
ε-UCB for Action Selection in Multi Agent Navigation

Julio Godoy, Ioannis Karamouzas, Stephen J. Guy and Maria Gini

Abstract— In multi-robot systems, efficient navigation is chal-
lenging as agents need to adjust their paths to account for
potential collisions with other agents and static obstacles. In
this paper, we present an online machine learning approach,
ε-UCB, which improves global efficiency in the motions of
multiple agents by building on ORCA, an existing multi-
agent navigation algorithm, and on UCB, a widely used action
selection technique. With ε-UCB, agents adapt their motions to
their local conditions while achieving globally efficient motions.
We validate our approach experimentally, in a variety of
scenarios and with different numbers of agents. Results show
that agents using ε-UCB exhibit more globally time efficient
motions, when compared to just ORCA and to UCB.

I. INTRODUCTION

Navigating multiple agents through complex environments
in real-time and in a decentralized manner has important
applications in many domains such as swarm robotics, pedes-
trian navigation, and traffic engineering. This navigation
problem is challenging because of conflicting constraints
induced by the presence of other moving agents. As agents
plan paths in a decentralized fashion, they often need to
recompute their paths to avoid colliding with other agents.

Over the past twenty years, many decentralized tech-
niques for real-time multi-agent navigation have been pro-
posed. These range from force-based approaches to more
robust velocity-based solutions, which provide guarantees
on collision-free motion for multiple agents. Although these
robust approaches generate locally efficient motions for each
agent, the overall behavior of the agents can be far from
efficient; actions that are locally optimal are not necessarily
optimal for the entire group of agents.

One way to improve the global efficiency of the agents’
motion is for each agent to learn, through interaction with the
environment, what motion is best given its local conditions.
Unfortunately, many machine learning algorithms require an
offline training phase to achieve learning, or take a long
time before converging to the optimal policy. In addition,
the computational complexity of learning methods becomes
prohibitively high as the number of agents increases.

Our work focuses on online learning methods that can be
completely distributed and require no communication among
the agents. We incorporate online adaptation by formulating
the multi-agent navigation problem as a Multi-Armed Bandit
problem. The main challenge in these problems is to balance
the exploitation of the current best action with the exploration
of other actions that may later produce higher rewards [1].

*All authors are with the Department of Computer Science and Engi-
neering, University of Minnesota, USA

Partial support is gratefully acknowledged from NSF grant IIS-1208413

We demonstrate that a widely used method for balancing ex-
ploration and exploitation, Upper Confidence Bounds (UCB)
[2], is not well suited to the real-time environments of multi-
agent navigation tasks. We propose a novel approach, ε-UCB,
to achieve the desired balance. We combine ε-UCB with
ORCA [3], a velocity-based local navigation technique. The
resulting motion shows a clear improvement over the current
state-of-the-art.

This paper makes three contributions. First, we model the
problem of achieving globally efficient motions in multi-
agent navigation as a multi-armed bandit problem. Second,
we propose an online learning approach, ε-UCB, which
addresses the exploration/exploitation tradeoff via a proba-
bilistic combination of UCB and a greedy method. Third, we
experimentally show that our approach leads to more time
efficient motions in a variety of scenarios, as compared to
using UCB with ORCA and ORCA alone.

II. RELATED WORK
A. Multi-Agent Navigation

Numerous models have been proposed to simulate individ-
uals and groups of interacting agents. After the seminal work
of Reynolds on boids, many interesting crowd simulation
models have been introduced that account for groups [4],
cognitive and behavioral rules [5], and other factors [6], [7].

An extensive literature also exists on modeling the lo-
cal dynamics of the agents and computing a collision-free
motion among static and/or dynamic obstacles. Complete
approaches have been proposed that pre-compute motions
offline [8], however they are not suitable for real-time ap-
plication. This limitation inspired the development of faster
online approaches with applications in real-time domains.
For example, Khatib [9] pioneered the use of artificial
potential fields, where the robot is treated as a particle
which is attracted to the goal and repelled by obstacles.
Brooks [10] in his layered architecture, popularized the use
of artificial potential fields for robot navigation. Closely
related is the social force framework of Helbing for pedes-
trian simulation [11]. However, all these approaches are
reactive and do not account for the velocities of the agents,
leading to issues especially in environments where agents
move at high speeds. To address this issue, geometrically-
based algorithms have been proposed [12], which compute
collision-free velocities for the agents using either sampling
[13] or optimization techniques [3]. In our work, we also
use the navigation method proposed in [3] that is robust to
different types of environments by accounting for agents’
velocities.



B. Learning in Multi-Agent Navigation

We deal with a multi-agent learning problem where agents
learn simultaneously and affect the decisions of other agents.
We consider this multi-agent system as a group of inde-
pendent learners, where each agent considers other agents
as part of the environment. Extensive work has been done
on learning and adapting motion behavior for agents in
crowded environments. Depending on the nature of the
learning process, this work can be classified in two main
categories: offline and online learning. In offline learning,
agents repeatedly explore the environment and try to learn
an optimal policy given an objective function. Examples
of desired learned behaviors include collision avoidance,
shortest path to destination, and specific group formations.
The approach in [14], for example, applies Q-learning to plan
paths for agents in crowds. Similarly, a SARSA-based [15]
learning algorithm has been used in [16] for offline learning
of behaviors in crowd simulations. Offline learning has
limitations arising from the need to train the agents before
the environment is known. In online approaches like ours,
agents have only partial knowledge of their environment,
and need to adapt their strategies to what the other agents
do. Recently, an anytime planning-based approach for multi-
agent navigation was proposed in which the agents’ paths
are computed in an iterative manner [17].

III. MULTI AGENT NAVIGATION

In this paper, we introduce an online learning technique
for multi-agent navigation so that agents can exhibit more in-
telligent and efficient motion. More formally, in our problem
setting, we are given n independent agents Ai (1 ≤ i ≤ n),
each with a unique start and goal positions specified in
R2. The environment for Ai is defined as a 2D virtual or
physical space with all the remaining n − 1 agents, along
with a set of static obstacles O. The task is then to steer
each of these agents to its goal without colliding with the
other agents and the obstacles present in the environment. We
also require that the agents navigate independently without
explicitly communicating with each other.

For simplicity, we model each agent Ai as a disc with
radius ri. The agent Ai has a position pi, defined by the
(x, y) coordinates of the center of the disc, and moves
with velocity vi that is limited by a maximum speed υmax

i .
Furthermore, Ai has a preferred velocity vpref

i directed
toward the agent’s goal gi with a magnitude equal to the
speed υprefi at which the agent prefers to move. We assume
that the radii, positions and velocities of the nearby agents
can be obtained by local sensing. In this work, agents can
sense other agents 15 meters away, and obstacles 1 meter
away.

Collision Avoidance and ORCA

Selecting collision-free velocities as close as possible to
vpref is a challenging problem in and of itself. Collision
avoidance methods can be either reactive or anticipatory.
In reactive approaches, agents react to avoid collisions only
when they are sufficiently close. This can lead to oscillations

between agents and to local minima. Another limitation of
these methods is that the forces must be tuned separately
for each scenario, limiting their robustness. In anticipatory
approaches, agents detect and avoid potential upcoming
collisions by linearly extrapolating their current velocities.
In this category, the principle of Optimal Reciprocal Col-
lision Avoidance (ORCA) for multi-agent navigation was
proposed [3]. ORCA provides collision and oscillation-free
motion between multiple moving agents, as well as optimal-
ity guarantees with respect to the velocities computed. ORCA
accounts for anticipatory avoidance, reciprocity among the
agents as well as sensor noise and motion uncertainty [18].

Although ORCA guarantees collision-free motions and
provides a locally optimal behavior for each agent, it does
not account for the aggregate behavior of the agents so it
can lead to globally inefficient motions. For example, when
agents pass through a narrow bottleneck, ORCA will slow
them down to ensure collision-free motion. If all movement
leads to potential collisions, the agents may get stuck in local
minima resulting in long delays in the navigation. Instead, if
agents were able to behave differently in those situations,
for example, by selecting a vpref in a different direction
for a short period of time, they might be able to find a
larger region of feasible velocities. This might indirectly help
avoid or solve overall congestion, benefiting all agents. Our
proposed learning approach addresses these issues, allowing
agents to intelligently adapt their preferred velocity in an
online fashion and improving their efficiency in challenging
environments.

IV. MULTI-ARMED BANDIT FORMULATION

To alleviate the inability of ORCA to produce globally
efficient motions, we formulate the navigation problem as
a multi-armed bandit problem. In a multi-armed bandit
problem, an agent makes sequential decisions on a set of
actions (the arms) to maximize its expected reward. To do
this, the agent must balance the exploitation of the current
best action with the exploration of potentially better ones.
The challenge for the agent is to use its past experience
to predict the best action at each time, by accounting for
uncertainty on future outcomes. In our domain, each arm
corresponds to a specific vpref .

An ORCA-simulated agent has, by default, only one
action: a goal-oriented vpref with a magnitude equal to
υpref . We would like to enrich the choices that agents have,
compared to what ORCA provides, by enabling agents to
choose different preferred velocities. This would require
each agent to make a choice at every simulation step in
two continuous spaces, the space of speeds and the space
of directions. However, in an online learning setting each
agent is limited in the number of exploration steps to learn
from; increasing the number of choices will either reduce
the amount of exploration per choice, leading to a larger
learning error, or will increase significantly the time needed
for learning. This tends to reduce performance, as discussed
in previous work [19].



After an experimental evaluation of different sets of ac-
tions, we concluded that a set of five fixed velocity choices
gave the best performance, as it allowed the agent enough
variety of behaviors while avoiding spending too much time
in exploration. Specifically, the actions defined correspond
to: (1) moving directly straight towards the goal, (2) left
10◦, (3) right 10◦, all at a speed of 1.5 m/s, (4) a complete
stop, and (5) a slow backwards movement (0.5 m/s). This set
of actions includes the goal-oriented motion (ORCA’s default
action) as it is often the best action to take. We also allow the
agent to move aside, left or right, in case the goal-oriented
motion is not allowed, to stop if no movement is allowed, and
to step backwards when no forward movement is possible.
Since stopping or moving away from the goal yields to other
agents’ motion, we refer to this subset of actions as “polite”
behavior.

A. Learning Episode

Our agents decide on their motions while the simulation
is running. The simulation is divided into time steps, or
cycles, each of a fixed time duration. Each simulation cycle
corresponds to a learning episode. At each cycle, each agent
chooses a specific action, vpref , based on its rewards and the
current simulation state.

An agent uses the state of the simulation (position and
velocities of the nearby agents) as input to its learning
process. The output of the learning process for the agent
is vpref which is used as input to ORCA. ORCA analyzes
potential collisions and returns the new simulation state (the
new position and velocity) based on the chosen vpref . The
union of the updated positions and velocities of all agents
constitutes the new global simulation state, which is then
used in the next cycle.

B. Optimization Function

Our learning approach ultimately aims at minimizing the
total time it takes for all agents to reach their goal. In order
to evaluate the action choices of all the agents throughout
a simulation (in hindsight), we would normally use the
regret metric to compare them with the optimal choices
each agent should have made to minimize the global travel
time. However, measuring the regret in this way as the
simulation progresses is impossible, since there is no oracle
against which to compare. Therefore, to encourage actions
that help reduce the global regret, we propose a reward
function that drives the agent towards its goal, while taking
into account the interaction with other agents. Specifically,
our reward function (see Eq. 3) is a convex combination
of a goal-oriented component and a politeness component.
This function is executed after each timestep and evaluates
the previously selected action vpref with the collision-free
velocity v computed by ORCA.

The goal-oriented component Rgoal
a computes the scalar

product of the collision-free velocity v of the agent with
the normalized vector which points from the position p of
the agent to its goal g. More formally, we compute this
component as:

(1.5, 2.25)

(1.4, 2.25) (1.4, 2.25)

(0, 0)

(-0.5, 0.25)

Goal

(Rgoal, Rpolite)

(a) Navigation in an open
area

(-0.4, -0.3)

(-0.5, 0.25)

(-0.2, -0.5) (-0.25, -0.41)

Goal

(-0.1, 0)

(Rgoal, Rpolite)

(b) Navigation in a congested area

Fig. 1: Example of reward values under (a) clear and (b)
congested local conditions.

Rgoal
a = v · g − p

‖g − p‖
(1)

The politeness component Rpolite
a compares the preferred

velocity given as an action input to ORCA with the resulting
collision-free velocity. If ORCA determines that a given
preferred velocity may produce collisions, it will produce a
different collision-free velocity. Hence, the relation between
v and vpref expresses how collision-free vpref is. The larger
the difference between vpref and v, the less polite it is
to take the associated action, as potential collisions would
also hinder the progress of other agents. Therefore, similar
values of vpref and v indicate the action is very polite. Polite
actions do not necessarily drive the agent closer to its goal
but allow other agents to progress, thereby improving the
global simulation state. We compute this component as:

Rpolite
a = v · vpref (2)

The reward Ra for the agent for doing action a is given by:

Ra = γ ∗Rgoal
a + (1− γ)×Rpolite

a (3)

where the parameter γ controls the influence of each com-
ponent in the total reward (0 ≤ γ ≤ 1).

Figure 1 shows an example of two local conditions an
agent may encounter. The five actions available correspond
to the ones described earlier in this section. The approximate
reward values shown are separated according to the two com-
ponents of the reward function (Rgoal, Rpolite). In Fig. 1(a),
the agent’s movement is not constrained and consequently
the reward is higher for the actions that drive the agent
towards its goal. In Fig. 1(b), congestion has formed and
the goal-oriented actions are now constrained, which results
in lower rewards. In this case, the agent will prefer less
constrained actions, such as stopping or moving away from
the goal, which avoid increasing the congestion and allow
other agents to move toward their goals.

To keep an updated estimate of the value of the actions,
agents maintain a moving window of the reward obtained in



the last 50 timesteps. The estimated value of an action is the
average of the reward obtained by performing that action in
the last 50 timesteps.

V. EPSILON-UCB

In this section, we briefly describe a widely-used action
selection technique called UCB, before fully describing our
proposed approach, ε-UCB.

A. UCB

UCB works by sampling the actions proportionally to the
upper-bound of the estimated value of their rewards Ra.
The UCB estimate UCB(a) of action a for an agent is a
sum of two terms (Eq. 4). The first term Ra is the moving
average of the reward for the agent of performing action a.
The second term corresponds to the size of the one-sided
confidence interval for the average reward. This confidence
interval bounds the true expected reward with very high
probability [2]. This term is computed using the number of
times action a was selected (na) and the total number of
action decisions made so far by the agent (n).

UCB(a) = Ra +

√
2× ln(n)

na
(4)

At each simulation cycle, UCB updates its estimates of all
actions and selects the one with the highest value. Therefore,
UCB takes into account the value estimates of the actions
and the frequency with which actions have been selected, to
encourage the exploration of actions with low value but with
potentially outdated estimates.

However, in situations where actions have a fixed known
reward, UCB performs unnecessary exploration. In these
situations, just exploiting the best action is the best strategy.
Our approach takes advantage of both UCB and a greedy
action selection method in a probabilistic manner.

B. ε-UCB

Our ε-UCB approach uses a probabilistic action selection
method combining UCB and the best current action to
enhance the ability of the agents to adapt. The ε-UCB
pseudocode can be seen in Algorithm 1. At the beginning
of the simulation, we assume that the agent has no previous
knowledge of the rewards of its actions. Hence, it first
samples the velocity space with its actions to obtain an initial
estimate of their values under the current local conditions.
This initial sampling is performed by executing ORCA with
each action’s preferred velocity for a single timestep. Once
the initial rewards have been collected, the agent must decide
whether to exploit the highest valued action or explore
for possible changes in the reward. To do this, the agent
probabilistically selects an action, using an exploration rate
(ε). A key difference between ε-UCB and traditional UCB
is that explotation is done a fixed fraction of time (lines 8
and 9) and is not dependant on how much better the best
action is as compared with the other actions. This increases
the amount of time the agent exploits the best current action.
After action a is selected, its corresponding vpref is passed

to ORCA (line 13) to compute a collision-free velocity for
execution in the next timestep. This velocity is used to update
the estimated reward of the action (line 14).

The motivation behind combining UCB and the best
known action is twofold: it helps the agent to greedily select
the best action when local conditions are stable, reducing
the negative effects on reward caused by exploration, while
maintaining sensitivity to changes in the local conditions.

Algorithm 1: ε-UCB algorithm for an agent
1: Input: ExpRate ∈ [0, 1]
2: initialize simulation, p = (xstart, ystart)
3: ε← ExpRate
4: initialize Ra for all the actions to 0
5: sample the actions
6: while not at the goal do
7: randomly generate variable p ∈ [0, 1]
8: if p ≤ (1-ε) then
9: a← action with highest estimated reward value

10: else
11: a← action suggested by UCB
12: end if
13: ORCA(a)
14: update reward estimates
15: end while

VI. EXPERIMENTAL RESULTS

To analyze the performance of our approach, we compare
the regret of the agents using ORCA, ORCA with UCB,
and ORCA with ε-UCB. However, given the local nature of
the actions, the agents cannot directly measure the regret to
figure out which action actually minimizes the global travel
time. Hence, we use an upper bound of the regret, which we
call Regret*, defined as the difference between the time the
last agent reaches its goal and the time that it takes for an
agent to traverse at maximum speed (1.5 m/s) the shortest
path to the goal. We evaluated the Regret* of the different
approaches in a variety of experiments and scenarios.

G

(a) Single Agent (b) Small Circle

Fig. 2: Examples of scenarios with and without constraints.
(a) A single agent with no obstacles can follow a direct path
towards its goal. (b) 5 agents located in a circle cross paths
in the middle, inducing constraints on one another.

We begin by evaluating how the exploration strategy
affects the time efficiency of the agents. To do this, we
measure a single agent’s time to reach the goal in a clear



0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

8	  

0	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	   1	  

Re
gr
et
*	  
(s
)	  

ε	  

ε-‐UCB	  

UCB	  

ORCA	  

Fig. 3: Total time for a single agent to complete a 100 meter
long navigation path, for different values of ε.

unconstrained environment. The distance between the agent’s
starting position and its goal is 100 meters (see Fig. 2(a)).
We vary ε in the range between 0.1 and 0.9.

We can observe in Fig. 3 that in this simple scenario,
the ORCA agent performs the best, as it always takes the
action of going full speed towards its goal. This is the
optimal policy and the agent has zero Regret*. UCB and
ε-UCB are less time efficient as they perform unnecessary
exploratory actions. However, ε-UCB agents have very low
Regret* when performing little exploration (ε=0.1), but their
Regret* increases with more exploration, reaching the upper
bound given by UCB. Therefore, lower values of exploration
are used in the remaining experiments.

These results are expected as this simple scenario does not
have any constraints, so choosing the default ORCA vpref

is the optimal policy. When the presence of other agents
creates constraints, the default behavior is no longer optimal.
Fig. 2(b) is an example of this, as 5 agents are located along
a circle of diameter of 10 meters, and need to navigate to
opposite positions in the circle. In this case, the agents’
paths intersect at the center of the circle, which causes
slowdowns and increases their Regret*. The agents’ action
selection method allows them to find the best action when it
dynamically changes. The Regret* that the agents experience
for the three techniques (with ε = 0.1), in seconds, is as
follows:

Method ε-UCB UCB ORCA
Regret* 1.78 2.56 18.8

We can observe that ORCA agents exhibit a large Regret*
as their default preferred velocity is not allowed in the middle
of the circle. The multiple constraints in this scenario slow
down the agents for a large part of the simulation, before
their local conditions improve. UCB agents perform better as
they find, through exploration, actions that prevent them from
slowing down in the middle, and instead they pass by each
other decreasing their Regret* as compared to pure ORCA.
However, ε-UCB agents perform even better, demonstrating
that greedy exploitation of the current best action pays off
increasing global time efficiency, as compared to pure UCB.
To evaluate the performance of ε-UCB in more complex

settings, we performed experiments in larger scenarios with
many agents and static obstacles. Below we briefly describe
each scenario:

• Congested: 32 agents are placed very close to the nar-
row exit of an open hallway they must escape through
this exit (Fig. 4 (a)).

• Exit: 48 agents are placed across a narrow corridor with
a single exit that allows only one agent at a time to pass
(Fig. 4 (b)).

• Crossing: Two groups of 100 agents cross paths while
moving from opposite directions (Fig. 4 (c)).

• Circle: 128 agents are evenly distributed along the
circumference of a circle. Each agent has to move to its
diametrically opposite position on the circle (Fig. 4(d)).

Figure 5 shows the results of ORCA, UCB, and ε-UCB
in these four scenarios. In all of them, we can observe
that ε-UCB agents have lower Regret* than both ORCA
and UCB. In the Congested scenario, ε-UCB outperforms
ORCA by 35% and has 21% lower Regret* than UCB.
In the Exit scenario, the overhead time when using ε-
UCB is significantly different than for UCB, outperforming
ORCA by 41% and UCB by 38%. In both scenarios, the
movement of each agent is constrained by the presence of
other agents and static obstacles, especially close to the
single exit. With ε-UCB, agents that fail to make progress
are able to learn to step backwards instead of forcing their
way towards the congested area. This provides more room
for other agents to maneuver, helping to resolve congestion
faster as compared to ORCA simulated agents. Consequently,
our approach leads to faster exit times in both scenarios. In
the Crossing scenario, ε-UCB again performs significantly
better than UCB, although by a small margin, but it still
outperforms ORCA agents by 50%. Finally, in the Circle,
agents using ORCA immediately converge to the center of
the environment. Consequently, they have to frequently speed
up and slow down to avoid collisions. UCB performs worse
than ORCA, as UCB agents perform too much unnecessary
exploration in open areas. Selecting suboptimal actions too
frequently increases the agents total time to destination.
Overall, our approach has 4% lower Regret* than ORCA
and 24% lower Regret* than UCB.

VII. CONCLUSIONS
In this paper, we presented a learning algorithm called

ε-UCB to improve the ability of the agents to navigate effi-
ciently, in real-time, in a crowded environment. We formulate
the navigation problem as a multi-armed bandit, where the
action space corresponds to a set of preferred velocities.
Agents value their actions through a reward function that
encourages goal-oriented motion and polite behavior be-
tween agents. In ε-UCB, agents adapt online to changing
environmental conditions. To balance the exploration versus
exploitation tradeoff, we blended in a probabilistic manner
UCB with the selection of the best known action. We tested
our approach across a variety of scenarios and different
numbers of agents. Experimental results show that ε-UCB
significantly improves the time efficiency of the agents, as



(a) Congested (b) Exit

(c) Crossing (d) Circle

Fig. 4: Experimental Scenarios. (a) Congested: 32 agents placed close to each other exit an open hallway through a narrow
doorway. (b) Exit: 48 agents need to exit a corridor through a narrow doorway that allows one agent at a time to pass. (c)
Crossing: two groups of 100 agents cross paths while moving from opposite direction. (d) Circle: 128 agents are placed
along the circumference of a circle and must reach their antipodal position in the circle.

0	  

20	  

40	  

60	  

80	  

100	  

120	  

140	  

Exit	   Congested	   Crossing	   Circle	  

Re
gr
et
*	  
(s
)	  

ε-UCB 

UCB 

ORCA 

Fig. 5: Comparison of ε-UCB with UCB and ORCA in the
four scenarios.

compared to UCB or ORCA without learning. ε-UCB, which
has a low computational complexity, can improve the battery
life of real autonomous robots and is ideal for effort-efficient
navigation tasks.

REFERENCES

[1] P. Auer, “Using confidence bounds for exploitation-exploration trade-
offs,” The Journal of Machine Learning Research, vol. 3, pp. 397–422,
2003.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[3] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics Research: The 14th Interna-
tional Symposium ISRR, ser. Springer Tracts in Advanced Robotics,
vol. 70. Springer-Verlag, 2011, pp. 3–19.

[4] O. Bayazit, J.-M. Lien, and N. Amato, “Better group behaviors in
complex environments using global roadmaps,” in 8th International
Conference on Artificial life, 2003, pp. 362–370.

[5] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” Graphical
Models, vol. 69, no. 5-6, pp. 246–274, 2007.

[6] N. Pelechano, J. Allbeck, and N. Badler, “Controlling individual agents
in high-density crowd simulation,” in ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2007, pp. 99–108.

[7] S. Guy, S. Kim, M. Lin, and D. Manocha, “Simulating hetero-
geneous crowd behaviors using personality trait theory,” in ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, 2011,
pp. 43–52.

[8] D. Hsu, R. Kindel, J. Latombe, and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,” Int. J. Robotics
Research, vol. 21, no. 3, pp. 233–255, 2002.

[9] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[10] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE J. of Robotics and Automation, vol. RA-2, no. 1, pp. 14–23,
Mar. 1986.

[11] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[12] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using Velocity Obstacles,” Int. J. Robotics Research, vol. 17, pp. 760–
772, 1998.

[13] I. Karamouzas and M. Overmars, “Simulating and evaluating the local
behavior of small pedestrian groups,” IEEE Trans. on Vis. Comput.
Graphics, vol. 18, no. 3, pp. 394–406, 2012.

[14] L. Torrey, “Crowd simulation via multi-agent reinforcement learning,”
in Artificial Intelligence and Interactive Digital Entertainment, 2010,
pp. 89–94.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[16] F. Martinez-Gil, M. Lozano, and F. Fernández, “Calibrating a motion
model based on reinforcement learning for pedestrian simulation,” in
Motion in Games, ser. LNCS, vol. 7660. Springer, 2012, pp. 302–313.

[17] J. Godoy, I. Karamouzas, S. J. Guy, and M. Gini, “Anytime navigation
with progressive hindsight optimization,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2014.

[18] S. Kim, S. J. Guy, W. Liu, R. W. Lau, M. C. Lin, and D. Manocha,
“Predicting pedestrian trajectories using velocity-space reasoning,” in
Algorithmic Foundations of Robotics X. Springer, 2013, pp. 609–623.

[19] M. Tokic, “Adaptive ε-greedy exploration in reinforcement learning
based on value differences,” in KI 2010: Advances in Artificial
Intelligence. Springer, 2010, pp. 203–210.


