
Local Routing in a new Indefinitely Scalable Architecture

Trent Small

The University of New Mexico

Albuquerque, NM, 87131-0001

tsmall1@unm.edu

Abstract

Local routing is a problem which most of us face on a daily
basis as we move around the cities we live in. This study pro-
poses several routing methods based on road signs in a pro-
cedurally generated city which does not assume knowledge
of global city structure and shows its overall efficiency in a
variety of dense city environments. We show that techniques
such as Intersection-Canalization allow for this method to be
feasible for routing information arbitrarily on an architecture
with limited resources.

Introduction

New architecture = new problems

Designed for robustness, the Movable Feast Ma-

chine(Ackley et al., 2013) (or briefly MFM)is a new

computer architecture aimed at spatially distributing com-

putation in a way that can scale indefinitely. This system is

rather robust to many hardware errors (for instance, by its

distributed nature) and software errors (for instance, by its

use of Cellular Automata).

Robustness comes at a price however, as this architecture

is drastically different from the tried and true Von Neumann

architecture. This makes traditional computer problem solv-

ing much more challenging. In fact, thinking traditionally

about computer problem solving in the MFM is hardly fea-

sible, particularly problems which need to access any sort of

global state. This brings about many problems with tradi-

tional computing procedures.

Routing revisited

The Von Neumann architecture supplies hardware for get-

ting information from one end of the machine to the other.

Unfortunately, this is not particularly robust as a single fault

in the machine will cause the communication route to be sev-

ered. This is where the MFM shines, as a fault in one part

of the machine allows the rest of the machine to function.

However, routing information from one part of the machine

to any other becomes more difficult.

Because it is a Cellular Automata on distributed hardware,

The MFM memory on the system corresponds to the loca-

tion of the tile directly. This forces any data moving across

an MFM simulation to move physically across the machine

as well. The small Event Windows of the MFM also make

it difficult to know much about the surroundings of an atom

when it is processing an event. The way that the MFM is

distributed also makes it impossible to create an absolute ad-

dressing system like the Von Neumann architecture exhibits,

making absolute routing impossible.

A solution by example

Because the MFM is built as an Artificial Life simula-

tor(Ackley and Small, 2014), much thought was put into

creating a system much like the world that we live in. This

allows us to examine problems which the Von Neumann ar-

chitecture has solved and apply real-world techniques in or-

der to solve them on the MFM. Even the humblest of crea-

tures work on solving this spatial routing problem on a daily

basis, so many angles of inspiration exist.

One solution that comes to mind is based on the idea of

a city. Cities are dense, which allow information and re-

sources to travel only short distances. Cities also exist upon

a heavily structured road system which allow information to

travel quickly. Cities are also rather diverse, allowing for

many different kinds of information to share the same struc-

ture. All of these properties are useful aspects when rout-

ing inside a computer. Speed and flexibility are two aspects

which are deemed important in routing cars described by the

Vehicle Routing Problem (VRP) (Cordeau et al., 2002). Two

more aspects described in (Cordeau et al., 2002) which are

good to focus on are accuracy and simplicity. These four

aspects are important to keep in mind when routing data as

well.

Being a central part of many lives, lots of research goes

into the efficiency of cities. Many delivery algorithms ex-

ist, but most are more applicable to the real world with their

assumption of global state(Lu and Dessouky, 2004)(Clarke

and Wright, 1964)(Wiering et al., 2004) (Lämmer and Hel-

bing, 2008)(Gershenson and Rosenblueth, 2009) This is not

a luxury that the MFM provides.

There has also been research on road density using cel-

lular automata (Nagel and Schreckenberg, 1992), and even



1. 2. 3.

1
2

12

4.

Figure 1: City growth stage: 1. A street creates streets and sidewalks. 2. Streets sometimes create intersections. 3. Intersections create
streets. After time, sidewalks create buildings. 4. The city grows. Buildings create cars which travel along roads to find other buildings.

the effect of controlling traffic lights in a cellular automata

city to increase traffic efficiency without collisions (Brock-

feld et al., 2001). These simulations are designed to keep

cars from colliding, whereas the simulation we are looking

to create simply needs to route information as quickly loss-

lessly as possible.

It is also worth it to note that city planners appointed

by United Nations Human Settlements Programme are now

starting to use tile-based software to plan cities(Parker,

2014).

Design considerations

Unfortunately, there are many properties of real cities which

allow for routing to be efficient that we can not take advan-

tage of. Most things that are being routed in the real world

are controlled by people whom are able to remember how to

get around the city. The MFM does not allow for this luxury

since each event can only access 41 sites, each with 96 bits

of information. This is nowhere near enough information to

remember where building are around the city. Therefore, we

must treat every piece of routed information as if they are

new to the city and unable to navigate without its help. This

brings us to our first design consideration:

Local mapping: There must exist some method which

aides information in approaching its destination.

According to (Cordeau et al., 2002), a good routing sys-

tem has four traits. Therefore, it is natural to use these traits

as a guide in our routing system. Thus, we have another

design consideration:

Routing traits: Routing must be fast, accurate, simple,

and flexible.

Because this software is running on the MFM, we also

need to consider the time and thought put into designing a

system which is robust to errors. Our city should be able

to exist on such hardware and conform to most of these ro-

bustness standards. Thus, we have our final design choice to

consider:

Keeping robustness in mind: The city must favor robust-

ness over correctness.

Utilizing techniques common to self-organization (Mis-

teli, 2001) will increase the robustness of the city and allows

traffic to continue to flow in an organized manner in many

destructive scenarios after a short rebuilding stage.

Limitations

Unfortunately, simulating real city traffic in the MFM is not

feasible because there are simply too many things that can

go wrong. Some compromises must be made to our model

in order to gather meaningful information about city routing.

Single-lane swapping

Each street in this model can be seen as a two-way four-lane

road. This is a little tricky however, since each street is a

single atom. In order to make up for this, when a car moves

it may swap its position with either a street or a car that is in

the direction it is moving in. This makes for some interest-

ing dynamics since cars waiting at an intersection can move

towards the front of their queues. These simple rules allow

a two-way one-lane atomic road to simulate a two-way four-

lane road.

This is not how real traffic works, and it does end up need-

lessly using gas while waiting at an intersection, but there

has already been research in these kinds of problems using

cellular automata (Nagel et al., 1998) which shows that traf-

fic can flow well even in a two-lane environment as long as

it follows some simple rules.

Building types

Because there is no notion of absolute addressing in the

MFM, there is no way that a car can hope to find a unique



building in this city. In order to compensate for this fact, the

model uses building types. There are 24 designated types

for which a building may emulate. This differs from the real

world in that there are many unique buildings, but most real

world buildings can be placed into categories for simplicity’s

sake. For example, most grocery stores are nearly identical,

and the closest one to home is often the one most frequented

(Hsu et al., 2010).

Map size

Unfortunately, the MFM only provides each atom with 71

general-purpose bits to use for anything an element enginner

pleases. If 24 building types are given, this is only enough

to allocate (given that a small number of other bits are allo-

cated for other purposes) 2 bits per building type to anything

which should make a local map of the nearby city blocks.

Used cleverly, we will see that this limitation does not seem

to impede routing much, but an MFM simulator which is

able to give more bits per atom would have allowed for some

experimentation of these map sizes.

Model

The model consists of a City Growth stage (which eventually

leads to a local equilibrium), and a Routing stage. A user

begins the first stage by placing a single Element into an

empty MFM grid.

City Growth

The city begins with a single ELEMENT CITY STREET (see

Fig.1), which simply tries to copy itself in a cardinal di-

rection. If the street encounters an Element other than

something which belongs in the street (namely an ELE-

MENT CITY CAR, an ELEMENT CITY INTERSECTION, or

another Street), it replaces that Element with either a Street

or an Intersection depending on its Intersection odds param-

eter. The roads continue to grow indefinitely.

As the streets grow, they place ELE-

MENT CITY SIDEWALK elements in the sites perpendicular

to the direction they are traveling. Once a Sidewalk has

been created, it waits for a parameterized number of events

before creating an ELEMENT CITY BUILDING on the side

opposite the Street. The sidewalks are produced solely by

the Streets and do not reproduce.

Once an ELEMENT CITY BUILDING has been created,

it begins to reproduce along the Sidewalk. Each building

has a TYPE parameter, symbolizing the type of building it

is, which corresponds directly to the building type limita-

tion. These buildings only grow up to a maximum size, al-

lowing diversity on every city block. Once a building has

been created, it also gains the capacity to create an ELE-

MENT CITY CAR in place of a nearby Street.

The ELEMENT CITY CAR simply drives along a Street

by swapping in the direction of the Street it was created in

place of using the single-lane swapping method described

above. A car has a limited amount of events before it runs

out of gas and is consumed by the system. If a Car has an

event next to a Building of the same type as its destination

parameter, it is consumed and the remaining fuel is reported.

Once the cars begin moving around the city, they may

hit a dead end or the edge of the universe (in which cases

they perform a U-turn), or they will run into an intersection.

This is where routing takes place. The cars, upon arriving

at an intersection, wait for the intersection to make an intel-

ligent decision regarding which direction they will travel in

next. The intersection ultimately moves the car onto one of

its bordering streets which allows the car to continue in its

new direction.

Figure 2: Sidewalks contain a map of their city block dis-

tance from every building type.

Routing methods

We will be examining several local routing algorithms in this

city.

Random routing

This routing algorithm is the most basic of them all. When

an intersection sees a neighboring car, it will choose one of

the streets it borders at random which the car did not come

from and will send the car in that direction. This routing al-

gorithm is akin to wandering around the city in no organized

manner.

Sidewalk-Only routing

This routing algorithm takes advantage of the state inside of

the Sidewalks which border the streets. Sidewalks build a



Figure 3: Summary of routing methods in terms of car arrival accuracy, averaged over ten simulated runs.

local map of the buildings near them. They store an n length

array of 2-bit numbers, where n is the number of building

types in the city. This array stores the distance of this Side-

walk from the building of each type, measured in city blocks

(see Fig.2). This local-city-block map is populated using Al-

gorithm 1.

if I border a building then
Set my map[building type] to 0

end

for each building type t do
Get the minimum m of my neighbor’s maps for t

Set my map[t] to MIN(map[t], m).

if There is a Sidewalk across the street from me, s

then
Set my map[t] to MIN(map[t], (s[t]+1)).

end

end

Algorithm 1: Sidewalk Mapping.

This map is ultimately read by an Intersection when a

Car is waiting. The Intersection examines the Sidewalks

surrounding neighboring Streets and places the Car on the

Street which is between the blocks closest to its destination.

If a car just came from this direction, it will pick the second

best choice, since making a car perform a U-turn will never

help it approach its destination unless it is facing a dead-end.

Unfortunately, sidewalk-Only routing is prone to prob-

lems. When an intersection decides to send a car down a

dead end, it does not remember this and cars of this type

will to be sent to this dead-end every time they arrive.

Intersection-Canalization routing

Intersection-Canalization routing builds upon Sidewalk-

Only routing. The intersections are now given a small rout-

ing table which remembers the last direction that it sent

a car of each type. Canalization prevents the problem

that Sidewalk-Only routing creates by re-evalutaing its rout-

ing choices less often and trusting its memory of the city.

Training traffic lights using methods more complicated than

canalization also proves to be successful(Tubaishat et al.,

2007) which seems to imply that a smarter traffic light may

be more correct.

Results

These three routing algorithms each ran for ten simulated

runs, each run generating its own city from a single street

atom. The results from each run were then averaged and

plotted into Fig.3 and Fig.4. These cities were generated

with parameters which placed buildings densely (see Fig.5),

as is the case with enviornments like New York City.



Figure 4: Summary of routing methods in terms of gas usage of correctly routed cars, averaged over ten simulated runs.

Random routing

It may be surprising to hear that randomly routing cars

around these cities is an algorithm that performs relatively

well. Over ten runs, the limiting behavior of the random

routing algorithm suggests that cars reach their destinations

91% of the time without running out of gas. The density

of the city is most likely what helps these cars in the long

run because, although the building types are uniformly dis-

tributed, city blocks are never far apart from blocks which

have similar buildings. However, this also means that one

in ten dispatched cars does not reach its destination before it

runs out of gas.

The cars that do reach their destinations do it in a rel-

atively short amount of time, at an average of 29.4 events

after being dispatched.

Sidewalk-Only routing

Routing cars using the Sidewalk-Only technique is an im-

pressive improvement over the Random routing technique.

Even with the dead-end faults that this algorithm exhibits

described earlier, dispatched cars following road signs reach

their destinations at a rate of 98.2% after the city growth

stage. This is an improvement from nearly 1

10
cars not mak-

ing it to their destinations to less than 1

50
cars. This algo-

rithm helps nearly five times as many vehicles reach their

destination.

Destination accuracy is not the only success shown by

Sidewalk-Only routing over Random routing; the average

time taken for a car to reach its destination decreases to

20.05 events, which is a 29.11% decrease in gas usage.

Intersection-Canalization routing

Routing cars using the Intersection-Canalization technique

yields an improvement over Sidewalk-Only routing, mainly

because it avoids sending many cars down dead-ends in

the city. However, this technique is only slightly better at

Sidewalk-Only routing in getting cars to their destinations,

at a rate of 98.22% after the city growth stage and a short

training time, an 0.02% increase from Sidewalk-Only rout-

ing.

Although cars are routed with only a small increase in

correctness, success is found when calculating the average

time taken for a car to reach its destination, which in this

case is 17.7 events. This is a 15% decrease in gas usage

from Sidewalk-Only routing. This means that on average,

every car in the city is can operate with only 85% as much

fuel as was needed in Sidewalk-Only routing.

Conclusion

These routing algorithms show that, in an environment

which is new to the traffic being routed or has very limited



Figure 5: A city after its City Growth stage on a medium MFM grid.

visibility, a routing system that uses street signs and inter-

section canalization is rather effective at helping traffic get to

where it needs to go. These increases in efficiency may seem

small, but over time more people are spending far less time

traveling than people who are hopelessly lost otherwise.

Unfortunately, as stated earlier, this routing method does

not seem to be applicable in a real city because of the large

amount of information that people are able to access at any

given time. However, considering that these elements are

rather simple, this method works well with the limited re-

sources given by the MFM. The small bit fields used on the

MFM also make these routing systems less effective, con-

sidering that another 20 bits in each atom would allow for

the sidewalk maps to extend from seeing 3 blocks away to

seeing 7 blocks away. These limitations are what developers

of the MFM must be wary of and ready to work around.

We can show that all of our design constraints listed ear-

lier have all been satisfied by Intersection-Canalization rout-

ing. Clearly, the first consideration is satisfied by sidewalk

mapping. This routing method is fast, because every car is

routed in O(n) time where n is the number of building types

(and currently, there cannot be more than 24 building types

given the atom body size limitations of the MFM). It is ac-

curate, becase 98.2% of cars arrive safely at their destina-

tions. Is is simple, since all routing decisions are made us-

ing the simple algorithm described by Algorithm1. Finally,

it is flexible, since the unused data inside of each car (67

bits if we do not track gas usage, or 59 bits if we do) is large

enough to be considered a general-use packet for any kind of

data transmission. Finally, the use of self-organizing streets

helps increase the robustness of the city past what we would

hope to get out of a self-assembled city (Misteli, 2001).

Considering that this system takes all of our design con-

siderations into account, we can see that this is an effective

routing algorithm for any kind of information. It can be seen

that a city can be construced in a way that allows traffic to

carry data across tile boundaries, effectively allowing this

routing system to route data between other computational

parts of the MFM(for instance, this system can be placed

on one end of a DEMON HORDE SORT(Ackley and Small,

2014) to route sorted data to another part of the machine).

Future Work

In the future on a new build of the MFM, it would be in-

teresting to study the effects that larger atom bodies have on

these routing methods. As a whole, larger atom bodies on

the MFM would allow for even more complicated routing

methods. The adaptive traffic lights studied in (Tubaishat

et al., 2007) could theoretically be implemented, as well as

a host of other traffic simulations. This study shows that



small bit fields work, but leaves us wondering if more state

could improve these routing methods.

The MFM is still a young architecture which is very

much in development. However, it can be seen by this

and other projects that it is a promising architecture that

should be used (maybe after certain parameters like atom

sizes are tweaked) for further research. I encourage anyone

who wishes to use a cellular automata in the future to try

their hand at using the MFM, as it scales well and can han-

dle any general-purpose cellular automata.

On top of the routing research done in this paper, this

project shows that the MFM (or, rather, the MFM simula-

tor) is able to produce visually stunning results. In the future

it would be interesting to create other visual projects on this

architecture.

See Also

Each routing algorithm is exhibited in the following videos:

Random routing:

Sidewalk-Only routing:

Intersection-Canalization routing:

The source code for this project is provided as an open-

source fork of the MOVABLE FEAST MACHINE V2 code-

base, available at:

http://github.com/sixstring982/MFMv2-city

Acknowledgements

I would like to thank UNM Professor Dave Ackley for al-

lowing me to aide in the research of the Movable Feast Ma-

chine over the past year. I would also like to thank Google

for funding this research.

References

Ackley, D. H., Cannon, D. C., and Williams, L. R. (2013). A mov-
able architecture for robust spatial computing. The Computer
Journal, 56.12:1450–468.

Ackley, D. H. and Small, T. R. (2014). Indefinitely scalable com-
puting = artificial life engineering. In Sayama, H., Rieffel, J.,
Risi, S., Doursat, R., and Lipson, H., editors, Artificial Life
XIV, pages 606–613. MIT Press, Cambridge, MA.

Brockfeld, E., Barlovic, R., Schadschneider, A., and Schreck-
enberg, M. (2001). Optimizing traffic lights in a cellu-
lar automaton model for city traffic. Physical Review E,
64(5):056132.

Clarke, G. u. and Wright, J. W. (1964). Scheduling of vehicles from
a central depot to a number of delivery points. Operations
research, 12(4):568–581.

Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., and
Semet, F. (2002). A guide to vehicle routing heuristics. Jour-
nal of the Operational Research society, pages 512–522.

Gershenson, C. and Rosenblueth, D. A. (2009). Modeling self-
organizing traffic lights with elementary cellular automata.
arXiv preprint arXiv:0907.1925.

Hsu, M. K., Huang, Y., and Swanson, S. (2010). Grocery store
image, travel distance, satisfaction and behavioral intentions:
Evidence from a midwest college town. International Journal
of Retail & Distribution Management, 38(2):115–132.

Lämmer, S. and Helbing, D. (2008). Self-control of traffic lights
and vehicle flows in urban road networks. Journal of Statis-
tical Mechanics: Theory and Experiment, 2008(04):P04019.

Lu, Q. and Dessouky, M. (2004). An exact algorithm for the mul-
tiple vehicle pickup and delivery problem. Transportation
Science, 38(4):503–514.

Misteli, T. (2001). The concept of self-organization in cellular ar-
chitecture. The Journal of Cell Biology, 155.2:181–86.

Nagel, K. and Schreckenberg, M. (1992). A cellular automaton
model for freeway traffic. Journal de physique I, 2(12):2221–
2229.

Nagel, K., Wolf, D. E., Wagner, P., and Simon, P. (1998). Two-lane
traffic rules for cellular automata: A systematic approach.
Physical Review E, 58(2):1425.

Parker, L. (2014). Not just playing around anymore: Games for
change uses video games for social projects. The New York
Times, April 22 2014.

Tubaishat, M., Shang, Y., and Shi, H. (2007). Adaptive traffic
light control with wireless sensor networks. In Proceedings
of IEEE Consumer Communications and Networking Confer-
ence, pages 187–191.

Wiering, M., Vreeken, J., Van Veenen, J., and Koopman, A. (2004).
Simulation and optimization of traffic in a city. In Intelligent
Vehicles Symposium, 2004 IEEE, pages 453–458. IEEE.


