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Abstract—Molecular replacement (MR) is a well-established
computational method for phasing in macromolecular crys-
tallography. In MR searches, spaces of motions are explored
for determining the appropriate placement of rigid single-body
(or articulated multi-rigid-body) models of macromolecules in
crystallographic asymmetric units. This paper investigates which
portion of the motion space is physically realizable given that
packing of protein molecules in a crystal are subject to the
constraint that they cannot interpenetrate. This imposes severe
restrictions on which points in the motion space are accessible. By
determining a priori which portions of motion space correspond
to symmetry mates in collision, it becomes feasible to construct
more efficient MR techniques which avoid searching in those
regions of motion space.

I. INTRODUCTION

Imagine an ideal crystal composed of an infinite number
of identical copies of a solid body. Although a true crystal
is always finite in its extent, it consists of such a large
number of copies that the idealization does not introduce
too much discrepancy from the reality. With knowledge of
the shape and pose (position and orientation) of one of the
bodies in the crystal, and knowledge of the crystallographic
symmetry group, it is possible to reconstruct the whole crystal.
This is essentially the situation that arises in macromolecular
crystallography (MX), where the solid body may be a protein,
nucleic acid, or complex composed of both. And information
about the crystal symmetry is provided by an x-ray diffraction
experiment.

This symmetry information, together with prior information
about the shape of the bodies obtained from the Protein Data
Bank (PDB) [1], can be used to assist in solving the so-
called “phase problem” in x-ray crystallography in a purely
computational way using a modified version of the method
of molecular replacement (MR) [14, 15]. In so doing, it
becomes feasible to phase large biomolecular structures that
currently require expensive experimental methods. The one
piece of information that is missing is how to find viable
candidate poses efficiently. This is the subject of this paper. By
excluding at the beginning of an MR search those poses corre-
sponding to configurations that put the bodies in nonphysical
collisions/overlaps, MR searches can be made more efficient.
This reduces MR searches to a problem of characterizing c-
space (configuration space) obstacles corresponding to bodies

colliding with their symmetry mates (i.e., bodies that move in a
concerted way subject to symmetry constraints), and sampling
only in the collision-free regions of c-space. This is somewhat
different than traditional robot motion planning problems in
which there are static obstacles and moving robots. The robot
analogy in the MR problem would be more akin to the
coordination of multiple robots moving in formation, with c-
space obstacles describing when members of the formation
collide with each other.

The infinite number of bodies that fill Euclidean space in
an ideal crystal form a highly symmetrical pattern described
by a crystallographic space group. For simple (inorganic)
molecules, the number of allowable space groups is quite
large. But for macromolecules, which are chiral (i.e., they
have handedness), far fewer symmetries are allowed, since
mirror reflections and glide planes are not possible. For this
reason, there are only five planar crystallographic groups for
which patterns composed of solid planar bodies can exist (out
of a total of 17 planar wallpaper groups), and only 65 are
allowable in the spatial case (out of 230). Figure 1 shows
three configurations of a planar footprint pattern generated
using the free iphone app “Eschermobile” developed by [13].
These figures all have the same wallpaper group symmetry,

(a) (b) (c)
Fig. 1. Three configurations of solid bodies with p2 symmetry

called p2, but differ by translational degrees of freedom. It
is also possible to construct configurations with p2 symmetry
for which each solid body rotates in concert with each other.
In Figures 1(a) and (b) the bodies are not in collision, but
in Figure 1(c) the bodies are in collision. Obviously, if these
bodies were physical, such collisions would not be allowed.
Figure 2 shows two configurations of the footprint pattern with
p3 symmetry. In Figure 2(a) the bodies are not in collision,



while in Figure 2(b) the bodies are in collision. In all of these

(a) (b)
Fig. 2. Two configurations of solid bodies with p3 symmetry

figures, the parallelogram in the middle is the crystallographic
unit cell, which can be viewed as a tile that reproduces the
whole infinite crystal under the action of a discrete lattice
translation group.

This paper characterizes the subset of motions that will
cause bodies to collide with their symmetry mates. In so
doing, the complement of this space, the free space, is
naturally characterized. These results are directly applicable
to accelerate MR searches by eliminating collision states.
Section II formulates the general problem in n-dimensional
space and shows how the collision space for an infinite crystal
corresponds to when several coordinated bodies moving in a
torus overlap.

Section III works out the details for the planar case, and it
is shown that the resulting c-space obstacles can be charac-
terized as Minkowski sums in the torus. Equations (11)–(12)
describe the collision space in the crystallographic unit cell;
alternatively, equation (13) describes the collision space in the
torus. Equation (13) is applied to give specific formulas for
the collision space for crystals with p2 symmetry and with
p3 symmetry, and the results are demonstrated with elliptical
bodies in Section IV. The p4 and p6 cases, as well as some
3D cases will be given in a future paper.

In the remainder of this section, the mathematical aspects
of the MR problem are reviewed. The glossary of symbols
below describes the terminology used throughout the paper.

Glossary:

X - n-dimensional Euclidean space, Rn.
R ∈ SO(n) - an n × n orthogonal matrix with determinant
1, i.e., R is a rotation matrix.
R(θ) ∈ SO(2) - rotation in R2 by an angle θ.
t,x ∈ X - an n-dimensional translation vector or position on
which this translation acts by vector addition.
g = (R, t) ∈ SE(n) - a special-Euclidean transformation
(i.e., a proper rigid-body motion). Mathematically,
SE(n) = Rn o SO(n) (a semi-direct product) which
acts on positions as g · x = Rx + t .
G - shorthand for SE(n).
γ = (Rγ , tγ) ∈ Γ - an element of a chiral crystallographic
space group (discrete subgroup of G that contains a lattice of
translations of rank n).

L - a lattice in X of rank n.
T - the lattice translation subgroup of Γ, consisting of
elements identified with the set L; T is the maximal normal
Abelian subgroup of Γ.
T\X - an n-dimensional torus.
FT\X - the crystallographic unit cell.
P = {Rγ ∈ SO(n) : ∃ tγ ∈ X such that (Rγ , tγ) ∈ Γ} (a
discrete rotation group, called the point group; P ∼= T\Γ; in
the symmorphic case, P = {R ∈ SO(n) : (R,0) ∈ Γ}.
tγ ∈ T - a lattice translation such that tγ · L = L.
v(Rγ) - a translation along a screw axis by a fraction of a unit
cell dimension defined for Rγ ∈ P as an element v(Rγ) ∈ X
(uniquely given modulo T ) such that (Rγ ,v(Rγ)) ∈ Γ.
(Mathematically, the map v : P → T\X yields an
element [v] of the cohomology group H1(P, T\X), and the
correspondence Γ 7→ [v] is a bijection between translation-
conjugacy classes of crystallographic groups with point group
P. (See [10])
FΓ\X - the crystallographic asymmetric unit (a fundamental
domain for Γ acting on X , i.e., a tile which, under the action
of Γ, fills Euclidean space, X , without gaps or overlaps of
positive measure, as computed in [12] in the planar case and
in [8] in 3D); The space Γ\X itself is called a Euclidean
orbifold [7].
FΓ\G - the smallest finite-volume space of rotations and
translations in which molecular replacement searches need to
be performed; This is a “tile” which fills G without gaps or
overlaps of positive measure under the action of Γ.
B1 +B2 - the Minkowski sum of two bodies B1,B2 in X .
B̃1 � B̃2 - the Minkowski sum of B̃1, B̃2 in T\X regarded
as an Abelian group.
Vn(B) - the volume of an n-dimensional body B ⊂ X .
ρX = ρBX : X → {0, 1} - the indicator function for a body
B ⊂ X (which takes a value of 1 on the body, and zero
otherwise).
ρΓ\X = ρBΓ\X : Γ\X → Z≥0 - the density function for a
crystal composed of bodies γ ·B with density

∑
γ∈Γ ρX ◦γ−1.

(The density ρΓ\X is an indicator function if the bodies do
not collide.)

MR is a computational method to phase macromolecular
crystals that has been in use for more than half a century
[15]. We briefly review the mathematical formulation of this
method.

Let X = Rn, n-dimensional Euclidean space, where of
course the most practical case is n = 3. The inputs to
MR computations are then: (1) the electron density, ρX(x),
(normalized to take the value 1 on the body) of a known
rigid macromolecule (or fragment thereof) called the reference
molecule; and (2) the symmetry group of the crystal, Γ, which



is a discrete subgroup of G = SE(n), the (continuous) Lie
group of proper motions of rigid-bodies in n-dimensional
Euclidean space. The group operation for G and Γ is denoted
as “◦”, and their action on Euclidean space is denoted as “ · ”.

The reference molecule should be similar in structure to the
one to be determined in order for the MR method to work.
Such knowledge for proteins may come from prior knowledge
of the similarity of the amino acid sequences of the reference
and actual molecules, and the many tens of thousands of
existing structures in the Protein Data Bank (PDB) [1].

In MR, the goal is to position and orient copies of the elec-
tron densities of the reference molecule in the crystallographic
unit cell by some g ∈ G to form a model density of the form

ρΓ\X(x; g) =
∑
γ∈Γ

ρX
(
(γ ◦ g)−1 · x

)
. (1)

(This can be viewed as a function of x indexed by g.) The
density function ρX(x), takes a nonnegative value on the
reference molecule and a zero value away from it.

Suppose that all of the dimensions of the reference molecule
are smaller than all of the dimensions of the fundamental
domain FΓ\X ⊂ X , which is identified with the asymmetric
unit of the crystal. Then if the reference frame in which ρX(x)
is defined is centered at the origin of X , and FΓ\X is defined
to have its origin at the origin of X , and if g is a small
motion, the body will still be fully contained in FΓ\X . In
such a circumstance, the sum in (1) will only have nonzero
contribution from γ = e.

For each fixed g ∈ G, ρΓ\X(x; g) can be viewed either as
a function on the asymmetric unit FΓ\X , or as function on
the unit cell FT\X . In the latter case, the function will have
symmetry within the unit cell described by the finite factor
group F = FT\Γ = FΓ/T . Here and throughout this paper,
FA\B ⊂ B denotes a fundamental domain from which the
space B can be tiled or reconstructed by the left action of the
group A on FA\B .

As established in [5], all candidate positions and orientations
(called “poses”), g ∈ G, can be chosen without loss of
generality to be of the form g ∈ FΓ\G, or equivalently, each
g can be viewed as a distinguished representative of the coset
Γg ∈ Γ\G. These candidate poses can be evaluated and ranked
according to the value of a cost function such as

C(g) =
∑

k∈F(T \X )

(
|ρ̂Γ\X(k; g)| − P̂ (k)

)2

(2)

where ρ̂ is the Fourier transform of ρ, and F(T\X) ∼= Zn is
the unitary dual of (Fourier space corresponding to) T\X .

The main goal of molecular replacement is to obtain a list
of physically realizable candidate poses {g} rank-ordered by
the value of C(g). To this end, this paper seeks to characterize
the set of all g ∈ FΓ\G when reference molecules and their
symmetry mates are in collision, in order that such regions of
motion space can be circumvented in MR searches, thereby
speeding up computations.

II. ROOM-TO-MOVE FOR BODIES IN CRYSTALLOGRAPHIC
ENVIRONMENTS

Let L ⊂ X = Rn denote a lattice. The corresponding lattice
translation group is T = L o {I} where I ∈ SO(n) is the
identity rotation. The distinction between T and (L,+) is often
blurred, but it is T defined in this way which forms a normal
subgroup of any crystallographic space group, Γ, with Bravais
lattice L.

Let dg denote the bi-invariant integration measure for G =
SE(n), the group of rigid-body motions in n-dimensional
Euclidean space. This provides a proper way to integrate on
the motion space FΓ\G ⊂ G.

As discussed in [6], we can take

FΓ\G = FΓ\X × SO(n).

The action of any g ∈ FΓ\G on any x ∈ FΓ\X will in general
not produce a result that is in FΓ\X . But, as discussed in [5], it
is always possible to find a γ ∈ Γ such that γ ◦ g ·x ∈ FΓ\X
and this “equivalent point in FΓ\X can be thought of as a
“quasigroup action.”

Let B ⊂ FΓ\X denote an open set (i.e., a “body without
boundary”) that can be fully contained in the chosen crystal-
lographic asymmetric unit. In particular, let

δ = min{ ‖tγ‖ : tγ ∈ L r {0} } . (3)

(Here “r” denotes the difference of sets.) We shall restrict the
discussion to bodies with sizes limited by the condition

diam(B)
.
= max

x1,x2∈B
‖x1 − x2‖ ≤ cΓ δ (4)

where 0 < cΓ < 1 is a fraction depending only on Γ.
Let

S =

g ∈ FΓ\G : (g ·B) ∩
⋃

γ∈Γr{e}

(γ ◦ g) ·B 6= ∅

 ,

(5)
where e denotes the identity in Γ. This set corresponds to
all motions g = (R, t) ∈ FΓ\G of the body B so that the
resulting body g · B will collide with (intersect) at least one
of its symmetry mates (γ ◦ g) ·B. As we shall see below, we
only need to consider finitely many of the γ in (5), as the
rest are redundant. This condition is equivalent to the motion
g causing a collision between any two symmetry mates, since
(γ1 ◦ g) ·B ∩ (γ2 ◦ g) ·B = γ1 ·

[
(g ·B) ∩ (γ−1

1 ◦ γ2 ◦ g) ·B
]
.

Our goal is to compute the collision probability

Probc(B)
.
=

vol(S)

vol(FΓ\G)
, (6)

where vol denotes invariant volume on G. We shall instead
consider the crystallographic unit cell (fundamental domain)
FT\X in X and the corresponding fundamental domain
FT\G = FT\X × SO(n) in G, and we let

S∗ =

g ∈ FT\G : (g ·B) ∩
⋃

γ∈Γr{e}

(γ ◦ g) ·B 6= ∅

 .



Since the unit cell, FT\X , consists of k copies of the asym-
metric unit, FΓ\X , where k is the order of the finite group
T\Γ, and correspondingly, S∗ consists of k copies of S, we
have

Probc(B) =
vol(S∗)

vol(FT\G)
. (7)

It appears that the problem of computing Probc(B) in
(7) has not been studied either in the mathematics or the
crystallography literature. The closest work to this that we
are aware of originates in the field of integral geometry and
geometric probability. In this field, the so-called Principal
Kinematic Formula computes the volume in G corresponding
to collisions of one moving body and one fixed body (both
convex) [2, 4, 11, 16, 17, 18]. Some work has generalized
this to the case when the bodies are in a homogenous space
other than Euclidean space [3] or when instead of a single
fixed body, a periodic array of fixed bodies is present [19].
But neither of these works apply directly to our problem.

Fix the orientation R ∈ SO(n) of the moving version of
body B, and define

BR
.
= R ·B = {Rx : x ∈ B}.

Then let
S∗R = {t ∈ FT\X : (R, t) ∈ S∗}.

Note that any γ ∈ Γ can be written as γ = (Rγ , tγ + v(Rγ))
where Rγ ∈ P, tγ ∈ T ; only in the symmorphic case is
v(Rγ) = 0 for all values of Rγ . Suppose that t ∈ FT\X .
Then

t ∈ S∗R ⇐⇒ ∃a,b ∈ BR, γ ∈ Γ r {e}

such that

a + t = Rγ(b + t) + tγ + v(Rγ). (8)

This can be rearranged as

(I−Rγ)t = Rγb− a + tγ + v(Rγ). (9)

In particular, in (5) we only need to consider finitely many
γ ∈ Γ; e.g., those γ satisfying the bound

‖tγ‖ ≤ ‖t‖+ ‖Rγt‖+ ‖Rγb‖+ ‖a‖+ ‖v(Rγ)‖
≤ 5 supt∈FT\X ‖t‖ .

III. CHARACTERIZATION OF COLLISION SPACE FOR THE
PLANAR CASE

In the planar, n = 2, case, Rγ 6= I never has unit eigenval-
ues because the identity point-group rotation was chosen for
BR, and all other symmetry mates that can possibly intersect
BR have nontrivial point rotations as a result of the condition
in (4). And since all chiral space groups in the plane are
symmorphic, it is possible to write (9) as

t = (I−Rγ)−1(Rγb− a + tγ). (10)

Suppose that diam(B) < δ. We let

B′γ = (I−Rγ)−1 [(RγB) + (−B)] . (11)

where B1 +B2 denotes the Minkowski sum of bodies B1 and
B2, RγB = {Rγ b : b ∈ B} and −B = (−1)B. Then

S∗R = FT\X ∩
⋃

Rγ∈P∗

{
(I−Rγ)−1L +RB′γ

}
(12)

where R = R(θ) is an arbitrary planar rotation.
We let p : X → T\X denote the (universal) covering map

given by
p(x)

.
= T · x = L + x ∈ T\X .

(Here, T ·x denotes the T -orbit of x, which is identical to the
coset L + x in the Abelian group X .) Since the point group
leaves L invariant, we have RγL = L, and therefore for all
tγ ∈ L,

(I−Rγ)−1L+tγ = (I−Rγ)−1[L+tγ−Rγtγ ] = (I−Rγ)−1L.

Therefore the sets (I − Rγ)−1L + RB′γ are invariant under
the action of T , and it follows that we can identify S∗R with
its image

S̃∗R
.
=

⋃
Rγ∈Pr{I}

{
p([I−Rγ ]−1L)�p(RB′γ)

}
⊂ T\X , (13)

where the denotes the Minkowski sum of two sets Q1, Q2 ⊂
T\X is given by

Q1 �Q2 = {q1 + q2 modT : q1 ∈ Q1, q2 ∈ Q2}.

In particular,

V2(S∗R) = V2(S̃∗R) . (14)

For each Rγ ∈ P∗, we let nγ denote the number of distinct
points of the form p([I − Rγ ]−1tγ) ∈ T\X , where tγ runs
through the points of the lattice L, i.e.,

nγ
.
= #

{
p([I−Rγ ]−1L)

}
.

Thus the collision probabilities Probc(B) depend on the
areas of B′γ and the cardinalities nγ . We shall determine the
sets p([I − Rγ ]−1L) and their cardinalities nγ explicitly and
compute Probc(B) for the four chiral cases separately.

Remark: The numbers nγ can also be obtained from the
Lefschetz fixed point formula, as follows: We note that
p([I−Rγ ]−1L) is the fixed point set of Rγ acting on X\T , and
each fixed point has index 1 (since Rγ is a rotation about the
fixed point). Identifying L with H1(T\X,Z) via the covering
map X → T\X , we see that the action of Rγ on H1(T\X,Z)
is just the action of Rγ on L. Therefore,

nγ = 1− Trace
[
Rγ∗ : H1(T\X,Z)→ H1(T\X,Z)

]
+ 1

= 2− Trace(Rγ) = 2− 2 cosα ,

where Rγ is a rotation by the angle α. Note that α is always
a multiple of either π/2 or π/3, and thus nγ takes the values
1, 2, 3, or 4, depending on the symmetry.



A. p2 symmetry.

In this case, P = {I,−I} and L is arbitrary. If the diameter
of B is less than the minimum distance δ between points of
L, then B cannot collide with its translates, and we need only
to consider symmetries γ with Rγ = −I. Then (13) becomes

S̃∗R = p
(

1
2 L
)
� p

(
RB′γ

)
, (15)

where
B′γ = − 1

2 (B +B).

Furthermore, p( 1
2L) consists of exactly 4 points:

α1
.
= p(0), α2

.
= p( 1

2v1),

α3
.
= p( 1

2v2), α4
.
= p( 1

2v1 + 1
2v2),

where {v1,v2} generates L.
Now suppose that diam(B) ≤ 1

2δ. Then for distinct points
tγ , tγ′ ∈ L,

diam(RB′γ) = diam
[

1
2 (B +B)

]
= diam(B) ≤

∥∥ 1
2tγ −

1
2tγ′

∥∥ ,
(16)

and the bodies RB′γ+ 1
2tγ and RB′γ+ 1

2tγ′ are disjoint. Thus

S̃∗R =

4⊔
j=1

[
p(RB′γ) � αj

]
, (17)

where
⊔

denotes a disjoint union.
Therefore

V2(S∗R) = V2

(
S̃∗R

)
= 4V2

(
B′γ
)

= V2(B +B) . (18)

Since (18) is independent of the rotation R, it then follows
from (7) that the collision probability for p2 symmetry is given
by

Pc(B) =
V2(B +B)

V2(FT\X)
, for diam(B) ≤ 1

2δ. (19)

Note that if B is convex, then B + B = 2B and Pc(B) =
4V2(B)/V2(FT\X).

B. p3 symmetry.

In this case, P ≡ {I, R(ϕ), R(2ϕ)}, where ϕ = 2π/3, and
we can assume that the lattice L is generated by {δ u1, δ u2},
where u1 = (1, 0) and u2 = (− 1

2 ,
√

3
2 ), for some δ > 0.

Recalling (3), we again suppose that diam(B) ≤ δ, so that
B does not intersect its translates.

We note that we only need to consider symmetries γ =
(Rγ , tγ) with Rγ = R(ϕ) in (5). Indeed, suppose that γ′ =
(R(2φ), tγ′). If g·B intersects (γ′◦g)·B = R(2ϕ)(g·B)+tγ′ ,
then R(ϕ)(g ·B) intersects g ·B +R(ϕ)tγ′ , and hence g ·B
intersects R(ϕ)BR + tγ , where tγ = −R(ϕ)tγ′ . Here, we
used the fact that R(ϕ)L = L. Therefore, we only need to
consider Rγ = R(ϕ) in (13), which becomes

S̃∗R = p([I−R(ϕ)]−1L) � p(RB′γ). (20)

We easily see that nR(ϕ) = 3 and

p([I−R(ϕ)]−1L) = {p(0), p(w1), p(w2)}
= {p(0), p(w1), p(−w1)} ,

where w1 = (0,
√

3
3 δ), w2 = ( 1

2δ,
√

3
6 δ).

We note that

B′γ = [R (ϕ)− I]−1
[
B +R

(
−π

3

)
B
]
,

and therefore

diam(RB′γ) =
1√
3

diam
[
B +R

(π
3

)
B
]
≤ 2√

3
δ,

and for all distinct points tγ 6= tγ′ ∈ L,

‖(I−R(ϕ))−1tγ − (I−R(ϕ))−1tγ′‖ ≥
δ√
3
.

It follows as before that if diam(B) ≤ δ/2 , then

S̃∗R =

2⊔
j=0

[
p(RB′γ) �wj

]
, (21)

where w0 = 0, and w1,w2 are as above. Therefore

V2

(
S̃∗R

)
= 3V2

(
B′γ
)

= V2

[
B +R

(π
3

)
B
]
. (22)

Since (22) is independent of the rotation R = R(θ), we con-
clude as before that the collision probability for p3 symmetry
is given by

Pc(B) =
V2

[
B +R

(
π
3

)
B
]

V2(FT\X)
, for diam(B) ≤ 1

2
δ. (23)

IV. DEMONSTRATION WITH ELLIPTICAL BODIES

In this section we demonstrate formulas (19) and (23) for
the case of elliptical bodies that satisfy the size restrictions
imposed in the derivations leading to these equations. Consider
a p2 unit cell that is a unit square. Then V2(FT\X) = 1.
Then, for bodies satisfying the diameter condition diam(B) ≤
1/2, formula (19) will hold. In particular, if B is an elliptical
disk with semi-axis lengths a, b ≤ 1/4, then V2(B + B) =
4V2(B) = 4πab. In the limiting case when a = b = 1/4, this
means that π/4 of the unit volume, or more than 78 percent of
the MR search space, need not be searched because we know
a priori that it will lead to collision. Moreover, we know the
shape of the regions that contribute to this volume and their
location, and so search algorithms can be constructed to avoid
them.

In the case of p3, let the unit cell be the one with the
distance between neighboring lattice points be unity. Then
the volume of the unit cell will be equal to that of two
equilateral triangles with side lengths equal to unity. Then
V2(FT\X) =

√
3/2. The diameter condition under which (23)

holds is diam(B) ≤ 1/2. If we choose B to be an ellipse
with semi-axis lengths a, b ≤ 1/4, then (23) can be used
together with the results in [20] to compute in closed form the
volume of the resulting Minkowski sum, as well as parametric
descriptions of the curves that bound these regions. In the
limiting case when a = b = 1/4, (23) gives

Pc(B) =
π/4√
3/2

=
π

2
√

3
,

which means that more than 90% of the MR search space need
not be searched.



V. CONCLUSIONS

The subset of a motion space corresponding to collision-free
motions of rigid models of macromolecular structures has been
analyzed. Methods from integral geometry in Euclidean space
have been combined with new formulas specific to motion
spaces to both parameterize free space, as well as to quantify
the amount of free space to translate when a test molecule
is oriented in a specific way. The details for two of the five
planar crystallographic (wallpaper) groups were worked out.
Other planar cases and the 65 spatial cases will be worked
out in the future. By partitioning a motion space into feasible
and infeasible regions, MR searches can be limited to only
the feasible regions, the volume of which can be small in
comparison to the volume of the whole motion space.
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[16] Santaló, L., Integral Geometry and Geometric Prob-
ability, Cambridge University Press, 2004 (originally
published in 1976 by Addison-Wesley)

[17] Schneider, R., “Kinematic measures for sets of colliding
convex bodies,” Mathematika 25, 1-12, 1978.

[18] Schneider, R., Weil, W., Stochastic and Integral Geome-
try, Springer-Verlag, Berlin, 2008.

[19] Trandafir, R., “Problems of integral geometry of lat-
tices in an Euclidean space E3,” Bollettino dell’Unione
Matematica Italiana, 22(2), 1967.

[20] Yan, Y., Chirikjian, G.S., “Closed-form characterization
of the Minkowski sum and difference of two ellipsoids,”
Geometriae Dedicata (to appear)


	Introduction
	Room-to-Move for Bodies in Crystallographic Environments
	Characterization of Collision Space for the Planar Case
	p2 symmetry.
	p3 symmetry.

	Demonstration with Elliptical Bodies
	Conclusions

