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Abstract—Dynamic Information Flow Tracking (DIFT) is
a technique for tracking information as it flows through a
program’s execution. DIFT systems track information by
tainting data and propagating the taint marks throughout
execution. These systems are designed to have minimal
overhead and thus often miss indirect flows. If indirect
flows were propagated naively overtainting would result,
whereas propagating them effectively causes overhead. We
describe the design and evaluation of a system intended for
offline analysis, such as reverse engineering, that can track
information through indirect flows. Our system, V-DIFT,
uses a vector of floating point values for each taint mark.
The use of vectors enables us to track a taint’s provenance
and handle indirect flows, trading off some performance for
these abilities. These indirect flows via control and address
dependencies are thought to be critical to tracking informa-
tion flow of cryptographic programs. Therefore we tested V-
DIFT’s effectiveness by automatically locating keys in simple
programs that use a variety of symmetric cryptographic
algorithms found in three common libraries. This application
does not require that the program run in real time, just
that it be much faster than a manual approach. Our V-
DIFT implementation tests average 3.6 seconds, and with
the right parameters can identify memory locations that
contain keys for 24 out of 27 algorithms tested. Our results
show that many cryptographic algorithm implementations’
address and/or control dependencies must be tracked for
DIFT to be effective.

I. INTRODUCTION

Modern Dynamic Information Flow Tracking (DIFT)
(often called Dynamic Taint Analysis or DTA) systems
(see, e.g., [20], [6], [17], [4], or [12]) are designed to
be run on production systems. Thus, they were created
with performance in mind with the focus being on simple
applications such as tracking malicious inputs from the
network into control data or tracking how data is copied
throughout a system.

In this paper we consider a different design point: appli-
cations where propagating taint through indirect flows is
necessary and where relatively high performance overhead
is tolerable. We consider the following problem: Given a
program binary and an input, analyze a single trace of
the program and identify any cryptographic keys that are
used anywhere in the trace. Analysis of a single trace is
important, because in reverse engineering it is often not
realistic to expect the analyst to provide the tool with a
representative set of traces. Our V-DIFT implementation
can accomplish this based entirely on information flow

analysis, without any prior knowledge or heuristics about
the cryptographic algorithm itself.

Our overarching goal is not to replace modern DIFT
systems, but to apply DIFT to new areas of research that
can benefit from it through offline analysis. However to
accommodate these new applications, tradeoffs must be
made, namely, performance for the ability to track indirect
information flows.

A. Adequate Information

What modern DIFT systems possess in speed they lack
in information necessary to meet our desired applications.
Being only able to taint a location with a tag (many
of which are binary) is very limiting and can cause
problems with information flow tracking; the worst being
the problem of overtainting. Overtainting usually occurs
when the instruction pointer (EIP in x86) becomes tainted,
which leads to the program’s entire memory to quickly
becoming tainted. Thus no useful information can be
derived from the DIFT system. Our focus in this paper is
on measuring the actual information flow in a meaningful
way. We accomplish this by using vectors as taint marks.

Another problem that stems from a lack of information
in DIFT systems is taint attribution, a problem that is
common in systems with binary taint marks. Being able
to attribute the taint of a memory location to its source
is essential to the task of locating cryptographic keys in
memory. These problems exist because of current systems’
lack of ability to handle indirect flows in a general way.
Indirect flows can take the form of what Suh et al. [20]
define as address and control dependencies.

In V-DIFT we use vectors as a representation for taint
tags, as well as provide a way to combine them so that they
are much more useful in telling us about the information
flow of a program trace. Vectors allow us the ability to
easily combine taint and propagate information about its
source. Using vectors allows the use of simple linear
algebra to approximate quantitative information flow, so
that we are never faced with the dilemma of whether
or not to propagate taint. Propagating taint is simply a
matter of degree, with taint being combined via vector
addition, and comparing taint values can be accomplished
by simply taking the cosine similarity. This allows us to
answer important questions of attribution as well as use
the amplitude of taint marks as a proxy for how much



mutual information there is between a taint sink and any
taint source.

V-DIFT’s use of vectors does not give a complete
picture of the information flow but an approximation.
This is due to the fact that we are only approximat-
ing information flow instead of strictly adhering to any
information-theoretic definition of quantitative information
flow. This relaxation of information flow allows us to
“tease out” useful information from the trace without
over- or undertainting rendering the results useless, thus
supplying adequate information for analysis.

B. Terminology

The vocabulary used when discussing DIFT until now
has largely been the same as static information flow
described by Denning [9]. In this paper, we propose sep-
arate terminology for static systems vs. dynamic systems,
because the goals of each are different and the infor-
mation available is not equivalent. We view explicit and
implicit flows as being properties of a program and thus
useful when describing static information flow analyses.
Similarly, we use direct and indirect for describing the
information flow analysis of program runs or traces. This
makes implicit and explicit flows properties of programs,
and direct and indirect flows properties of traces. Since
DIFT can be viewed as a single-pass analysis of a program
trace, direct and indirect flows are the terminology we
prefer in this paper.

We use the term indirect because some implicit flows
cannot be measured in a DIFT system that does not
execute both paths of the code. For example for a trace
through this code:
y = 1;
if (x == 0) {

y = 2;
}

. . . we can never know that information flowed from x to
y when x is non-zero because the code y = 2 was never
executed. This is an implicit flow. By contrast, an indirect
flow only occurs when x is equal to 0. In the case where
x is non-zero the assignment y = 2 is never observed and
there is no flow, except an implicit flow which DIFT can
never reason about because it operates on single traces.
We define an indirect flow as occurring when information
dependent on program input determines from where and
to where information flows, so a DIFT system can only
measure this flow of information from x to y when the
indirect flow actually occurs. Thus, more traces of the
program with different inputs yield different information
flows.

By contrast, direct flows are flows that will occur on
any execution of an instruction regardless of the program’s
input. For example in: add eax ebx it is clear that
information always flows from ebx to eax (note that in
x86 the result of the addition is stored in eax). By this
definition copy and computation dependencies are direct
flows.

C. Contributions

This paper makes the following contributions:

• We propose V-DIFT, a general and practical solution
to the problem of overtainting that uses vectors as
tags and approximates quantitative information flow
for offline analysis.

• We provide insights about the overtainting problem.
Specifically, indirect flows result from a lack of nec-
essary information when a DIFT system must make
a propagation decision. Separating this problem from
the more general problem of implicit flows suggests
that indirect flows can be solved and need not be a
fundamental limitation of DIFT systems.

• We demonstrate a DIFT-based method for locating
the source of cryptographic keys based entirely on
information flow, i.e., without relying on any informa-
tion or heuristics about the cryptographic algorithm
employed or making any assumptions about how it
is implemented.

II. RELATED WORK

All work on DIFT systems either assumes that the
information flow will be reasoned about statically or uses
simple heuristics that only work in narrow domains and
do not generalize. To the best of our knowledge, our work
is the first to handle indirect flows in a general way.

TaintBochs [3] is the first paper that we know of to
apply DIFT in the modern sense. TaintBochs was used to
analyze data lifetime for privacy reasons. Shortly after,
several research groups concurrently and independently
developed DIFT as a way to track malicious inputs and
prevent attacks [20], [6], [17], [5]. These early DIFT
systems largely ignored indirect flows, or had propagation
rules based on very simple heuristics. For example, in Suh
et al. [20] address dependencies are not propagated if the
address is calculated using a scaled index base (an x86
construct for calculating addresses). In addition, control
dependencies were not propagated at all in Suh et al..

In Minos [6], [7] many assumptions were made, such
as address dependencies only being propagated for 8- and
16-bit loads and stores, but not for 32-bit loads and stores
(Minos was based on a 32-bit system). For a detailed
discussion see Crandall et al. [7], Slowinska and Bos [19],
and King et al. [13].

Later research in DIFT systems attempted to address
indirect flows. For example, many DIFT system frame-
works that are designed for flexibility [8], [18], [21],
[4] enable address and/or control dependencies to be
tracked, but offer no solution to the overtainting problem.
Panorama [24] relies on the user to manually label for
which address and control dependencies the DIFT system
should propagate tags.

DTA++ [12] only taints indirect flows deemed culprit
implicit flows found through static analysis. This requires
multiple traces retrieved through special test executions
that fully exercise the portion of code that potentially has
undertainting when executed ignoring control dependen-



cies. DTA++ also suffers from a lack of byte-level taint
attribution.

V-DIFT offers a way to handle indirect flows, that is
not only general, but can be applied to a single trace
(important for reverse engineering applications) and is
byte-level attributable.

The main distinguishing features between existing anal-
yses of cryptography in binary programs and our work
are: (1) past work focuses on locating and identifying
the cryptographic algorithm while our work focuses on
locating the key; and, (2) past work relies on both the in-
put/output relationship of cryptography algorithms and de-
tailed knowledge about specific cryptography algorithms
(e.g. [2], [25], and [14]), while our work simply examines
the information flow of a trace and requires no algorithm-
specific information about the symmetric cipher. V-DIFT
allows us to define symmetric algorithms in general terms
based on the key. Specifically, we can look for a small
set of contiguous bytes that affect a significant amount of
the output in a way that is correlated. Further analysis to
detect which cryptographic algorithm is being used once
the key is located is relatively straightforward.

Gröbert et al. [10] finds cryptographic primitives in
binaries and identifies the algorithm. Their approach is
relatively general compared to other past works, but
relies on heuristics about instruction mixes, sequences,
and loops. Because their technique requires no algorithm-
specific signatures, templates, high-level reference imple-
mentations, and their experimental methodology is based
on readily-available, open source libraries, we based our
experimental methodology on that of Gröbert et al.. Wang
et al. [22] and Caballero et al. [1] were earlier works
that are similar works to Gröbert et al.. More recently,
Hosfelt [11] presents an approach that is also similar to
Gröbert et al. but is based on machine learning.

Whelan et al. [23] propose a method to characterize
cryptography using their PIRATE system, which is a DIFT
system. However they only illustrate the correlation be-
tween inputs and outputs of cryptographic algorithms.
PIRATE required the tracking of address dependencies to
be turned on to track AES CBC mode correctly. Lutz [15]
presents an approach to analyze cryptography that is based
on DTA [17], suffering from its limitations, and the DIFT
(i.e., taint) analysis is only a small part of Lutz’s technique.
Ming et al. [16] also present cryptography algorithm
detection as one application of DIFT, in a manner that
is similar to Whelan et al..

III. V-DIFT IMPLEMENTATION

We use vectors as taint marks to store and utilize infor-
mation unavailable to other DIFT systems. This facilitates
both constant time combination of taint as well as taint
attribution. In this section we will discuss how vectors are
handled in our system and how the information they carry
is assigned, propagated, and utilized.

We developed V-DIFT in C and designed it to work
with 32-bit x86 GNU/Linux executables. V-DIFT forks,
attaches, and single-steps through processes using similar

APIs as a conventional debugger like GDB. As it single
steps, V-DIFT extracts a trace of an attached process in
real time, allowing our system to access any memory
or address location value in order to calculate address
lookups. Each vector is our V-DIFT system contains
n = 200 floating point values.

Like traditional DIFT systems, V-DIFT assigns taint
at designated sources. V-DIFT considers any input made
through the read system call (SYS_read) a source. Ad-
ditionally, any region of memory can be designated as a
source, causing any reads from that memory to be tainted.
Memory ranges are designated through a file that V-DIFT
reads on startup. To track data provenance, each byte of
source data is assigned a random taint vector that is, with
high probability, close enough to orthogonal to other taint
marks in the system for the results of DIFT analysis to be
meaningful.

Conceptually, we want to combine taint vectors such
that each vector’s length reflects the amount of mutual
information the vector carries with any given byte of
the taint source. Our logic for combining taint vectors
estimates this, but we do not constrain ourselves to any
strict information-theoretic model. We desire that if the
vectors are perpendicalar, their combined vector length
increases, whereas if they are parallel, i.e., the same
taint vector, the vector length is unchanged since new
information cannot be created by adding information to
itself.

V-DIFT combines vectors a and b by computing their
combination c = a+b. Then, the length of c, ‖c‖, is scaled
such that it is equal to
min(γ,max(‖a‖, ‖b‖) + min(‖a‖, ‖b‖) (1− sim(a, b)n))
where n is the number of elements in each vector, γ is
a user-defined parameter, and sim is the cosine similarity
function.

In addition to γ, V-DIFT has two other user-designed
parameters that affect taint propagation: α and β, which
affect the propagation of two kinds of indirect flow. α
affects taint propagated by the instruction pointer, and
β affects taint propagated by address dependencies, i.e.,
when memory or register locations are used to calculate
an address. See Table I for a complete list of how each
type of dependency is handled and how the parameters
affect each type of dependency.

In V-DIFT, the sink is the trigger for measuring a
traced program’s taint marks. This measurement can be
triggered at any point during program execution. To detect
cryptographic keys in memory our sink is any write
(SYS_write) system call, since we are looking for
output bytes heavily influenced by taint marks in each
program.

Every time a sink is reached, V-DIFT uses the cosine
similarity function to compare the taint vector of each
output byte with every initial source vector, creating an m
by n matrix, where the rows and columns are the input and
output respectively. Each element in the matrix represents
the similarity between the particular input and output byte.
This allows us to determine how much influence each



Dependency Combination Example
Computation ~dst := ~src1 + ~src2 + . . . add eax ebx → ~eax := ~eax + ~ebx + ~eip · α
Copy ~dst := ~src1 + ~src2 ,+ . . . mov eax ebx → ~eax := ~ebx + ~eip · α
Address ~dst := ( ~src1 + ~src2 + . . .) · β + ~drf lea eax [ebx + 4 * ecx] → ~eax := ( ~ebx + ~ecx + ~eip · α) · β + ~drf

Control
~flag1 , ~flag2 , . . . := ~dst
~eip := ~eip + ~flag1 + ~flag2 + . . .

cmp eax esi → ~of , ~sf , ~zf , ~af , ~cf , ~pf := ~eax + ~esi

jnz → ~eip := ~eip + ~zf
Table I

DEPENDENCY TABLE: ~drf IS THE VECTOR OF THE DEREFERENCED ADDRESS. IN THE COMPUTATION DEPENDENCY CASE ~eip IS ALWAYS ONE OF
THE SOURCES ADDED. NOTE THAT EVERY TIME VECTORS ARE COMBINED (REPRESENTED WITH A + IN THIS TABLE) THE VECTOR SCALING

DESCRIBED IN SECTION III IS APPLIED.

source byte had on each output byte.

IV. EXPERIMENTAL METHODOLOGY

In this section, we will discuss the experimental setup,
from the system running V-DIFT to the details of param-
eter testing.

A. System Specifications

Tests were run on an Ubuntu 14.04.3 machine running
Linux kernel 3.16.0-45. The machine had 256 GB of
RAM and an Intel(R) Xeon(R) CPU E5-2637 v2 3.50GHz
processor. The large RAM of the machine performing the
tests is not a reflection of the specifications needed to run
our V-DIFT system but facilitated running multiple tests
simultaneously. No test used more than 300 MB of RAM.

B. V-DIFT Parameters

As discussed in Section III there are three user-defined
parameters: α, β, and γ. We made these values adjustable
to the user because these values may be application-
dependent in order to properly propagate taint in the
system in a meaningful way. We performed a full factorial
experimental design for the parameters to discover the
ideal values for our application.

Each cryptography program was executed 30 times,
once for each configuration of the following parameter
sets for α, β, and γ, respectively: {0.0, 0.0625, 0.125,
0.25, 0.5, 1.0}, {0.0, 0.25, 0.5, 0.75, 1.0}, and {8}.

C. Cryptography Programs

Thorough testing of our system was carried out by
testing multiple algorithms across multiple implementa-
tions. We chose to test OpenSSL (version 1.0.1), BeeCrypt
(version 4.2.1-4), and Crypto++ (version 5.6.1-6), all im-
plementations with available source code. Although there
is not a complete overlap of all implementations, the
Blowfish algorithm was found in all libraries. We also
tested both the ECB and CBC block cipher modes modes
where possible. A total of 27 programs were tested (see
Table II). Each program reads 128 bytes of data, encrypts
the data using one of the algorithms from Table II, and
writes the encrypted data to standard out. Each program
had the symmetric key in the read-only data section, with
typically dozens of kilobytes of other data (such as S-
boxes, initialization vectors, locale info, and other program
constants) to make locating the key very challenging.

All programs were compiled using the -m32 and -static
flags using gcc version 4.8.4. We compile to a 32-bit
binary since our implementation only covers 32-bit x86

machine code. The static compilation made running the
program much faster and allowed us to easily have less
tainted input, as all dynamically loaded libraries would
have been tainted otherwise when they were read.

D. Detecting Keys

Key detection is performed by finding regions of mem-
ory that had a large effect on the program’s output in the
trace. Because the entire key affects every encrypted block
of data, we expect for it to be highly correlated with the
encrypted output. Furthermore, the different bytes of the
key will be correlated with each other as they appear in
the output. To determine the key region, we use the inner
product of the matrix produced from the sink to reveal
how correlated inputs are with other inputs at the time of
output, as well as the input bytes’ effects on the outputs.

Next, we search along the diagonal of the inner product
matrix adding up all values in a square window the size
of the key. This window size is 16x16 (as the keys were
16 bytes and we taint on the byte level) for all algorithms
tested except for DES, as its key size is only 8 bytes.
When the number of tainted inputs is much greater than
300, we find the top 300 regions of memory that are
most correlated with the output and group together any
contiguous memory ranges. These regions are presented
to the user (i.e., the reverse engineer using our tool) to
examine as likely locations of the key.

E. Timing Tests

The average runtime of each algorithm was calculated
by running each program 25 times with α = 0.0, β =
0.25, and γ = 8, since these parameters produced the best
results in terms of locating cryptographic keys. Different
modes for an algorithm are considered separate programs.
The tests were performed sequentially at random.

V. RESULTS

Figure 1 shows the results for ECB and CBC modes.
Specifically, if the cryptographic key is found in the
top memory range suggested to the analyst then that is
represented by a red square, and so on, as according to
the legend.

The most surprising result was that control dependen-
cies were not critical in locating the majority of keys
in memory except in the case of OpenSSL DES where
control dependencies are necessary. This reveals that
implementation is more important than algorithm when
detecting keys based on information flow.



Beecrypt X X
Crypto++ X X X X X X X
OpenSSL X X X X X

AES Blowfish Camelia DES IDEA RC4 RC5 TEA Twofish

Table II
CRYPTOGRAPHIC PROGRAMS
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Figure 1. Key detection rankings for parameters α, β, γ.

Our method for detecting keys had varying degrees of
accuracy. As seen in Figure 1, the library implementations
share more in common with each other than do the algo-
rithms. For example Crypto++ was consistently found in
the second memory range for all algorithms. The Beecrypt
implementations were close in range as well. OpenSSL did
not follow the trend, having caught two and missed two
for CBC and only missed one for ECB.

The values chosen as the best parameters (seen as a
line in Figure 1) match both ECB and CBC modes, but
if the library is known ahead of time the user can adjust
parameters accordingly.

Unintuitively, the best parameters for our application
for α, β, and γ are 0.0, 0.25, and 8, respectively. The
most surprising of these is the α value of 0.0. This means,
for our application of DIFT, tracking control dependencies
was unnecessary and doing so introduced noise into the
system that usually made detecting the key harder. This is
surprising because we believed the algorithms that would
benefit the most from control dependencies were crypto-
graphic algorithms. The low value of β parameter was also
surprising. Our results indicate that address dependencies,
even when only using a fraction of their taint, provide the
information necessary to locate most keys.

The overall average for all tests was 3.6 seconds. The
Blowfish implementations for Crypto++ and OpenSSL
were the outliers taking the longest time to complete,
taking about 20 and 10 seconds respectively. However, the
long runtime does not appear to be due to the algorithm,

but the implementation. This is apparent when comparing
BeeCrypt’s implementation, which completes in about 1
second, to the other two.

Our best results come from α = 0.0, β = 0.25, γ = 8.
Informally, this means “propagate lots of taint for address
dependencies, and none for control dependencies.” Note
that these parameters are specific to the application of
locating cryptographic keys. OpenSSL DES (in both ECB
and CBC modes) is the only cryptographic algorithm im-
plementation for which control dependencies are necessary
to locate the key.

VI. CONCLUSION

We have shown that vectors as taint marks (which we
call V-DIFT) is a viable means of storing information
in a DIFT system, and gives the information necessary
to perform complex tasks such as key location. This is
for two reasons: that vectors allow us to distinguish input
bytes and that they provide a means for handling indirect
flows of information. We have applied V-DIFT to solve
a common problem that reverse engineers face: locating
cryptographic keys. We found that tracking indirect flows,
specifically address dependencies, is important for any
DIFT system to produce meaningful results. Also, the
performance overhead was very acceptable for offline
analysis applications such as reverse engineering. We
anticipate, with further research and development, that V-
DIFT will lead to whole new ways for reverse engineers
to use information flow in their analysis tasks.
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