state including actions
experienced in the current rollout. Intuitively, when λ is
close to 1, values received from taking exploratory actions
at future states strongly influence the estimated value of a
state-action pair. Using values close to 0 limits the effect of
these exploratory actions. Finally, UCT estimates the upper
confidence bound using Q(s,a)+Cp

√
(lnns)/nsa, where ns

is the number of visits of the state and Cp =
√

2 when the
MDP rewards are scaled between 0 and 1. Empirically, it is
useful to tune the value of Cp in order to better balance
exploration versus exploitation given that the number of
rollouts is limited due to computational constraints.

V. MULTI-ROBOT GUIDANCE - MDP FORMULATION

In this section, we formulate the problem presented in
Section III as an MDP M = 〈S,As,Pa

ss′ ,R
a
ss′〉 where S repre-

sents the environment’s state space, A is the set of actions
the system can take, P is the transition function, and R is
the reward function. Each episode inside the MDP terminates
when the human reaches the goal. The following subsections
specify the MDP in greater detail:

A. Notation

• humanSpeed and robotSpeed are the speed of the human
and robot, respectively (robotSpeed ≤ humanSpeed).

• euclidDist(u,v) is the euclidean distance between graph
nodes u and v in the environment’s graph representation.

• pathDist(u,v) is the shortest path distance between graph
nodes u and v computed using Dijkstra’s algorithm.

• edgeDist(u,v) is the smallest number of graph edges
needed to traverse from u to v.

• visibleNodes(u,range) is the set of all nodes {v} that
have an obstacle free line-of-sight path to u and
euclidDist(u,v)< range.

• nAdjacentNodes(u,n) is the set of all nodes {v} such
that edgeDist(u,v) ≤ n. adjacentNodes(u) is a special
case of this function with n = 1.

• timeToDest(i,l,s) is the shortest time robot i needs to
reach location l from the current system state s.

• nodeAngle(u,v) is the compass direction of the edge
of u to v. Formally, nodeAngle(u,v) = arctan((v.y−
u.y)/(v.x− u.x)), where 〈u.x,u.y〉 and 〈v.x,v.y〉 are the
euclidean coordinates of nodes u and v, respectively.

B. The MDP

1) State Representation: The state representation includes
the following information:
• The graph node corresponding to the human’s location

(curNode).
• The human’s current direction of motion, discretized

into 16 bins (curDir).
• The continuous location of each robot along with the

current destination of that robot. The location needs to
be continuous because the robots and humans may not
arrive at nodes simultaneously.

• The set of robots that have been assigned to guide the
human (assignedRobots) and their assigned locations.

2) Actions: There are four different types of actions
which can be taken at discrete intervals every time a human
completes a transition to a new graph node:
• AssignRobot - Assign a robot to node v. The system

selects which robot to send to v using the heuristic
presented in Section V-C. In order to limit the number
of actions, the available vertices from which v can be
chosen are limited to:

visibleNodes(curNode,visRange)∪
nAdjacentNodes(curNode,adjDepth)

where visRange and adjDepth control how many nodes
around the human’s current location are considered
for robot placement. Furthermore, if a robot has been
released from a location, then that location is excluded
from the above set unless the person moves. The max-
imum number of simultaneously assigned robots (max-
AssignedRobots) also controls the rate of branching.

• GuideHuman - If a robot and person are co-located,
have the robot direct the person to an adjacent node.
Note that the robot must be exactly at this node, not tran-
sitioning to it. The robot automatically starts navigating
to its original destination after providing assistance.

• ReleaseRobot - Specifically release an assigned robot to
return to navigating to its original destination. Assigned
robots cannot be released unless the person has moved.

• Wait - Wait for the person to move to a new graph node
before taking the next action.

3) Transitions - Human Motion Model: A realistic human
motion model should account for the decisions that real
people make in the presence of guiding robots. Since this
paper does not focus on human behavior, we use a hand-
coded model of human motion. This model accounts for non-
determinism in the human’s movements to adjacent graph
nodes under the influence of guiding robots, and is described
more precisely as follows.

If no robot is present at the current node as that of the
human, then the human is expected to continue moving in the
current direction of motion, expDir = curDir. Alternatively,
if a robot is present at the current node and pointing towards
an adjacent node n, then the expected direction of motion
expDir is calculated as follows:

expDir = nodeAngle(curNode,n)
Using expDir, we can calculate the distribution of transition
probabilities to adjacent nodes. The hand-coded model sim-

(a) No robots (b) With robot after GuideHuman
Fig. 2. Hand-Coded Human Motion Model - Transition distribution of
the Wait action at node 9: (a) With no influence from robots. (b) After the
GuideHuman action is taken to direct the human towards node 12.

ulates the human’s uncertainty about which adjacent node
v ∈ adjacentNodes(curNode) to move to next as:

edgeAngle = nodeAngle(curNode,v)

P(v) =
1
c

exp
(
−absAngleDiff (edgeAngle,expDir)2

2σ2

)
+d

where c is a normalizing constant so that ∑v P(v) = 1 and
∑v d = 0.01. The value d is used to represent the inherent
unpredictability of humans. σ2 controls the spread of the
Gaussian function and represents how sure a human is to
move in the the expected direction of motion. The human
is less confident when no robots are present and σ2 = 0.1
(see Fig. 2a). When guided by a robot, the human is more
confident and σ2 = 0.05 (see Fig. 2b).

4) Transitions - Robot Task Generation Model: The
robotic system is continually performing tasks, so when a
robot that is not assisting in guiding the human completes
its task, it is assigned a new task with a new destination.
Robots are typically assigned new tasks close to their home
base (rhb), and a new goal is selected randomly from {v :
edgeDist(v,rhb) = k} where k is selected from a Poisson
distribution with mean 1.

5) Reward: The reward function incorporates the time
spent by the human searching for the goal as well as the
utility loss incurred by the robots taking time away from
their other tasks. When the human transitions from state s to
state s′, the amount of time ∆t that passes is given by:

∆t = euclidDist(s.curNode,s′.curNode)/humanSpeed
The utility loss for a robot r is the amount of time the robot
is delayed in reaching location d while performing task τ:

U rτ

ss′ = (timeToDest(r,d,s′)+∆t− timeToDest(r,d,s))
The time loss and utility loss can be combined to form the
final reward function:

Rss′ =−∆t− ∑
r∈s′.assignedRobots

uτ

uh
U rτ

ss′

where uτ is the utility of robot r’s current task τ and uh is
the utility of helping the human. For ease of analysis, we
assume that all robots have the same utility ratio um = uτ/uh
for all tasks, and the reward function simplifies to:

Rss′ =−∆t−um ∑
r∈s′.assignedRobots

U rτ

ss′

C. Heuristic for Robot Selection

In the MDP formulation, the actions select a location to
place a robot, but do not select which robot will be assigned.
Instead, this assignment is handled by the system using a
heuristic approach. This approach is used in lieu of directly
selecting the robot in the MDP in order to greatly reduce
the number of possible actions, increasing the tractability of
solving the MDP. The heuristic for robot selection attempts
to minimize the utility loss incurred by the selected robot to
service the assignment request.

To select which robot to assign to the location, the system
first computes the expected time texp for the human to reach
the assigned location l from the current state s as follows:

texp = pathDist(s.curNode, l)/humanSpeed

Next, the system calculates the set V of all unassigned robots
that can reach the assigned location before the human:
V = {∀r ∈ unassignedRobots(s) : timeToDest(r, l,s)< texp}

If |V | > 0 (a robot can reach l in time), the system selects
the robot with the minimal expected utility loss caused by
waiting for the human at l first before continuing to its
original destination d:
argmin

r
[texp+pathDist(l,d)/robotSpeed− timeToDest(r,d,s)]

If |V |= 0 (no robots can reach l in time), the system selects
the robot which can reach the assigned location l as quickly
as possible: argminr[timeToDest(r, l,s)]

VI. EXPERIMENTS

In these experiments, we evaluate the performance of
UCT on the multi-robot guidance problem in simulation, and
test whether multiple robots can outperform a single robot
leading the human. We also evaluate the modifications to
UCT described in Section IV-B. All experiments were run on
the environment and graph illustrated in Fig. 4a. This envi-
ronment contains 10 robots with uniformly distributed home
bases. In all cases, 1,000 tests were run with randomized start
locations, start orientations, and goal locations with a human
agent that uses the hand-coded motion model presented
in Section V-B.3. Since the shortest distance between the
start and the goal may be different in each problem, we
normalize the time taken by the human and the overall sys-
tem reward before aggregating this information. Specifically,
the time and utility loss were normalized against the best
possible time a human could achieve for that problem, i.e.
pathDist(start,goal)/humanSpeed. Episodes have a maxi-
mum duration of 300 seconds. All significance tests were
performed using a two sample t-test with 95% confidence.
humanSpeed is fixed at 1m/s across all experiments.

To solve this MDP using UCT, we assume that the problem
starts when a human reaches a robot to ask for help. The
robot interacts with the human and figures out his destination
and then performs 10 seconds of initial planning before
directing the human. We believe that this time is sufficiently
small to be performed within the time-frame of the ini-
tial human-robot interaction while providing good system
performance. UCT performs additional planning while the
human moves through the environment, but does not count
on the human ever pausing other than during the initial 10
seconds. Our implementation of UCT is single-threaded, and
it only considers trajectories with a maximum duration of
150 seconds.

A. Heuristic Baseline

For comparison purposes, we define a simple heuristic
solution that iteratively finds a suitable location on the path
in front of a human to place a robot. Given the human’s
current location and direction of motion, let P be the set of
nodes that the human will traverse while continuing to walk
straight. This solution places a robot at the node in P which
is closest to the goal g to guide the human to the goal through
the shortest path from that node, as shown in Fig. 3. We also

(a) Evaluation Environment (b) Varying λ (c) Varying Cp (d) Overall performance
Fig. 4. (a) shows the evaluation environment of size 46.8m × 46.8m in which the large open spaces produce interesting human transition dynamics.
There are 10 robots in the environment, and their home bases are marked with a square. (b) and (c) show the normalized time taken by the human at
different parameter settings. The performance is colored using a red-green heat map, where lower(green) is better. (d) shows the performance of UCT
when compared to VI. The number above the bars indicates the ratio of performance between UCT and VI, and the difference is significant when bold.

test an improved version of the heuristic where nodes from
P are not considered if the heuristic estimates that no robot
can reach that node before the human.

B. Experiments with Instantaneous Robot Motion

Since it is infeasible to optimally solve the MDP described
in this paper on any but the smallest of maps, we first tune
the performance of UCT on a smaller problem where an
optimal baseline is available. We first perform experiments
on a multi-robot guidance domain with instantaneous robot
motion [11], where the location and destination of the robots
are not part of the state representation. The smaller size of
the state space allows optimally solving this reduced MDP
using Value Iteration (VI). In this section, we compare the
performances of UCT and the heuristic with the optimal
solution on this smaller domain.

To optimize the performance of UCT, we first tune the
weight of the eligibility trace λ and the magnitude of the
confidence bound Cp. Fig. 4b shows the average normalized
time taken by the person to reach the goal while varying λ

and maxRobots with Cp = 250. Irrespective of the value of
total robot placements, best performance is achieved when λ

is close to 0. Since UCT does not converge in the provided
computation time, some exploratory actions may be taken
every rollout. In this domain, sub-optimal actions can be
extremely costly, such as sending the human in a direction on
the opposite side of the goal. When λ is close to 1, backing
up the true value of the rollout up the tree leads to incorrect
value estimation, degrading performance. In contrast, when
λ = 0, exploratory actions further down the tree do not affect

(a) Likely Straight Path P (b) Robot Placement
Fig. 3. Heuristic baseline: (a) the likely path P that the human is expected
to follow starting at node 4 and pointing rightwards. (b) given that the goal
is at node 10, node 1 in P is closest to the goal, and a robot is placed there
to guide the human along the shortest path towards the goal.

the value of a state-action pair, and the values are closer to
their true values, improving performance.

Fig. 4c shows the performance at different confidence
bounds when λ = 0. The results show that as expected, when
Cp ≤ 100, UCT fails to explore sufficiently and performs
poorly. The results show the best performance with a con-
fidence bound of Cp = 250. Higher values produce a slight
degradation in performance due to over-exploration. Fig. 4d
shows that the performance of UCT(λ = 0, Cp = 250) is
statistically indistinguishable from the optimal VI policy in
most cases and close otherwise. Notably, using the original
version of UCT with λ = 1 performs poorly and does not
perform significantly better than the heuristic in most cases.

These results show that the performance of UCT can be
tuned to be comparable to the optimal policy in a small
domain. All following experiments apply UCT to the full
domain formulated in Section V (which is too large for VI),
and we run UCT planning 8 times longer than real time.2

C. Experiments on the Fully General Problem

On this larger problem, there is significant non-
determinism based on the tasks assigned to the robots.
Therefore, our implementation of UCT uses the state merging
described in Section IV-B by removing the robots’ locations
and destinations from the state representation stored in
the UCT tree. Intuitively, a state-action pair is considered
superior as long as there are sufficient rollouts with a high
value, but it does not matter how the human was exactly
assisted in each rollout to produce this high value. A side-
effect of this change is that future state-action values in the
UCT tree may not reflect the true outcome, so we start UCT
planning from scratch at every Wait action.

In Section V, we described 3 parameters, namely max-
AssignedRobots, visRange and adjDepth to control action
branching. Limiting the action branching can speed up con-
vergence, but also remove the optimal actions. Fig. 5a depicts
the average normalized reward across different values of ad-
jDepth and visRange at maxAssignedRobots=1. Surprisingly,

2A multi-threaded implementation of UCT on a single 4 or 6 core machine
should be able to achieve a similar increase in the number of rollouts. In this
paper, we concurrently evaluate different problem instances on a distributed
computing platform that does not allow non-competing multi-threaded jobs,
and the planning time has been increased instead.

(a) Varying action branching (b) Time taken (c) Total Reward (d) Total Reward (robotSpeed=0.5m/s)
Fig. 5. Performance of UCT on the full multi-robot guidance problem. Unless specified, the following parameters were used (λ = 0, Cp = 250,
robotSpeed = 0.5m/s, um = 1,adjDepth = 1,visRange = 20m,maxAssignedRobots = 1). UCT outperforms all other approaches described in this paper.

peak performance is at a very low rate of branching (maxAs-
signedRobots=1, adjDepth=1, visRange=20m), which means
it is worthwhile trading action choices for convergence.

In the next set of experiments, we test whether solving
the MDP using UCT can produce superior performance than
a single robot leading the person from start to finish along
the shortest path. For any problem instance evaluated, it is
easy to compute the time taken by a single robot to lead the
human to the goal, and the utility loss can be computed as
the time it will take for the robot to get back to its original
task and destination. If robots are as fast as humans, then
it is impossible to beat the time taken by the single robot
approach, as the human will always walk along the shortest
path to the goal at his natural speed.

Fig. 5b compares the time taken for the person to reach the
goal when robots are slower than humans. UCT planning can
be run to minimize the time spent by the human (um = 0),
or give equal weight to the robots’ time and the human’s
(um = 1). As shown by the results, UCT demonstrates better
performance when robot speeds are less than 0.5m/s, i.e.
less than half of the human. This result verifies our first
hypothesis that when robots are significantly slower than
humans, a multi-robot guidance solution can allow the human
to reach his goal faster than being led by a single robot.

Additionally, robots that spend time guiding the human
are diverted from their own duties. In the next experiment,
we plot the overall reward received by the system in Fig. 5c
when the reward function equally weights the robots’ time
to that of a human (i.e. um = 1). At all values of robot-
Speed, UCT planning that weights the robots’ time correctly
(UCT[um = 1]) outperforms the single robot approach. It
also outperforms UCT planning that only cares for the
human’s time (UCT[um = 0]) This result verifies our second
hypothesis, that UCT can outperform a single robot approach
when the robots’ time is equally weighted to that of a
human’s.

Finally, we compare the performance of UCT to the base-
line heuristic in Fig. 5d, when robotSpeed=0.5m/s. These
results also compare a version UCT that does not use the
state merging described in Section IV-B, denoted UCT-NSM.
These results clearly demonstrate that our version of UCT
outperforms all other approaches described in this paper.

VII. CONCLUSIONS

In this paper, we framed the problem of guiding a human
unfamiliar with the environment using multiple robots, and
formulated this problem as an MDP using a hand-coded
model of human motion. We demonstrated that the policy
produced by using the UCT planner to approximately solve
this MDP can outperform the conventional approach of using
a single robot, as well as some heuristic solutions. We also
analyzed UCT to improve its performance on this domain,
and some of the same techniques should be applicable to any
planning domain with high action branching and high costs
associated with sub-optimal actions. This paper shows that
a multi-robot system can plan to efficiently guide humans.

REFERENCES

[1] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert,
D. Fox, et al., “MINERVA: A second-generation museum tour-guide
robot,” in ICRA, 1999.

[2] R. Philippsen and R. Siegwart, “Smooth and efficient obstacle avoid-
ance for a tour guide robot,” in ICRA, 2003.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge Univ Press, 1998.

[4] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in ECML ’06, 2006.

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, et al., “ROS: an
open-source Robot Operating System,” in Workshop on Open Source
Software in Robotics at ICRA, 2009.

[6] M. Montemerlo, J. Pineau, N. Roy, et al., “Experiences with a mobile
robotic guide for the elderly,” in IAAI, 2002.

[7] G. Lacey and K. M. Dawson-Howe, “The application of robotics to a
mobility aid for the elderly blind,” Robotics and Autonomous Systems,
1998.

[8] Y. Rogers, W. R. Hazlewood, P. Marshall, et al., “Ambient influence:
Can twinkly lights lure and abstract representations trigger behavioral
change?” in UBICOMP, 2010.

[9] D. L. Chen and R. J. Mooney, “Learning to interpret natural language
navigation instructions from observations.” in AAAI, 2011.

[10] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, et al., “Understanding
natural language commands for robotic navigation and mobile manip-
ulation.” in National Conf. on Artificial Intelligence (AAAI), 2011.

[11] P. Khandelwal and P. Stone, “Multi-robot human guidance using
topological graphs,” in AAAI Spring 2014 Symposium on Qualitative
Representations for Robots (AAAI-SSS), March 2014.

[12] F. Aurenhammer, “Voronoi diagrams–a survey of a fundamental geo-
metric data structure,” Computing Surveys (CSUR), 1991.

[13] S. Gelly and Y. Wang, “Exploration exploitation in Go: UCT for
Monte-Carlo Go,” in NIPS ’06, December 2006.

[14] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”
in NIPS ’10, 2010.

[15] T. Hester and P. Stone, “Texplore: real-time sample-efficient reinforce-
ment learning for robots,” Machine Learning, 2013.

