
Aggressive Optimal Control for Agile Flight with a Slung Load

Cédric de Crousaz, Farbod Farshidian and Jonas Buchli

Abstract— A possible design method for learning motion con-
trol consists of using a model-based optimal control algorithm to
initialize the policy of a sampling based reinforcement learning
algorithm. In this paper, the initial control trajectory design is
performed for a quadrotor with a cable-suspended load using
the iterative LQG (iLQG) algorithm. The hybrid model of
the quadrotor with the load is introduced, and four sample
tasks are presented. These tasks consist of a simple waypoint
task as well as a task where the quadrotor and the load have
to pass through a small window. The window task requires
more aggressive control, exploiting the underactuated system
dynamics including system mode switches, where the load is in
free fall for some period of time.

I. INTRODUCTION

Agile and robust motion control is the key to autonomous
robot operation. One approach for designing the motion con-
troller is to design the reference trajectory and the tracking
controller separately. In contrast, the design process can be
introduced as a single optimization problem, similar to the
approach in optimal control and reinforcement learning. In
these frameworks, the task is introduced by the means of
a cost function which can be optimized either through a
model-based (optimal control) or a sample-based method
(reinforcement learning). While the model-based approaches
leverage the knowledge of the system model, the sample-
based approaches interact directly with the real world.

A combined approach can benefit from both the system
model knowledge and the real world information. In the
author’s previous work [1], a combined design methodology
for robotic platforms was introduced. This approach proposes
a design pipeline which first it uses the iterative LQG
(iLQG) algorithm (as a model-based method) to design the
controller. This controller is then used to initialize the policy
of a learning algorithm, namely PI2-01 (as a sample-based
method). With this approach, while the iLQG algorithm
provides a good initial controller for the given task, the PI2-
01 algorithm improves its performance on the real hardware
by adapting the controller to the unmodelled dynamics. Since
both of these algorithms are using the same cost function, it
relieves the designer from tuning the cost function for each
algorithm separately. This design pipeline is summarized in
Fig 1. The shaded parts are completed in simulation while
the solid white parts require trials on the real hardware.

The applicability of this design approach to a ball balanc-
ing robot, which is an unstable, nonlinear, and non-minimum

Cédric de Crousaz {cedricd@student.ethz.ch},
Farbod Farshidian {farbodf@ethz.ch} and Jonas Buchli
{buchlij@ethz.ch} are with the Agile & Dexterous Robotics
Lab at the Institute of Robotics and Intelligent Systems, ETH Zürich,
Switzerland.

Fig. 1: Overview of the design pipeline

phase system, was shown by the authors in [1]. The first
half of the design pipeline (the shaded part in Fig 1) is now
applied to a quadrotor with a slung load (Fig 2), showing
that the design methodology also scales to such a challenging
system.

A quadrotor with a slung load is a system with relatively
high degree of underactuation. Furthermore, depending on
the cable being taut or free, the system has two dynamics
modes with a different number of states and degrees of
underactuation. Under aggressive manoeuvres, like passing
through a small window, the system switches between theses
modes. This high number of underactuation plus the hybrid
characteristic of the system makes the motion control of the
system challenging, especially for aggressive manoeuvres.

In order to perform dynamic and agile tasks like passing
through windows, the quadrotor needs to exploit mode-
switches. In this work the iLQG algorithm is used to au-
tomate the design process of motion control. The generated
controller is not only able to fulfill the task but also tries to
minimize the control effort.

II. RELATED WORK

Recently using quadrotor UAVs (Unmanned Aerial Ve-
hicles) for manipulation has become popular for several
reasons such as inexpensive hardware and the ability to
access remote areas. Although adding a gripper to quadrotor
for manipulation is a viable solution [2], it adds extra weight
and reduces the agility of the aircraft. However hanging
the load from a cable retains the agility of UAVs at the
expense of making the motion control problem harder as
the degree of under-actuation increases. In this area, a large
body of the research focuses on keeping the load swing in
a minimum possible level [3], [4]. Both model-based [4]–
[8] and sample-based [3], [9] methods have been used in
this scenario to reduce the energy of the suspended load’s
residual oscillation.

Using the differentially flatness property of the system,
Sreenath et al. [10], [11] introduce a motion controller
which lets the load undergo large swings. This controller
tracks the reference trajectories in the space of flat outputs.
These reference trajectories are provided by the designer. As
the complexity of the task increases (like passing-through-
window task), the intuition of the designer will not be
sufficient anymore. In order to automate the design process
of the reference trajectories, an optimization approach is

suggested by [12], [13]. By using these optimized reference
trajectories, Mellinger et al. [12] demonstrate dynamical
manoeuvres like passing through a window only a bit wider
than the quadrotor.

The work in this paper has similar elements to [13] in
using an optimization to design the motion controller. There
are however major differences between these two works. The
first and the most important one is that in our proposed
approach, the whole controller is optimized, and not just
the reference trajectories. This allows to design a motion
controller which adapt its disturbance rejection gains with
regard to the requirement of the given task. Furthermore in
[13] the optimization is performed in the space of flat outputs
while here it is in state space. Finally this works tested the
designed controller performance in more challenging tasks.

III. PROBLEM DEFINITION

In order to use iLQG for motion control design, the
model of the quadrotor with a suspended load is derived.
The quadrotor has six degrees of freedom (DOF), but only
four actuators, the rotors. The load, which is modelled as
a point mass, adds another three DOF. If the cable is taut,
the distance r between the quadrotor and the load is fixed,
resulting in a system with four degrees of underactuation.
When there is no tension on the cable, the two bodies are
essentially independent, increasing the degree by one.

A. A Hybrid System

The system at hand consists of a quadrotor with mass mQ

and moment of inertia IQ, from which a load with mass
mL is hung by a massless cable of length Lc as shown in
Fig 2. As the cable can only handle tensile forces along

z
Ie

y
Ie

x
Ie

z
I´e

I´
xe

y
I´e

Lx

O

L

β
γ

I´´
xe

y
I´´eQ

z
I´´e

Qx p

yB
e

z
B

e

Fig. 2: Overview of coordinate description

the direction of the string, this is a hybrid system with two
different system dynamics, referred to as modes. In the first
mode, the cable is taut and transferring a force between load
and quadrotor, while in the second, there is no tension in the
cable and the load is in free fall.

A transition between the system modes happens whenever
the state trajectory intersects with one of the switching
surfaces, denoted by S. The free fall mode is entered as
soon as the tension in the cable is zero, which represents

the switching surface S1. As soon as the load moves away
from the quadrotor and has reached the distance r = Lc

from the center of mass of the quadrotor, represented by
S2, the tension inside the cable is non-zero again, and mode
1 is entered. Using a similar notation as [10], this can be
summarized as
Mode 1) taut cable

Σ1 =

{
ẋ1 = f1(x1,u), x1 /∈ S1
x+
2 = ∆1→2(x−1), x1 ∈ S1

∆1→2 : identity map
S1 = {x1 |Fc = mL (ẍL + g e3) · p ≡ 0}

Mode 2) free fall

Σ2 =

{
ẋ2 = f2(x2,u), x2 /∈ S2
x+
1 = ∆2→1(x−2), x2 ∈ S2

∆2→1 : inelastic collision

S2 = {x2 | |r| = Lc,
d

dt
r > 0}

fi(xi,u) are the nonlinear system dynamics of mode i
with the corresponding state and input vector, ∆i→j denotes
the transition map from mode i to mode j and the exponents
(·)− and (·)+ symbolize the time instances right before and
after the mode switch.

By continuity, the transition map ∆1→2 is simply identity.
The only thing to consider is that the state vector x1 of mode
1 does not contain r, the distance from the center of mass
of the quadrotor to the load, nor ṙ, which are set to r = Lc

and ṙ = 0 when the cable is taut.
To switch from the free fall mode to the model where

the cable is taut, the transition is modelled as an inelastic
collision. The position and orientation of the bodies is
again unaltered by continuity, but since the energy is not
conserved, the velocities will change. The transition map
∆2→1 is obtained by considering the conservation of linear
and angular momentum of the system.

To avoid having to handle changing dimensions during the
swing process, the code was implemented using an extended
system where the variables r and ṙ are also included in the
state of mode 1. The state thus always has dimension 18.

B. The Model

The quadrotor and the load are modelled as a rigid body
and a point mass respectively [10]. A position vector xL or
xQ defines the position of the load or quadrotor respectively.
The relation between the two position vectors is given as

xQ = xL − r · p, (1)

where p is a unit vector pointing from the center of mass of
the quadrotor to the load and r is the distance between the
two. The angles γ, β together with the distance r describe
the location of the quadrotor relative to the load as depicted
in Fig 2. γ and β are introduced such that no discontinuities
or singularities appear around the equilibrium position. The
orientation of the quadrotor with respect to the inertial world
frame I is described by the angles φ, θ, and ψ. Starting in

the inertial frame, φ first rotates around eIx, followed by a
rotation of θ around the new y-axis and then ψ around z.

Neglecting rotor dynamics, each rotor i generates a thrust
Ft,i = kF · ω2

i and a moment Mi = kM · ω2
i , saturated by

ω ∈ [125.7, 816.8] [rad/s]. Unless specified, all the param-
eter values in this paper are taken from [14]. The matrix
for the moment of inertia of the quadrotor in the body-fixed
frame is given as IQ = diag(0.03, 0.03, 0.05) [kgm2]. The
load is a point mass and thus has no moment of inertia.

The inputs to the system are u> = [Fz,Mx,My,Mz],
where Fz is the total thrust, and Mx,My , and Mz the
moments along the corresponding body-fixed axes.

The generalized coordinate vector consists of the elements
listed in Table I. Two model descriptions are used, one using

TABLE I: Generalized coordinates

Symbol Description
xL,xQ Position vector of load and quadrotor in inertial frame
φ, θ, ψ Angles describing the orientation of quadrotor body-fixed

frame with respect to inertial frame
γ, β Angles describing the position of quadrotor with respect to

the load
r Distance from quadrotor to load in direction of p

the load position xL, the other one using the quadrotor
position xQ as a base. The two descriptions are dynamically
equivalent, but since the relation (1) is nonlinear, the different
formulations change the form of the cost function. This will
be discussed in more detail in section IV-A.

C. Optimal Control Algorithm

The iLQG algorithm is an iterative method which returns
a locally optimal linear feedback controller able to work with
arbitrary nonlinear cost functions [15]. In each step of the
iteration, the system is linearized around a nominal trajectory
and a quadratic approximation of the cost is minimized to
obtain a new control input. For more details about the iLQG
algorithm the reader is referred to [15].

The initial trajectory for the iLQG algorithm is generated
using a linear quadratic regulator (LQR) controller. Note that
this only stabilizes the quadrotor at its initial position and
does not introduce any moving trajectory. The equilibrium
state and input vectors around which the LQR solution is
centered are

x>eq = [·, ·, ·, 0, 0, 0, 0, 0, 0, Lc, 0, 0, 0, 0, 0, 0, 0, 0]

u>eq,1 = [(mL +mQ) · g, 0, 0, 0] , if cable taut

u>eq,2 = [mQ · g, 0, 0, 0] , if load in free fall

The first three elements of xeq are arbitrary, since the equi-
librium state is independent of the position of the quadrotor.

D. Cost Function

The general cost function is defined as

J = E
[
h(x(tf))) +

∑tf−1
t=0 l(t,x(t),u(t))

]
(2)

For the examples in this paper, a terminal cost of the form

h(x(tf)) = (x(tf)− xgoal)
>C1(x(tf)− xgoal) (3)

where xgoal is the desired terminal state at the final time
t = tf , and an immediate cost defined as

l(t,x(t),u(t)) = (x̃(t)− xeq)>C2(x̃(t)− xeq)

+ (u(t)− ueq)>C3(u(t)− ueq) + g(t,x,u) (4)

are used. The first two terms in l(t,x,u) are time-
independent and assure the stability of the quadrotor flight,
while g(t,x,u) is an arbitrary, possibly time-varying cost
function defined differently for each task to achieve the
desired goal. C1,C2, and C3 were chosen as diagonal
matrices. For the examples presented in this paper, x̃ is
always the state vector with the quadrotor position and
velocities to penalize the speed of the quadrotor. The time
dependent cost function for the tasks at hand is defined as

C(tp,xp,Wp, ρ) =

(x− xp)
>
Wp (x− xp) ·

√
ρ

2π
e(−

ρ
2 (t−tp)

2) (5)

which penalizes the deviation of the system from a desired
state xp at time tp. The parameter ρ ∈ R defines how precise
the timing has to be. This flexible function is used in different
forms, summarized in Table II. The weight Wp ∈ Rs×s is
usually chosen as a diagonal matrix, where s is the dimension
of xp. For small values of ρ, the cost is spread out over
time without a strong peak, which can be useful for general
waypoint tasks to give the algorithm leeway in choosing the
time when to pass the waypoint. If the quadrotor should
only be at xp for a short time instance, as is the case in
sections IV-B–IV-D, ρ has to be bigger. This strong peak
can lead to a failure of the iLQG procedure, in which case
the cost weights need to be incremented gradually as in
section IV-C.

TABLE II: Different forms of the waypoint cost (5)

Name What it penalizes
Cwp,Q Deviation of quadrotor position from xp, dimension 3
Cwp,L Deviation of load position from xp, dimension 3
Csp,Q Deviation of quadrotor state from xp, dimension 18
Csp,L Deviation of load state from xp, dimension 18

IV. TASKS AND RESULTS
Four tasks as well as their resulting trajectories are

presented here for a system with mQ = 0.5 [kg],
mL = 0.05 [kg], and Lc = 1 [m]. In section IV-A, a sim-
ple waypoint task is solved following points positioned in
a figure-8 pattern. Sections IV-B to IV-D investigate the
learning capabilities for more agile tasks with potential mode
switches. For this, the quadrotor and the load have to move
through a window of width ww and height wh centered at
wpos. The window height is chosen smaller than the cable is
long, forcing the quadrotor to swing up the load to make it
pass through the window. In a first step in section IV-B, the
quadrotor is guided towards a solution by asking the load to
pass first. In section IV-C, this guideline is removed, and the
system needs to find a way on its own. Finally, in section IV-
D, the quadrotor is guided again, but this time, the window
is too narrow for the quadrotor to fly through level.

waypoints

load

quadrotor

p
o

si
ti

o
n

x
[m

]

position y [m]

0 5 10 15

−4

−2

0

2

4

6

Fig. 3: Top view of figure 8 task

For each of the tasks, the initial state is the hovering
state in mode 1, i.e. the load is hanging vertically with
zero velocity and the quadrotor is level. The detailed cost
functions for are listed in the appendix.

A. Figure 8 Task

The quadrotor is required to pass several waypoints ar-
ranged in a figure-8 pattern, forming an “8” when looking
from the “top” onto the xy-plane, but also positioned at
different z coordinates. The waypoints are located at

x>p0 = [0, 0, 0] x>p1 = [4, 4, 2] x>p2 = [0, 8, 4]

x>p3 = [−4, 12, 2] x>p4 = [0, 16, 0] x>p5 = [4, 12,−2]

x>p6 = [0, 8,−4] x>p7 = [−4, 4,−2] x>p8 = [0, 0, 0]

After this path, the quadrotor should move to the goal
position at x>goal = [4, 0, 0]. The time given to move from
one waypoint to the next is 6 [s], and the starting point is
left 5 [s] into the task, resulting in a slight swinging of the
load around the quadrotor trajectory.

The cost function in this task has the general format as
in the equations (3), (4) and (5) (for more details refer to
the appendix). Furthermore, the model with the quadrotor
position and velocity as states is used here. The model
with the load position is also a valid option, but since the
relation (1) is nonlinear, the cost is not quadratic anymore.
The quadratic approximation of the cost can then lead to a
divergence of iLQG if e.g. the time frame is reduced.

The result after only three iterations starting from the
LQR initialization is shown in Fig 3. The convergence of
the algorithm in this case is very fast, as can be seen from
the total cost listed in Table III.

TABLE III: Cost for the figure 8 task

iteration 0 1 2 · · · 10
total cost 259060.11 2899.32 2899.02 · · · 2899.08

B. Guided Window Task

In this task, the quadrotor and the load have to move
through a window of width ww = 0.6Lc and height wh =
0.4Lc centered at wpos. The window height being smaller

cable taut free cable taut

limits quad edges
iteration 5
iteration 3
iteration 1
window

p
o

si
ti

o
n

z
[m

]

position x [m]
−2 0 2 4 6 8

0

0.5

1

1.5

2

2.5

Fig. 4: Side view of the window task for different iterations. The
quadrotor curve is marked with “x”, the load with “o”. The dashed
black lines named limits quad edges are the outermost points of the
quadrotor arms for any time instance. The system mode is displayed
in the bar at the top, the shaded area marking the distance over
which the load is in free fall.

than the cable length, the quadrotor is forced to swing up
the load to make it pass through the window.

The cost function was designed as in (3), and (4) with
g(t,x,u) given in (6).

g(t,x,u) = Csp,L(t1,xwin,Wwin, 14) + . . . (6)
Cwp,Q(t1 + 0.01, wpos, diag(0, 300, 500), 5)

wpos = [4, 0, 2] , t1 = 0.5 · tf
x>win = [wpos(1), wpos(2), wpos(3) + 0.8wh, . . .

0, 0, 0, 0,−0.5π, 0, 8, zeros(1, 8)]

Wwin = diag (5, 5, 4, 0, 0, 0, 10, 0, 0, 1, zeros(1, 8)) · 102

tf = 12 [s], x>0 = [0, 0, 0] , x>end = [8, 0, 0]

The solution is partially guided in this case as the load is
required to pass in front of the quadrotor by the penalty
γ(t1) = −0.5π in xwin. To make sure that the quadrotor
actually moves through the window and does not simply
swing the load in position, ẋ(t1) = 8[m/s] is set. The exact
value being arbitrary, the penalty weight in Wwin for the
velocity needs to be low to only influence the behaviour
without requiring the quadrotor to actually reach that specific
velocity. Since both the load and the quadrotor position
are penalized, there is no clear advantage of using one of
the other formulation. Often, better results were obtained
by taking the formulation of the object for which the cost
function is more restricting. Here, this is the load, since the
precision parameter ρ is higher in the load cost.

Starting from the LQR solution, the first, third and fifth
iteration are displayed in Fig 4.

As one can see, the quadrotor initially focuses on moving
from the starting point x>0 = [0, 0, 0] to the goal at x>f =
[8, 0, 0], but rises first to pass the window. After that, the
cost on the load angle becomes dominant, and the load is
gradually swung up, until both the quadrotor at the load
pass the window in the fifth iteration. Just when passing
the window, the cable tension vanishes and there is a short

(a) Side view

0 18

1

1.5

2

fo
rc
e
[N

]

time [s]

Ft,1

Ft,2 = Ft,4

Ft,3

(b) Rotor thrust with thrust saturation at 0.088 [N] and 3.716 [N]

Fig. 5: Quadrotor passing through window without any penalty to
enforce a method

mode switch, displayed in the bar at the top of Fig 4.

C. Non-Guided Window Task

This first task is promising, but the quadrotor is partially
told how to perform the task through a detailed cost function,
in which the load is told to pass the window in a horizontal
position in front of the quadrotor. Removing the terms for the
cable orientation leads to a more general cost function, but
also a divergence of the iLQG algorithm. The cost terms are
thus added step by step, increasing the weights gradually, a
common approach within the control optimization framework
[16]. For each set of parameters, 5 iterations are performed
with the model using the quadrotor position as coordinates.
The setup of the cost function can be summarized as such:

1) Small penalty asking the load to pass through center of
window, small ρ

2) Increase the penalty on the load
3) Add penalty for quadrotor to pass through window,

increase ρ for the load
4) Require load to be moving when passing the window,

increase position penalties, reduce penalties on veloci-
ties, and add a cost on the load for being close to the
x coordinate of the window

Item 4 is necessary, as the load is only required to pass
through the window, but has no knowledge of the wall the
window is in. If this cost on the window position is omitted,
the load will be swung up “through the wall” before passing
neatly through the window. Note that despite the need to
gradually increase the cost weights, the quadrotor is not told
how to pass the window. The final result is shown in Fig 5.

As becomes visible in Fig 5a, the solution differs from
Fig 4. The quadrotor gently moves in front of the window,
but instead of swinging up the load to fling it through the
window, it only initiates a small swing and rapidly moves
through the opening, pulling the load behind. The input gains

Fig. 6: Quadrotor passing through window at an angle

in Fig 5b are very low, and far from the saturation limits.
Again, a mode switch occurs when passing the window.

D. Narrow Window Task
As a last case, the quadrotor has to pass a window which

not only is not high enough for the cable to be vertical, but is
also too narrow for the quadrotor to fly through horizontally.
A window with ww = 0.45Lc and wh = 0.6Lc is used.
Similar to the first window task, a solution is sought for
which the load passes in front of the quadrotor, using the
model description with the load position as states. An extra
penalty is added to require the quadrotor to pass through
with an angle φ > 0. Fig 6 shows how the task is solved.

Instead of moving straight towards to window, the load is
swung through the window sideways. The movement is such
that no mode switch occurs. Surprisingly, this aggressive
manoeuvre can be initialized with the LQR trajectory directly
Fig 6 if good control weights are chosen.

Videos of the different simulations can be found at
https://www.youtube.com/user/ADRLabETH.

V. CONCLUSIONS
The iLQG method was applied to a hybrid system consist-

ing of a quadrotor with suspended load. In the simulations
presented, the switching between the modes is handled
well by the algorithm, but small stepwise changes of the
penalty weights may be necessary to avoid divergence of
iLQG. The simulations indicate that three main reasons
for iLQG to diverge are immediate costs with either high
peaks, non-quadratic costs, or the violation of the input
saturation bounds. Short saturated control peaks are usually
not problematic, but can destabilize the system if too long
or too frequent. If the initial iLQG iterations are performed
in a simulation where the input saturation can be turned off,
it can help to do so in a first step to get an estimate of how
much the saturation is violated, and adjust the input cost
accordingly. Simply increasing the input penalty C3 often
does not lead to the expected result, and can even lead to
instability, as the quadrotor will focus on minimizing the
input instead of solving the task. If a task requires more
aggressive control, as is the case for the window task, better
results are obtained by penalizing the quadrotor velocity. In
general, this of course also reduces the input applied. Once a
working trajectory is found, the algorithm is far more robust
to changes in the input gain and velocity penalties.

A feasibility criterion however, in particular to know when
a cost function is “too non-quadratic” for iLQG to handle,
is not available and could be the topic of future works.

ACKNOWLEDGEMENT
This research has been funded through a Swiss National Science Foun-

dation Professorship award to Jonas Buchli.

APPENDIX
A. Cost Functions and Weights for the iLQG Tasks

Using the expressions as defined by (3) to (5), the different weights used
are listed below.

1) Figure 8 Task:
C1 = diag (100, 100, 100, 2, 2, 0.1, 1, 1, 0, 50, 50, 50, 2, 2, 0.1, 0.2, 0.2, 0)

C2 = diag (0, 0, 0, 2, 2, 0.5, 1, 1, 0, 50, 50, 50, 2, 2, 2, 1, 1, 0)

C3 = diag (0.5, 0.5, 0.5, 0.5)

g(t,x,u) =
25

8

9∑
i=1

Cwp(ti,xp,i, 100 · diag(1, 1, 1), 4)

with t0 = 5[s], ∆t = 6 [s], and ti = t0 + i ·∆t, i = 0 . . . 8.

2) Guided Window Task: Part of the cost is given in (6). The
weights for the time independent state and control penalty used are

C1 = diag (50, 50, 50, 2, 2, 0.1, 1, 1, 0, 50, 50, 50, 2, 2, 0.1, 0.2, 0.2, 0)

C2 =
1

20
diag (0, 0, 0, 20, 20, 5, 10, 10, 0, 30, 50, 50, 20, 20, 20, 10, 10, 0)

C3 = diag (10, 10, 10, 10)

3) Non-Guided Window Task: For this Task, several sets of
parameters were used. The initial one, applied to the LQR trajectory, was

C1 = diag (100, 100, 100, 2, 2, 0.1, 1, 1, 0, 50, 50, 50, 2, 2, 0.1, 0.2, 0.2, 0)

C2 =
1

10
diag (0, 0, 0, 0, 0, 0, 10, 10, 0, 20, 20, 20, 10, 10, 10, 5, 5, 0)

C3 = diag (0.5, 0.5, 0.5, 0.5)

g(t,x,u) = 0.1 · Csp,L(t1,xwin,Wwin, 10)

w>pos = [4, 0, 1] , t1 = 0.5 · tf
x>win = [wpos(1), wpos(2), wpos(3), . . .

0, 0, 0, 0, 0, 0, 5, zeros(8, 1)]

Wwin = diag (100, 100, 100, zeros(1, 6), 1, zeros(1, 8))

tf = 18 [s], x>0 = [0, 0, 0] , x>end = [8, 0, 0]

After 5 iterations, the cost was changed to

C2 =
1

20
diag (0, 0, 0, 0, 0, 0, 10, 10, 0, 20, 20, 20, 10, 10, 10, 5, 5, 0)

g(t,x,u) = 0.5 · Csp,L(t1,xwin,Wwin, 10)

The changes are marked in red, all the other costs remain the same. After
5 iterations, the cost for the quadrotor was added as

g(t,x,u) = 0.5 · Csp,L(t1,xwin,Wwin, 40) + . . .

0.5 · Cwp,Q(t1,xwQ,WwQ, 5)

x>wQ = [0, wpos(2), wpos(3) + 0.5wh]

WwQ = diag(0, 50, 50)

Getting closer to the solution, the cost for the quadrotor can now be
weighted more heavily, and a negative cost is added to prevent the load
from crashing into the wall.

C2 =
1

20
diag (0, 0, 0, 0, 0, 0, 10, 10, 0, 5, 20, 20, 10, 10, 10, 5, 5, 0)

x>win = [wpos(1), wpos(2), wpos(3), zeros(6, 1), 5, zeros(8, 1)]

g(t,x,u) = 0.5 · Csp,L(t1,xwin,Wwin, 40) + . . .

5 · Cwp,Q(t1,xwQ,WwQ, 5)− . . .
4 · Cwp,L(t1, wpos, diag(10, 0, 0), 30)

4) Narrow Window Task: Parameters applied to LQR trajectory

C1 = diag (50, 50, 50, 2, 2, 0.1, 1, 1, 0, 50, 50, 50, 2, 2, 0.1, 0.2, 0.2, 0)

C2 =
1

20
diag (0, 0, 0, 20, 20, 5, 10, 10, 0, 15, 15, 40, 10, 10, 10, 10, 10, 0)

C3 = diag (7.8, 7.8, 7.8, 7.8)

g(t,x,u) = 0.04 · Csp,L(t1,xwL,WwL, 25) + . . .

0.1 · Csp,Q(t1 + 0.125,xwQ,WwQ, 10)

x>wL = [wpos(1), wpos(2)− 0.2, wpos(3)− 0.35wh, . . .

0, 0, 0, 0,−π
2
, 0, 8, zeros(8, 1)

]
x>wQ = [wpos(1), wpos(2)− 0.1, wpos(3)− 0.25wh, . . .

0.5π, 0, 0, 0, 0, 0, zeros(9, 1)]

w>pos = [4, 0, 2] , t1 = 0.35 · tf
WwL = diag (350, 650, 650, 0, 0, 0, 0, 1000, 0, 50, zeros(1, 8))

WwQ = diag (10, 600, 600, 1000, 0, 0, zeros(1, 12))

tf = 22 [s], x>0 = [0, 0, 0] , x>end = [12, 0, 0]

REFERENCES

[1] F. Farshidian, N. Neunert, and J. Buchli, “Learning of closed-loop
motion control,” 2014, in print: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

[2] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar, “Design, mod-
eling, estimation and control for aerial grasping and manipulation,” in
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, 2011.

[3] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia, “Learning swing-
free trajectories for uavs with a suspended load,” in Robotics and
Automation (ICRA), 2013 IEEE International Conference on, 2013.

[4] I. Palunko, R. Fierro, and P. Cruz, “Trajectory generation for swing-
free maneuvers of a quadrotor with suspended payload: A dynamic
programming approach,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on, 2012.

[5] I. Palunko, P. Cruz, and R. Fierro, “Agile load transportation : Safe and
efficient load manipulation with aerial robots,” Robotics Automation
Magazine, IEEE, vol. 19, 2012.

[6] J. Schultz and T. Murphey, “Trajectory generation for underactuated
control of a suspended mass,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on, 2012.

[7] G. Starr, J. Wood, and R. Lumia, “Rapid transport of suspended
payloads,” in Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on, 2005.

[8] D. Zameroski, G. Starr, J. Wood, and R. Lumia, “Rapid swing-free
transport of nonlinear payloads using dynamic programming,” Journal
of Dynamic Systems, Measurement, and Control, vol. 130, 2008.

[9] I. Palunko, A. Faust, P. Cruz, L. Tapia, and R. Fierro, “A reinforcement
learning approach towards autonomous suspended load manipulation
using aerial robots,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on, 2013.

[10] K. Sreenath, N. Michael, and V. Kumar, “Trajectory generation and
control of a quadrotor with a cable-suspended load - a differentially-
flat hybrid system,” in Robotics and Automation (ICRA), 2013 IEEE
International Conference on, 2013.

[11] K. Sreenath and V. Kumar, “Dynamics, control and planning for coop-
erative manipulation of payloads suspended by cables from multiple
quadrotor robots,” in Robotics: Science and Systems (RSS), 2013.

[12] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,” The
International Journal of Robotics Research, vol. 31, 2012.

[13] S. Tang, “Aggressive maneuvering of a quadrotor with a
cable-suspended payload,” Ph.D. qualifiers report, University
of Pennsylvania Philadelphia, PA, 2014. [Online]. Available:
http://www.seas.upenn.edu/∼sytang/docs/2014QualifierReport.pdf

[14] D. Mellinger, M. Shomin, and V. Kumar, “Control of quadrotors for
robust perching and landing,” in Proc. Int. Powered Lift Conf, 2010.

[15] E. Todorov and W. Li, “A generalized iterative lqg method for locally-
optimal feedback controlof constrained nonlinear stochastic systems,”
in IEEE, American Control Conference, 2005., 2005.

[16] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex be-
haviors through contact-invariant optimization,” ACM Trans. Graph.,
vol. 31, no. 4, pp. 43:1–43:8, 2012.

