
CS 357: Declarative Programming
Extra Practice (Spring ’19)

1. Define a function takeWhile which takes a predicate and a list as arguments and returns the
prefix of the list satisfying the predicate. For example,

*Main> takeWhile (/= ’ ’) "This is practice."
"This"

2. Define a function span which takes a predicate and a list as arguments and returns a pair of
lists where the first element of the pair is the portion of the list which the function takeWhile
would return and the second element is the remainder of the list. For example,

*Main> span (/= ’ ’) "This is practice."
("This"," is practice.")

3. Consider the following data type declaration:

data Maybe a = Nothing | Just a

Define the function findKey (described in class) with type signature

findKey :: (Eq a) => a -> [(a,b)] -> Maybe b

using a list comprehension.

4. Define a function splitText which takes a string of text as its argument and returns a list of
words with spaces removed. For example,

*Main> splitText (/= ’ ’) "This is practice."
("This","is","practice.")

5. Without using explicit recursion, define a function encipher which takes two lists of equal
length and a third list. It uses the first two lists to define a substitution cipher which it uses
to encipher the third list. For example,

*Main> encipher [’A’..’Z’] [’a’..’z’] "THIS"
"this"

6. Consider the following data type declaration:

data Maybe a = Nothing | Just a

Define the function findKey (described in class) with type signature

1

findKey :: (Eq a) => a -> [(a,b)] -> Maybe b

using foldr.

7. The variance of a list of numbers of length n is the average squared difference between each
number and the numbers’ mean: ∑

n
i=1(xi − x̄)2/n where x̄ is the numbers’ mean: ∑

n
i=1 xi/n.

Without using explicit recursion, give a definition of a function, variance, which works as
follows:

*Main> variance [1..10]
8.25

8. Give definitions for the following functions using foldr: product, sum, or, and, ++, !!, map,
filter, and concat.

9. An n×n matrix can be represented as a length n list of length n lists of numbers. An n×n
identity matrix is zero everywhere except on its diagonal where it is one. Define a function
matrixId which takes an integer n as its argument and returns an n× n identity matrix. For
example,

*Main> matrixId 3
[[1,0,0],[0,1,0],[0,0,1]]

10. An n×m matrix can be represented as a length n list of length m lists of numbers. The
function rho takes a list of length n×m and returns a length n list of length m lists. For
example,

*Main> rho 2 3 [1..6]
[[1,2,3],[4,5,6]]

11. The transpose of a n×m matrix A is an m×n matrix AT where the (i, j)-th element of AT is
the (j, i)-th element of A. Define a function transpose which takes a matrix represented as a
length n list of length m lists of numbers as its argument and returns the transpose represented
as a length m list of length n list of numbers. For example,

*Main> transpose (rho 2 3 [1..6])
[[1,4],[2,5],[3,6]]

12. Define a function matrixElement which takes a matrix represented as a list of lists of numbers
and two integers i and j as arguments and returns the (i, j)-th element of the matrix. For
example,

*Main> matrixElement (rho 6 7 [1..]) 5 4
40

2

13. The dot product of two vectors ~u and ~v of length n (written ~u ·~v) is defined to be ∑
n
i=1 uivi.

Without using explicit recursion, define a function dot which takes two lists of numbers of
equal length and returns their dot product.

*Main> [0,0,1] ‘dot‘ [0,1,0]
0

14. Two matrices A and B can be multiplied if the number of columns of A equals the number
of rows of B. The (i, j)-th element of the product matrix C = AB is defined as follows:
ci j = ∑

m
k=1 aikbk j where m is the number of columns of A. Define a function matrixProduct

which takes two matrices represented as lists of lists of numbers and returns the matrix
product represented in the same manner. Hint: ci j is the dot product of the i-th row of A and
the j-th row of BT.

*Main> matrixProduct (rho 2 3 [1..6]) (rho 3 2 [1..6])
[[22,28],[49,64]]

15. Define a function prefixSum which takes a list of numbers as its argument and returns a list
of sums of all prefixes of the list. For example,

*Main> prefixSum [1..10]
[1,3,6,10,15,21,28,36,45,55]

16. The function select takes a predicate and two lists as arguments and returns a list composed
of elements from the second list in those positions where the predicate, when applied to the
element in the corresponding positions of the first list, returns True.

*Main> :t select
select :: (t -> Bool) -> [t] -> [a] -> [a]

*Main> select even [1..26] "abcdefghijklmnopqrstuvwxyz"
"bdfhjlnprtvxz"

*Main> select (<= ’g’) "abcdefghijklmnopqrstuvwxyz" [1..26]
[1,2,3,4,5,6,7]

17. The Goldbach conjecture states that any even number greater than two can be written as the
sum of two primes. Using list comprehensions, write a function Goldbach, which given an
even number n returns a list of pairs of prime numbers which sum to n. Note: You will have
to write a function which tests an integer for primality and this should be written as a list
comprehension also. For example,

3

*Main> goldbach 6
[(3,3)]

*Main> :t goldbach
:t goldbach
Int -> [(Int,Int)]

*Main>

18. To ’decimate’ literally means to kill every tenth man (it was a punishment in the Roman
legions). Define a function decimate which removes every tenth element from a list. for
example,

*Main> decimate [1..21]
[1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21]

19. Write a function called smallest which returns the k smallest numbers from a list of numbers.

4

