
CS 357: Declarative Programming
Homework 3

Part I
Exercises 7.2, 7.3, 7.6, 7.7, 7.8, 7.12, 7.18, 7.22, 7.30, 7.31

Part II
1. Consider the following three examples:

;; Example 1
(define fact

(lambda (x)
(letrec

((loop
(lambda (x acc)
(if (= x 0)
acc
(loop (sub1 x) (* x acc))))))

(loop x 1))))

;; Example 2
(define reverse

(lambda (x)
(letrec

((loop
(lambda (x acc)
(if (null? x)
acc
(loop (cdr x) (cons (car x) acc))))))

(loop x ’()))))

;; Example 3
(define iota

(lambda (x)
(letrec

((loop
(lambda (x acc)
(if (= x 0)
acc

1



(loop (sub1 x) (cons x acc))))))
(loop x ’()))))

The higher-order function tail-recur takes the following arguments

• bpred - a function of x which returns true if the terminating condition is satisfied and
false otherwise

• xproc - a function of x which updates x

• aproc - a function of x and acc which updates acc

• acc0 - an initial value for acc

and returns a tail recursive function of x. It can be used to write the function, factorial as
follows:

> (define fact (tail-recur zero? sub1 * 1))
> (fact 10)
3628800

(a) Give a definition for tail-recur.

(b) Use tail-recur to define reverse.

(c) Use tail-recur to define iota.

2. Write a function, disjunction2, which takes two predicates as arguments and returns the
predicate which returns #t if either predicate does not return #f. For example:

> ((disjunction2 symbol? procedure?) +)
#t
> ((disjunction2 symbol? procedure?) (quote +))
#t
> (filter (disjunction2 even? (lambda (x) (< x 4))) (iota 8))
(1 2 3 4 6 8)
>

3. Now write disjunction, which takes an arbitrary number (> 0) of predicates as arguments.

4. A matrix,
[

1 2
3 4

]
, can be represented in Scheme as a list of lists: ((1 2) (3 4)). Without

using recursion, write a function, matrix-map, which takes a function, f , and a matrix, A,
as arguments and returns the matrix, B, consisting of f applied to the elements of A, i.e.,
Bi j = f (Ai j).

> (matrix-map (lambda (x) (* x x)) ’((1 2) (3 4)))
((1 4) (9 16))

2



5. Consider the following defnition for fold (called flat-recur in your text):

(define fold
(lambda (seed proc)

(letrec
((pattern
(lambda (ls)
(if (null? ls)

seed
(proc (car ls)

(pattern (cdr ls)))))))
pattern)))

(a) Use fold to write a function delete-duplicates which deletes all duplicate items from a
list. For example,

> (delete-duplicates ’(a b a b a b a b))
(a b)
> (delete-duplicates ’(1 2 3 4))
(1 2 3 4)
>

(b) Use fold to write a function assoc which takes an item and a list of pairs as arguments
and returns the first pair in the list with a car car which is equal to item. If there is no
such pair then assoc should return false. For example,

> (assoc ’b ’((a 1) (b 2)))
(b 2)
> (assoc ’c ’((a 1) (b 2)))
#f
>

Part III
Using the functions, apply, select, map, filter, outer-product and iota, and without using recursion,
give definitions for the following functions:

1. length - returns the length of a list.

2. sum-of-squares - returns the sum of the squares of its arguments.

3. avg - returns the average of its arguments.

4. avg-odd - returns the average of its odd arguments.

3



5. shortest - returns the shortest of its list arguments.

6. avg-fact - returns the average of the factorials of its arguments.

7. tally - takes a predicate and a list and returns the number of list elements which satisfy the
predicate.

8. list-ref - takes a list and an integer, n, and returns the n-th element of the list.

4


