
CS 357: Declarative Programming
Homework 2

1. Exercises 4.4, 4.6, 4.10, 4.11, 4.18, 4.19, 4.20 from Springer and Friedman.

2. Write a function, calculator, which takes an infix arithmetic expression and evaluates it. For
example,

> (calculator 42)
42
> (calculator ’(1 + 2))
3
> (calculator ’(1 + (2 * 8)))
17
> (calculator ’((((2 + 3) * 2) / 5) + (17 - 1))
18

You may assume that all sub-expressions are parenthesized so that you don’t need to worry
about precedence. Also, you need only implement the four basic arithmetic functions,
namely, plus, minus, times and divide.

3. Write a function, infix->prefix, which takes an infix arithmetic expression and returns the
corresponding prefix expression.

> (infix->prefix 42)
42
> (infix->prefix ’(1 + 2))
(+ 1 2)
> (infix->prefix ’(1 + (2 * 8)))
(+ 1 (* 2 8))
> (infix->prefix ’((((2 + 3) * 2) / 5) + (17 - 1))
(+ (/ (* (+ 2 3) 2) 5) (- 17 1))

4. Define a function iota-iota that takes an integer i as its argument and returns a list of pairs of
integers such that

> (iota-iota 1)
((1 . 1))
> (iota-iota 2)
((1 . 1) (1 . 2) (2 . 1) (2 .2))
> (iota-iota 3)
((1 . 1) (1 . 2) (1 . 3) (2 . 1) (2 . 2) (2 . 3)
(3 . 1) (3 . 2) (3 . 3))



All helper functions should be tail-recursive and should be defined within the body of iota-
iota using letrec.

5. Define a tail-recursive function digits->number that takes a list of digits and returns the
number represented by those digits. For example,

> (digits->number ’(7 6 1 5))
7615

Any helper functions you need should be defined within the body of digits->number using
letrec.

6. Write a function, cond->if, which takes a cond expression, and transforms it into a set of
nested i f expressions. For example,

> (cond->if ’(cond ((> x y) (- x y)) ((< x y) (- y x)) (else 0)))
(if (> x y) (- x y) (if (< x y) (- y x) 0))
>

7. Write a tail-recursive function, cos, which takes a number, x, as its argument and returns
cos(x). Your function should approximate cos(x) by summing the first 100 terms of the
following Taylor series:

cos(x) =
x0

0!
− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− . . .

Any helper functions you need should be defined within the body of sin using letrec. Note:
There is a good way and a bad way to do this. The good way avoids computing the factorial
and the power of x which appear in each term in the series from scratch each time. In other
words, do not use or define fact or expt.


