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We describe an algorithm- and representation-level theory of illusory
contour shape and salience. Unlike previous theories, our model is de-
rived from a single assumption: that the prior probability distribution of
boundary completion shape can be modeled by a random walk in a lattice
whose points are positions and orientations in the image plane (i.e., the
space that one can reasonably assume is represented by neurons of the
mammalian visual cortex). Our model does not employ numerical relax-
ation or other explicit minimization, but instead relies on the fact that the
probability that a particle following a random walk will pass through a
given position and orientation on a path joining two boundary fragments
can be computed directly as the product of two vector-field convolutions.
We show that for the random walk we define, the maximum likelihood
paths are curves of least energy, that is, on average, random walks fol-
low paths commonly assumed to model the shape of illusory contours. A
computer model is demonstrated on numerous illusory contour stimuli
from the literature.

1 Introduction

The completion shape and salience problem is the problem of computing
the shape and relative likelihood (as determined by the prior distribution)
of the family of curves that potentially connect (or complete) a set of bound-
ary fragments. This is a necessary intermediate step in the solution of the
full figural completion problem, which has been previously characterized
(Williams & Hanson, 1996) as the problem of building a Huffman-labeled
figure representing the boundaries of hidden and visible surfaces (see Fig-
ure 1). The fundamental assumption underlying our work is that the paths
followed by a particle undergoing a random walk in a lattice of discrete posi-
tions and orientations can be used to model the prior probability distribution
of the shape of boundary completions (see also Mumford, 1994). We observe
that the activity of a population of neurons with receptive fields tuned to
discrete positions and orientations (like early areas of primate visual cor-
tex) can be interpreted as a probability distribution describing a particle’s
possible location (i.e., the current state of the Markov process defining the
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Figure 1: Williams and Hanson (1996) have characterized figural completion
as the problem of building a Huffman-labeled figure from a set of bound-
ary fragments. A Huffman-labeled figure consists of a set of closed, oriented
plane curves (representing surface boundary components) together with an ex-
plicit indication of relative depth at crossing points. The labeling scheme is
based on Huffman’s concept of “X-ray pictures” of smooth objects (Huffman,
1971). (Left) Input stimulus. (Middle) Boundary fragments (thick) and potential
boundary completions (thin) represented by cubic Bezier splines of least energy.
The stochastic completion field (introduced in this article) is the corresponding
parallel distributed representation. (Right) The human percept, represented as
a Huffman-labeled figure. The problem of deriving the corresponding parallel
distributed representation is a subject for future research.

random walk). Let there exist two subsets of states, P and Q, representing
the beginning and ending points of a set of boundary fragments. We call P
the set of sources and Q the set of sinks. Our goal is to compute the proba-
bility that a particle, initially in state (xp, yp, θp), for some p ∈ P, will in the
course of a random walk (representing a prior on completion shape) pass
through state (u, v, φ), on its way to state (xq, yq, θq), for some q ∈ Q, for all
combinations of u, v, and φ. We call this parallel distributed representation
of the family of curves that potentially connect pairs of boundary fragments
a stochastic completion field.

To appreciate better the scope of this article, it will be useful to iden-
tify those phenomena for which we believe the stochastic completion field
model can and cannot account. Our primary claim is that the mode, magni-
tude, and variance of the stochastic completion field are related to the shape,
salience, and sharpness of perceived illusory contours. However, the defini-
tion of stochastic completion field says nothing about the specific forms of
brightness stimuli that can elicit illusory contours. In particular, we do not
describe a comprehensive theory of how raw image brightnesses are trans-
formed into sources and sinks for our diffusion process. Furthermore, the
stochastic completion field says nothing about apparent brightness, which
is distinct from salience. Finally, we note that whether a completion is ac-
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tually perceived cannot be solely a function of local configurational factors,
but also depends on the role the completion plays in the larger surface orga-
nization (Williams & Hanson, 1996). Specifically, it depends on (1) whether
it can be incorporated in a consistent way into a Huffman-labeled figure
and (2) whether it is nominally visible (modal) or occluded (amodal). Neither
of these can be determined by a process that does not consider the topol-
ogy of the scene. Consequently, the stochastic completion field can only be
regarded as a precursor to a true surface representation.

2 Previous Work

The novelty of our method lies in the definition of the stochastic completion
field, which explicitly embodies the assumption that the prior distribution
of completion shape can be modeled as a random walk. However, other
researchers have advanced algorithm- and representation-level theories of
figural completion based on orientation fields of various kinds. At the al-
gorithm and representation level, all of these models are outwardly similar.
This is because all derive from similar views of the orientation preference
structure of the visual cortex, common assumptions about neural computa-
tion, and basic considerations (whether explicit or implicit) like translation
and rotational invariance.

The earliest theory of illusory contour shape is due to Ullman (1976).
Ullman hypothesized that the curve used by the human visual system to join
two contour fragments is constructed from two circular arcs. Each circular
arc is tangent to its sponsoring contour at one end and to the other arc at
the point of intersection. From the family of possible curves of this form,
the pair that minimizes total bending energy (E = ∫

κ(s)2ds where κ(s) is
curvature parameterized by arc length) models the shape of the illusory
contour. Ullman suggested that illusory contours could be computed in
parallel in a network by means of local operations, but he did not implement
or test this idea.

Grossberg and Mingolla (1985) describe a model of illusory contour for-
mation that involves repeated convolution with a large-kernel filter. In out-
ward form, this kernel resembles ours, but it does not represent the Green’s
function of a stochastic process of the sort described by us or Mumford
(1994). The outputs of oppositely oriented filters are combined through a
nonlinear operation consisting of thresholding followed by a logical AND
function. Grossberg and Mingolla’s network is complex, and its conver-
gence properties are difficult to analyze. Clearly, part of this complexity
stems from their desire to model, in a comprehensive way, the many differ-
ent forms of stimulus that can elicit illusory contours (e.g., contrast edges
of mixed sign, line endings). No other model (including ours) attempts to
be this comprehensive.

Parent and Zucker (1989) describe a network algorithm for computing a
consistent discrete tangent and curvature field from noisy local tangent and



840 Lance R. Williams and David W. Jacobs

curvature measurements. Their network solves a well-defined relaxation
labeling problem where the goal is to find the most probable assignment
of labels subject to a compatibility relation. The labels are discrete tangent
and curvature values at every image point, and the compatibility relation is
based on co-circularity. Although they do not claim to model illusory con-
tour shape, David and Zucker (1990) use active minimum-energy-seeking
contours to locate the valleys (or, equivalently, the mode or ridge lines) of
a potential function derived from the output of the Parent and Zucker net-
work. The ridge lines of the potential function represent the integral curves
of the tangent field.

Like us, Heitger and von der Heydt (1993) describe a theory of figural
completion based on nonlinear combination of the convolutions of “key-
point” images with a fixed set of oriented grouping filters. Significantly,
they demonstrate their method on both illusory contour figures like the
Kanizsa triangle and on more “realistic” images (e.g., of plants and rocks),
with impressive results. Unfortunately, neither the equations defining the
filters nor the proposed method of combination are described as a means
of computing an underlying function. This makes analysis of their method
difficult. However, because their grouping filters are scalar functions, they
cannot (even implicitly) model a prior probability distribution of comple-
tion shapes in the manner we describe.

Guy and Medioni (1996) have described a method for computing a vector-
field representing global image structure from local tangent measurements.
Like the Hough transform, the key to their approach is the local summa-
tion of a set of global voting patterns. Unlike the Hough transform, the
accumulator is spatially registered with the image, and the voting pattern
is a vector-field, not a scalar-field. However, because the voting pattern
represents orientations that are co-circular to the tangent measurements,
the vector-field is nonstochastic (i.e., deterministic), and cannot model the
prior distribution of completion shapes.

Shashua and Ullman (1988) describe a network algorithm for computing
“perceptual saliency,” although they do not portray it as a faithful model
of human visual processing. Computing salience (as they define it) requires
finding the energy of the minimum energy curve of length n beginning at
every position and orientation. This energy function combines a term similar
to squared curvature and a term measuring gap size. However, because the
energy function also includes terms designed to guarantee convergence, the
output of their system can be difficult to anticipate. Alter and Basri (1996)
analyze the behavior of this network in detail and point out some of its
counterintuitive behavior.

3 Fundamental Assumption

Like many other problems in vision, figural completion is ill posed; the vi-
sual system cannot know the precise shape of an object’s boundary where
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it is hidden from view by another object. The best that it can do in such a
situation is to make an educated guess. It is conventionally assumed that
this guess takes the form of a maximum likelihood estimate. That is, given
a prior probability distribution of completion shapes, it is assumed that the
visual system chooses the member of the distribution that is most probable.
In this article, we propose a somewhat different approach. Instead of com-
puting (just) the maximum likelihood completion shape, we propose that
the visual system computes local image plane statistics of the distribution of
possible completion shapes. There is more information contained in a dis-
tribution than just the location of the mode, and we believe that in the case
of the distribution of boundary completion shapes, these other properties
are psychophysically meaningful. In particular, we believe that the variance
of the distribution about the mode is related to illusory contour sharpness.

Like Mumford (1994), we characterize the distribution of completion
shapes using the mathematical device of a particle undergoing a stochastic
motion (a directional random walk). The random walk embodies the Gestalt
principles of proximity and good continuation, which we believe originate
in the statistics of the environment our visual systems evolved in. How-
ever, apart from shortness and smoothness (which have their origins in the
world), we make one additional assumption, the origin of which (we be-
lieve) is in our heads. This is the assumption that the distribution of shapes
that can extend a contour at any point is totally determined by the position
and orientation of the contour at that point, that is, that the distribution of
shapes can be modeled as a Markov process.

An immediate consequence of this assumption is that for the random
walk we define, it can be shown (see the appendix) that the maximum like-
lihood path followed by a particle joining two points at fixed orientations is
a curve of least energy (where energy is a linear combination of the integral
of curvature squared and length). This is the curve that, others have theo-
rized (Horn, 1981), models the shape of illusory contours joining boundary
fragments with orientation difference significantly less than π/2. However,
the more important consequence is computational: The Markov assump-
tion allows us to factor the stochastic completion field into source and sink
fields, each of which can be computed by a linear transformation.

To summarize, it is certainly possible to define prior distributions for
boundary completion shape using devices other than a random walk (e.g.,
co-circularity). Unfortunately, the resulting priors will not be Markov. Con-
sequently, the maximum likelihood completion shapes will not be curves of
least energy, and it will not be possible to decompose the completion field
into a product of more elementary fields.

Unlike the familiar two-dimensional isotropic random walk, where a
particle’s state is simply its position in the plane, the particles of the ran-
dom walk described by us and Mumford (1994) possess both position and
orientation. The random walk itself is defined by two elements: (1) the equa-
tions of motion and (2) a decay constant. The equations of motion describe
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the change in a particle’s position and orientation as a function of time;
the decay constant, τ , specifies a particle’s average lifetime. As part of a
study of the reduction of search made possible by prior grouping in visual
object recognition, Jacobs (1989) computed the probability density of the
size of boundary gaps due to occlusion in random juxtapositions of a set of
flat polygonal surfaces. Jacobs concluded that small gaps predominate and
that incident frequency rapidly drops off with increasing size. By includ-
ing a decay mechanism in the stochastic process, we are able to model the
component of the completion shape probability distribution dependent on
length. Because a certain fraction of particles (1− e−

1
τ ) decay per unit time,

longer paths are exponentially less likely. A particle’s position and orienta-
tion are updated according to the following stochastic nonlinear differential
equation:

ẋ = cos θ

ẏ = sin θ

θ̇ = N(0, σ 2),

where ẋ and ẏ specify change in position, θ̇ is change in orientation (cur-
vature), and N(0, σ 2) is a normally distributed random variable with zero
mean and variance equal to σ 2. There is a strong similiarity between the
equations of motion defined here and the Kalman filter equations Cox, Rehg,
and Hingorani (1993) employed in their work on edge tracking; a particle
moves with constant speed in a direction that is continually changing by
some random amount. The effect is that particles tend to travel in straight
lines, but over time, they drift to the left or right by an amount proportional
to σ 2 (for example random walks; see Figure 2). When σ 2 = 0, the motion is
completely deterministic, and particles never deviate from straight paths.
When σ 2 = ∞, the motion is completely random, and the stochastic process
becomes a two-dimensional isotropic random walk. For this reason, we will
sometimes refer to the stochastic process we define as a diffusion process and
the parameter, σ 2 as the diffusivity.

4 Problem Formulation

The receptive fields of neurons in area V1 of visual cortex are retinotopically
organized and narrowly tuned to stimuli of specific position and orienta-
tion (Hubel and Wiesel, 1962). Indeed, it has been suggested (see Blasdel &
Obermayer, 1994; or Grossberg & Olson, 1994) that the orientation prefer-
ence structure that characterizes V1 is a consequence of mapping the space
of positions and orientations in the plane (R2×S1) onto the two-dimensional
surface of the cortex (R2) while maximizing locality. It follows that the ac-
tivity of a population of neurons in V1 can be represented by a probability
density function defined over R2 × S1 and that the network of intercon-
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Figure 2: (Left) An example of a random walk. (Right) 1000 random walks.

nections can be represented by an order six tensor (R2 × S1) × (R2 × S1).
Conservatively speaking, the function the network computes can be viewed
as a tensor product, mapping an input probability density function to an
output probability density function through a linear transformation.

Let the order six tensor G represent the transition probabilities of a
Markov process defined on the three-dimensional state space, R2 × S1, and
satisfying the equations of motion defined above (G is the Green’s function).1

It follows that G(u, v, φ, x, y, θ ; t) is the probability that a random walk of
length t will end in state (u, v, φ) given that it began in state (x, y, θ) (see
Figure 3). If p(x, y, θ ; 0) is the probability density function describing the
position and orientation of a particle at the beginning of its random walk,
then the probability that the particle will be at some position and orientation
at time t is

p(u, v, φ ; t) =
∫ ∞
−∞

dx
∫ ∞
−∞

dy
∫ π

−π
dθ G(u, v, φ, x, y, θ ; t)p(x, y, θ ; 0) · e −t

τ .

Because the probability of a random walk of a given shape is indepen-
dent of its initial position and orientation in the plane, the order six tensor,
G, consists entirely of translated and rotated copies of an order three ten-

1 Carman (1990) has emphasized the usefulness of Green’s functions as descriptions
of visual computations, and Carman and Welch (1992, 1993) have specifically proposed
that they play a role in the computation of illusory surfaces.
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Figure 3: (Upper left) P.d.f. representing source distribution, p(x, y, θ; 0), con-
sists of an impulse located at (0, 0, 0). Although sometimes truncated for clarity,
in general, the length of the arrows is proportional to the logarithm of the prob-
ability that a particle is located at that position and orientation. (Upper right)
Snapshot of diffusion process at t = 15, that is, p(x, y, θ; 15). This is the result
of convolving G(u′, v′, φ′; 15) with the p.d.f. representing t = 0. (Lower left and
right) Diffusion process at t = 31 and t = 47, respectively.

sor representing the transition probabilities for random walks beginning at
(0, 0, 0),

G(u, v, φ, x, y, θ ; t)=G(u′, v′, φ′, 0, 0, 0 ; t),

where (u′, v′, φ′) is (u, v, φ) in the coordinate system defined by (x, y, θ), so
that u′ = (u − x) cos θ + (v − y) sin θ , v′ = −(u − x) sin θ + (v − y) cos θ
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and φ′ = φ − θ . Henceforward, we will write G(u′, v′, φ′ ; t) instead of
G(u′, v′, φ′, 0, 0, 0 ; t). The upshot is that by taking advantage of the transla-
tional and rotational symmetries of G, the tensor product can be computed
by an operation similiar to convolution:

p(u, v, φ ; t) =
∫ ∞
−∞

dx
∫ ∞
−∞

dy
∫ π

−π
dθ G(u′, v′, φ′; t)p(x, y, θ ; 0) · e −t

τ .

We will show that the stochastic completion field can be expressed as
the product of a stochastic source field and a stochastic sink field. We define the
stochastic source field, p′(u, v, φ), to be the fraction of paths that begin in
a source state and pass through (u, v, φ) before they decay. If we assume
that paths do not self-intersect before they decay, then the fraction of paths
that pass through a given position and orientation equals the integral of the
position and orientation probability density function over time:

p′(u, v, φ) =
∫ ∞

0
dt p(u, v, φ ; t).

By changing the order of integration and defining a new Green’s function,
G′,

G′(u, v, φ) =
∫ ∞

0
dt G(u, v, φ ; t) · e− t

τ ,

the explicit time variable, t, can be suppressed. The result is that the stochas-
tic source field, p′(u, v, φ), can be computed by convolving the probability
density function representing the source distribution with the new Green’s
function (see Figure 4):

p′(u, v, φ) =
∫ ∞
−∞

dx
∫ ∞
−∞

dy
∫ π

−π
dθ G′(u′, v′, φ′) p(x, y, θ ; 0).

Observe that the probability2 that a particle will pass through state (u, v, φ)
on its way from a source state, p ∈ P, to a sink state, q ∈ Q, before it de-
cays, is proportional to the product of (1) the probability that a particle
beginning in a source will reach (u, v, φ) before it decays (the source field)
and (2) the probability that a particle beginning at (u, v, φ) will reach a

2 Strictly speaking, what we are able to compute is a relative likelihood, not a probabil-
ity. This is because we do not compute the absolute probability of a particle diffusing from
a source to a sink by any path at all, which would represent the normalizing constant.
So although it is possible to convert these relative likelihoods to probabilities, in practice
this is not necessary, because relative likelihoods suffice for the purpose of comparing
competing paths.
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Figure 4: Stochastic source fields, p′(u, v, φ), representing the probability that a
particle leaving (0, 0, 0) will reach (u, v, φ) before it decays. Basically, these are
plots of the Green’s function G′ (the time integral of G), for a range of diffusivities
and decay constants. (Upper left) (σ 2 = 0.05, τ = 100). Upper right: (σ 2 = 0.05,
τ = 20). (Lower left) (σ 2 = 0.01, τ = 100). Lower right: (σ 2 = 0.01, τ = 20).

sink before it decays (the sink field). This is an immediate consequence of
the Markov property of the stochastic process. We have already described
how the source field is computed. We now show that the sink field can be
computed in an analogous manner.

The magnitude of the sink field at (u, v, φ) is the product of the probabil-
ity that a particle beginning at (u, v, φ) will reach (x, y, θ) before it decays
(i.e., G′(x, y, θ,u, v, φ)) and the probability that a sink exists at (x, y, θ) (i.e.,
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q(x, y, θ ; 0)), integrated over all (x, y, θ):

q′(u, v, φ) =
∫ ∞
−∞

dx
∫ ∞
−∞

dy
∫ π

−π
dθ G′(x, y, θ,u, v, φ)q(x, y, θ ; 0).

Like G, the order six tensor G′ consists entirely of translated and rotated
copies of an order three tensor representing the transition probabilities for
random walks beginning at (0, 0, 0),

G′(x, y, θ,u, v, φ)=G(x′, y′, θ ′, 0, 0, 0),

where (x′, y′, θ ′) is (x, y, θ) in the coordinate system defined by (u, v, φ), so
that x′ = (x − u) cosφ + (y − v) sinφ, y′ = −(x − u) sinφ + (y − v) cosφ
and θ ′ = θ − φ. Consequently (like the source field), the sink field can be
computed by a kind of convolution:

q′(u, v, φ) =
∫ ∞
−∞

dx
∫ ∞
−∞

dy
∫ π

−π
dθ G′(x′, y′, θ ′) q(x, y, θ ; 0).

Finally, the stochastic completion field, C(u, v, φ), which represents the rela-
tive likelihood that a particle leaving a source state will pass through (u, v, φ)
and enter a sink state before it decays, equals the product of the source and
sink fields (see Figure 5):

C(u, v, φ) = p′(u, v, φ) · q′(u, v, φ).

At this point, it is natural to ask how the computation we have just out-
lined might be implemented. In particular, we wish to identify the neural
loci of the representations that form the basis of our model (the source, sink,
and completion fields). To begin, we note that it would be somewhat prema-
ture for us to identify the source and sink fields with a specific population in
V1 because many neural populations in V1 satisfy the basic requirements of
having retinotopically organized receptive fields tuned to a specific position
and orientation. However, with regard to the completion field, we can be
somewhat more definite and identify its locus as the neurons in V2 described
by von der Heydt, Peterhans, and Baumgartner (1984). von der Heydt et al.
report that the firing rate of these neurons increases when their “receptive
fields” are crossed by illusory contours (of specific orientations) induced by
pairs of flanking elements. Significantly, these neurons do not respond to
these same elements when presented in isolation; they respond only to pairs.
It was this discovery that inspired the simple feedforward neural network
model proposed by Peterhans, von der Heydt, and Baumgartner (1986). At
the implementation level, our model is very similar. However, while Pe-
terhans et al. do not describe the pattern of interconnectivity between the
first and second layers of their network in any detail, this pattern is defined
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Figure 5: (Top left) Source and sink distribution p(x, y, θ; 0) = q(x, y, θ; 0). The
p.d.f. consists of four impulses equally spaced around the circumference of a cir-
cle. (Top right) The stochastic source field, p′(u, v, φ), represents the probability
that a particle leaving a source will reach (u, v, φ) before it decays. (Bottom left)
The stochastic sink field, q′(u, v, φ), represents the probability that a particle will
leave state (u, v, φ) and enter a sink state before it decays. (Bottom right) The
stochastic completion field, C(u, v, φ), is the product of source and sink fields.

in our model by the Green’s function, G′ (see Figure 6). Consequently, our
neural network computes a stochastic completion field.

Although it is possible to solve the stochastic nonlinear differential equa-
tion directly and, in doing so, find an analytic equation for the Green’s
function (see Thornber & Williams, 1996), we initially solved for G′ by a
Monte Carlo method. All of the experimental results in this article are based
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C( u, v,   )

G’ G’

Completion Field

Sink FieldSource Field

q’( u, v,   )

q( x, y,   ; 0)p( x, y,   ; 0)

p’( u, v,   )

Figure 6: The stochastic completion field can be computed by a two-layer feed-
forward neural network. The source field is computed by the left half of the
network and the sink field by the right half. The Green’s function, G′, defines
the network of interconnections between the first and second layers. The third
layer computes the product of the source and sink fields and can be tentatively
identified with the neurons in V2 described by von der Heydt, Peterhans, and
Baumgartner (1984).

on an approximation of G′ computed by direct simulation of the random
walk for 1.0 × 106 trials on a 256 × 256 grid with 36 fixed orientations.3

The particle trajectories are modeled as chains of line segments with real
valued end points and with interior angles drawn from a continuous gaus-
sian distribution. The probability that a particle beginning at (0, 0, 0) will
reach (u, v, φ) before it decays (i.e., G′(u, v, θ)) is approximated by the frac-
tion of simulated trajectories beginning at (0, 0, 0) that intersect the region
(u±1.0, v±1.0, φ±π/72). Because the end points of these segments are not
confined to the integer lattice, the stochastic completion fields we compute

3 In a computer vision application, this would be a compile-time cost, not a run-time
cost.
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Figure 7: Example completion fields. (Left) p1 = (−40, 0, 30◦) and q1 =
(40, 0,−30◦). (Right) p2 = (−40, 0, 30◦) and q2 = (40, 0,−30◦). The left source
and sink pair is scaled by 1.0× 107 and the right by 1.0× 108.

are discrete subsamplings of continuous fields, not discrete fields computed
by an approximation to the continuous process.

5 Experimental Results

As a first demonstration, let us consider two source-sink pairs. The source
and sink distributions were represented by arrays of size 128×128×36 and
consisted of a single oriented impulse (a single nonzero value). In the first
case, source and sink are positioned on a horizontal axis and are oriented
symmetrically about this axis; in the second, they possess the same orienta-
tion, so that the curves of least energy joining them will contain an inflection
point. The diffusivity, σ 2, equaled 0.005 and the decay constant, τ , equaled
20. Figure 7 depicts the stochastic completion field for these source and sink
pairs as brightness images where brightness encodes the sum over all 36
orientations. Because, the displayed brightnesses for each pair are scaled to
take maximum advantage of the limited number of gray levels (i.e., 255),
it is not obvious that there is an order of magnitude difference in saliency
between the first and second pair. The first source and sink is scaled by
1.0×107, the second by 1.0×108. It is sometimes assumed that illusory con-
tours cannot contain inflection points. However, we do not believe that there
is an all-or-nothing rule that prohibits inflection points (Kellman & Shipley,
1991). Rather, we believe that saliency is a continuum, and illusory contours
containing inflection points might simply be an order of magnitude weaker
on average.

In a second demonstration, we consider a source distribution consist-
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Figure 8: (Left) Ehrenstein figure. (Right) Stochastic completion field for Ehren-
stein figure.

ing of four oriented impulses equally spaced around the circumference of a
circle (see Figure 5, top left). This distribution is meant to represent an Ehren-
stein figure (see Figure 8, left). The four impulses are located at end points
of the four line segments comprising the figure and possess orientation nor-
mal to the segments. Figure 8 (right) shows the stochastic completion field,
where brightness encodes the sum over all orientations. The majority of the
brightness is confined to a narrow region surrounding an approximately
circular ridge line. This is consistent with the shape most often reported by
human observers. Interestingly, some observers report seeing a diamond
shape, not a circle. We note that a diamond-shaped completion field would
be produced if the diffusivity (σ 2) was very large and the particle half-life
(τ ) was very small.

We have also demonstrated our implementation on several well-known
illusory contour figures from the visual psychology literature. Before doing
this, we needed to find a principled way of translating an image into a set
of sources and sinks for the diffusion process. In general, this requires a
sophisticated analysis of the local image brightness structure to identify L-
junctions, T-junctions, Y-junctions, and X-junctions formed by both contrast
and outline edges. Classifying and measuring the multiple orientations at
so-called key points (Heitger & von der Heydt, 1993) is a difficult research
problem in its own right and the subject of much current research (Simon-
celli & Farid, 1996; Freeman & Adelson, 1991; Michaelis & Sommer, 1994;
Perona, 1992). For the moment, we use a steerable one-sided filter scheme
similar to that of Simoncelli and Farid (1996) to identify orientation discon-
tinuities (i.e., corners) formed by contrast edges and to measure the two



852 Lance R. Williams and David W. Jacobs

Figure 9: (Top left) A corner of a “pacman.” (Top right) Sources (thin) and sinks
(thick) computed by steerable one-sided filter (multiple orientations are due
to anti-aliasing). (Bottom left) Kanizsa triangle. (Bottom right) Stochastic com-
pletion field summed over all orientations and superimposed on brightness
gradient magnitude image. Both the illusory triangle and the three discs are
completed.

orientations with precision sufficient for our purposes. The maximum and
minimum of the continuous response of the steerable one-sided filter is first
measured to approximately 3 degrees of accuracy. As an anti-aliasing mea-
sure, a unit mass is distributed proportionally among the two discrete orien-
tations (10 degrees apart) straddling the nominal maximum and minimum.
The maximum is interpreted as a source and the minimum as a sink (see
Figure 9, top left and right). Generalizing this scheme to classify and mea-
sure the wide range of events corresponding to likely points of boundary
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occlusion is the only obstacle to demonstrating our work on more realistic
images.

Figure 9 (bottom left) shows the Kanizsa triangle stimulus. Key points
are located at a positive maximum of curvature. Figure 9 (bottom right)
shows the stochastic completion field summed over all orientations and su-
perimposed on the brightness gradient magnitude image. Both the illusory
triangle and the three discs are completed. In contrast with the results of
Heitger and von der Heydt (1993), no nonmaximum suppression needs to
be employed.

Figure 10 (top) shows the Kanizsa “paisley” stimulus. Key points are lo-
cated at negative minima of curvature. Figure 10 (bottom) shows the stochas-
tic completion field summed over all orientations and superimposed on the
brightness gradient magnitude image.

Figure 11 (top) shows a complex illusory contour figure designed by
Kanizsa (1979). Key points are located at positive maxima of curvature. It
is useful to compare the stochastic completion field computed for this dis-
play to the middle panel of Figure 1. Because our diffusion process has
no knowledge of the topology of surfaces, the stochastic completion field,
shown in Figure 11 (bottom left), contains potential completions that are not
perceived by human subjects. Potential completions required to complete
the four rectangles are among the most salient, however. Figure 11 (bot-
tom right) shows the logarithm of the stochastic completion field summed
over all orientations. In the logarithm image, many additional completions
of significantly lower average likelihood become visible. Included among
these are those required to complete the four black discs and eight black
squares perceived by human subjects.

6 Conclusion

It is widely acknowledged that perceptual organization (segmentation,
grouping) is among the most difficult problems facing researchers in com-
puter vision today. Current structure from motion algorithms produces es-
timates of depth only for isolated points, yet true surface representations
are required to compute a stable grasp or to plan an unobstructed path
through free space. Current object recognition systems do not work on large
model bases, nor do they function robustly in the presence of occlusion.
Our work advances the state of the art in perceptual organization by pro-
viding a plausible model of illusory contour formation based on a diffusion
process. We have shown how curves of least energy interpolating a set of
edge fragments can be computed using biologically plausible algorithms
and representations. Significantly, this is accomplished without using nu-
merical relaxation or other explicit minimization but instead relies on the
fact that the probability that a particle following a random walk will pass
through a particular position and orientation on a path joining two image
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Figure 10: (Top) Kanizsa’s “paisleys.” (Bottom) Stochastic completion field in-
tegrated over all orientations and superimposed on brightness gradient magni-
tude image. It is interesting to note that the average likelihoods of the shorter
completions (perceived modally) are several orders of magnitude greater than
the average likelihoods of the longer completions (perceived amodally).
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Figure 11: (Top) A complex figure (Kanizsa, 1979). (Bottom) Stochastic com-
pletion field integrated over all orientations and superimposed on brightness
gradient magnitude image. Logarithm of stochastic completion field integrated
over all orientations.

measurements can be computed directly as the product of two vector-field
convolutions.

The most related work is by Heitger and von der Heydt (1993), Guy and
Medioni (1993) and Shashua and Ullman (1988). Although we owe an intel-
lectual debt to these three articles, none proceeds cleanly from a definition
of what they want to compute (a function) to a method of computing it
(an algorithm). Our main contribution is to show how outwardly similiar
algorithms and representations follow immediately from a clearly stated
assumption: that the prior probability distribution of boundary completion
shapes can be modeled by a random walk.
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Appendix

In this appendix, we demonstrate the relationship between the diffusion
process we have described and so-called curves of least energy. To accom-
plish this, we employ a discrete-time approximation to the continuous equa-
tions of motion. For the discrete-time random walk, we show that the most
likely path between a source and a sink is the curve of least energy con-
necting them. This tells us that, in the limit, as the time-step size becomes
small, the most likely path between a source and a sink converges to the
continuous curve of least energy. From this, we conclude that our model of
diffusion concisely encodes the prior assumption that the most likely shape
of an occluded section of an object’s boundary is the curve of least energy.

Suppose that a particle begins its random walk at a source p and follows
a trajectory 0, which consists of n unit length steps, along with n changes
in angle denoted by κ1, . . . , κn, ending at sink q. That is, its trajectory is an
n-sided polygonal arc, comprising unit length segments and with exterior
angles denoted by κi. From the definition of the random walk, we know
that the density function on the set of paths that such a particle may take is
given by

g(0pq) = 1∫
0q

f (0p)d0p

n∏
i=1

e−
1
τ

1

σ
√

2π
e−

k2
i

2σ2 ,

where
∫
0q

f (0p)d0p indicates integration of the density function on the set
of paths beginning in source p (i.e., f (0p)) over all paths ending in sink q
(see Ash, 1972, for a discussion of conditional probabilities on continuous
functions). Taking the logarithm of both sides (and because

∫
0q

f (0p)d0p is
constant for given p and q),

log(g(0pq))+ C = n
(
− 1
τ
− log(σ

√
2π)

)
−

n∑
i=1

k2
i

2σ 2 . (A.1)

We now relate this expression to the energy of a continuous curve. This
energy is defined as

α

∫
0

κ(t)2dt+ β
∫
0

dt,

where κ(t) is the curvature at 0(t) and α and β are constants that weight the
cost for the length relative to the cost for the total squared curvature. Al-
though the energy of any curve with a curvature discontinuity is infinite, it is
natural to consider an analogous quantity for polygonal arcs based on num-
ber of segments (n); and sum of the squared exterior angles (

∑n
i=1 k2

i ). This is
precisely the negative of the right side of equation (A.1), with α = 1/2σ 2 and
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β = 1/τ+log(σ
√

2π). This shows that the log likelihood that a random walk
will follow any given polygonal path is linearly related to the energy of that
path for a natural discrete formulation of energy. Therefore, the maximum
likelihood polygonal path between two points is the discrete curve of least
energy. Because the discrete-time random walk converges to a continuous-
time random walk as the time-step size, velocity, and diffusivity approach
zero, it follows that the continuous equations of motion concisely encode
our prior assumption concerning the probability distribution of completion
shape.
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