
5.4 Simple Projections 259

n

Azimuth

Elevation

Figure 5 .20 Ele-
vation and azimuth.

COP

(a)

x

2 z

COP

(b)

x

2 z

Figure 5 .21 Two cameras.

even though the implementation of the two can use the same pipeline, as we
shall see in Sections 5.9 and 5.10.

Just as we did with the model-view matrix, we can set the projection matrix
with the glLoadMatrix function. Alternatively, we can use OpenGL functions
for the most common viewing conditions. First, we consider the mathematics
of projection. We can extend our use of homogeneous coordinates to the
projection process, which allows us to characterize a particular projection
with a 4 × 4 matrix.

5.4.1 Perspective Projections
Suppose that we are in the camera frame with the camera located at the
origin, pointed in the negative z direction. Figure 5.21 shows two possibilities.
In Figure 5.21(a), the back of the camera is orthogonal to the z direction
and is parallel to the lens. This configuration corresponds to most physical
situations, including those of the human visual system and of simple cameras.
The situation in Figure 5.21(b) is more general; the back of the camera can
have any orientation with respect to the front. We consider the first case
in detail because it is simpler. However, the derivation of the general result
follows the same steps and should be a direct exercise (Exercise 5.6).

As we saw in Chapter 1, we can place the projection plane in front of the
center of projection. If we do so for the configuration of Figure 5.21(a), we get
the views shown in Figure 5.22. A point in space (x, y, z) is projected along
a projector into the point (xp, yp, zp). All projectors pass through the origin
and, because the projection plane is perpendicular to the z-axis,

zp = d.

Because the camera is pointing in the negative z direction, the projection
plane is in the negative half-space z < 0, and the value of d is negative.

From the top view of Figure 5.22(b), we see two similar triangles whose
tangents must be same. Hence,

260 Chapter 5 Viewing

x

z
=

xp

d
,

and

xp =
x

z/d
.

Using the side view, we obtain a similar result for yp,

yp =
y

z/d
.

These equations are nonlinear. The division by z describes nonuniform fore-
shortening: The images of objects farther from the center of projection are
reduced in size (diminution) compared to the images of objects closer to the
COP.

We can look at the projection process as a transformation that takes points
(x, y, z) to other points (xp, yp, zp). Although this perspective transformation
preserves lines, it is not affine. It is also irreversible: Because all points along
a projector project into the same point, we cannot recover a point from
its projection.2 We can, however, modify slightly our use of homogeneous
coordinates to handle projections.

When we introduced homogeneous coordinates, we represented a point in
three dimensions (x, y, z) by the point (x, y, z, 1) in four dimensions. Suppose
that, instead, we replace (x, y, z) by the four-dimensional point

p =

wx
wy
wz
w

.

2. In Sections 5.8 and 5.9 we shall see the advantages of OpenGL’s use of an invertible variant
of the projection transformation.

x

y

z

(x
p
, y

p
, z

p
)

(x, y, z)

x

z

(x, z)

z = d
(x

p
,d)

z

y

(y, z)

(y
p
,d)

z = d

(a) (c)(b)

Figure 5 .22 Three views of perspective projection. (a) Three-dimensional view. (b)
Top view. (c) Side view.

5.4 Simple Projections 261

As long as w 6= 0, we can recover the three-dimensional point from its four-
dimensional representation by dividing the first three components by w. In this
new homogeneous-coordinate form, points in three dimensions become lines
through the origin in four dimensions. Transformations are again represented
by 4 × 4 matrices, but now the final row of the matrix can be altered—and
thus w can be changed by such a transformation.

Obviously, we would prefer to keep w = 1 to avoid the divisions otherwise
necessary to recover the three-dimensional point. However, by allowing w
to change, we can represent a broader class of transformations, including
perspective projections. Consider the matrix

M =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

.

The matrix M transforms the point

p =

x
y
z
1

to the point

q =

x
y
z

z/d

.

At first glance, q may not seem sensible; but, when we remember that we have
to divide the first three components by the fourth to return to our original
three-dimensional space, we obtain the results

xp =
x

z/d
,

yp =
y

z/d
,

zp =
z

z/d
= d,

which are the equations for a simple perspective projection. In homogeneous
coordinates, dividing q by its w component replaces q by the equivalent point

q′ =

x
z/d
y

z/d

d
1

=

xp
yp
zp
1

.

262 Chapter 5 Viewing

We have shown that we can do at least a simple perspective projection, by
defining a 4 × 4 projection matrix that we apply after the model-view matrix.
However, we must perform a perspective division at the end. This division
can be made part of the pipeline, as shown in Figure 5.23.

5.4.2 Orthogonal Projections
Orthogonal or orthographic projections are a special case of parallel projec-
tions, in which the projectors are perpendicular to the view plane. In terms of
a camera, orthogonal projections correspond to a camera with a back plane
parallel to the lens, which has an infinite focal length. However, rather than
using limiting relations as the COP moves to infinity, we can derive the pro-
jection equations directly. Figure 5.24 shows an orthogonal projection with
the projection plane z = 0. As points are projected into this plane, they retain
their x and y values, and the equations of projection are

xp = x,

yp = y,

zp = 0.

We can write this result using our original homogeneous coordinates:

xp
yp
zp
1

=

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

x
y
z
1

.

In this case, a division is unnecessary, although, in hardware implementations,
we can use the same pipeline for both perspective and orthogonal transfor-
mations.

We can expand both our simple projections to general perspective and par-
allel projections by preceding the projection by a sequence of transformations
that converts the general case to one of the two cases that we know how to
apply. First, we examine the API that the application programmer uses in
OpenGL to specify a projection.

5.5 Projections in OpenGL
The projections that we developed in Section 5.4 did not take into account
the properties of the camera—the focal length of its lens or the size of the film

Model-view Projection
Perspective

division

Figure 5 .23 Projection pipeline.

5.5 Projections in OpenGL 263

x

y

z

(x, y, z)

z = 0
(x

p
, y

p
, 0)

Figure 5 .24 Orthogonal
projection.

plane. Figure 5.25 shows the angle of view for a simple pinhole camera, like
the one that we discussed in Chapter 1. Only those objects that fit within the
angle of view of the camera appear in the image. If the back of the camera is
rectangular, only objects within a semi-infinite pyramid—the view volume—
whose apex is at the COP can appear in the image. Objects not within the
view volume are said to be clipped out of the scene. Hence, our description
of simple projections has been incomplete; we did not include the effects of
clipping.

Most graphics APIs define clipping parameters through the specification of
a projection. In a computer-graphics system, we allow a finite clipping volume
by specifying front and back clipping planes, in addition to the angle of view,
as shown in Figure 5.26. The resulting view volume is a frustum—a truncated
pyramid. We have fixed only one parameter: We have specified that the COP
is at the origin in the camera frame. We should be able to define each of the
six sides of the frustum to have almost any orientation and position. If we did
so, however, we would make it difficult to specify a view, and rarely do we
need this flexibility. We examine the OpenGL API. Other APIs differ in their
function calls, but incorporate similar restrictions.

5.5.1 Perspective in OpenGL
In OpenGL, we have two functions for specifying perspective views and one
for specifying parallel views. Alternatively, we can form the projection matrix
directly, either by loading it, or by applying rotations, translations, and
scalings to an initial identity matrix. We can specify our camera view by
the function

glFrustum(left, right, bottom, top, near, far)

Angle of view

Figure 5 .25 Definition of a view
volume.

264 Chapter 5 Viewing

COP

View
plane

Front
clipping
plane

Back
clipping
plane

View volume

Figure 5 .26 Front and back clipping planes.

x

y

z

(x
min

, y
min

, 2 near)

(x
max

, y
max

, 2 far)

z = 2 z
min

z = 2 z
max

Figure 5 .27 Specification of a frustum.

These parameters are shown in Figure 5.27. The near and far distances must
be positive and are measured from the COP to these planes, both of which are
parallel to the plane z = 0. Note that, because the camera is pointing in the
negative z direction, the front (near) clipping plane is the plane z = −near ,
and the back (far) clipping plane is the plane z = −far .3 The plane x = left is
to the left of the camera as viewed from the COP in the direction the camera
is pointing. Similar statements hold for right, bottom, and top.
Because the projection matrix determined by these specifications multiplies
the present matrix, we must first select the matrix mode. A typical sequence
is

glMatrixMode(GL_PROJECTION);

3. Measuring distances from the camera to the objects is equivalent to switching from the
right-handed world frame that we used for specifying our objects to a left-handed camera frame.

5.5 Projections in OpenGL 265

x

y

z

h

w

fov

Figure 5 .28 Specification using the field
of view.

glLoadIdentity();

glFrustum(left, right, bottom, top, near, far);

Note that these specifications do not have to be symmetric with respect to
the z-axis, and that the resulting frustum also does not have to be symmetric
(a right frustum). In Section 5.9, we show how the projection matrix for this
projection can be derived from the simple perspective-projection matrix of
Section 5.4.

In many applications, it is natural to specify the angle or field of view.
However, if the projection plane is rectangular, rather than square, then we
see a different angle of view in the top and side views (Figure 5.28). The angle
fov is the angle between the top and bottom planes of the clipping volume.
The OpenGL utility function

gluPerspective(fovy, aspect, near, far)

allows us to specify the angle of view in the up (y) direction, as well as the
aspect ratio—width divided by height—of the projection plane. The near and
far planes are specified as in glFrustum. This matrix also alters the present
matrix, so we must again select the matrix mode, and usually must load an
identity matrix, before invoking this function.

5.5.2 Parallel Viewing in OpenGL
The only parallel-viewing function provided by OpenGL is the orthogonal
(orthographic) viewing function

glOrtho(left, right, bottom, top, near, far)

266 Chapter 5 Viewing

z = 2 near

x

y

z

(x
min

, y
min

, 2 near)

(x
max

, y
max

, 2 far)

z = 2 z
max

View volume

Figure 5 .29 Orthographic viewing.

Its parameters are identical to those of glFrustum. The view volume is a right
parallelepiped, as shown in Figure 5.29. The near and far clipping planes are
again at z = −near and z = −far , respectively.

In perspective viewing, we require the distances to both the near and far
planes to be positive, because all projectors pass through the COP at the
origin, and objects behind the COP are projected upside down, as compared
with objects in front of the COP. Points in the plane z = 0 cannot be projected
at all, and lead to division by zero. This problem does not exist in parallel
viewing, and there are thus no restrictions on the sign of the near and far
distances in glOrtho.

5.6 Hidden-Surface Removal
We can now return to our rotating-cube program of Section 4.9 and add
perspective viewing and movement of the camera. First, we can use our
development of viewing to understand the hidden-surface–removal process
that we used in our first version of the program. When we look at a cube that
has opaque sides, we see only its three front-facing sides. From the perspective
of our basic viewing model, we can say that we see only these faces because
they block the projectors from reaching any other surfaces.

From the perspective of computer graphics, however, all the faces of the
cube have been specified and travel down the graphics pipeline; thus, the
graphics system must be careful about which surfaces it displays. Concep-
tually, we seek algorithms that either remove those surfaces that should not
be visible to the viewer, called hidden-surface–removal algorithms, or find
which surfaces are visible, called visible-surface algorithms. There are many
approaches to the problem, several of which we investigate in Chapter 8.
OpenGL has a particular algorithm associated with it, the z-buffer algorithm,
to which we can interface through three function calls. Hence, we introduce
that algorithm here, and we return to the topic in Chapter 8.

5.6 Hidden-Surface Removal 267

COP

Projection

plane

z 2

z1

Figure 5 .30 The z-buffer algorithm.

Hidden-surface–removal algorithms can be divided into two broad classes.
Object-space algorithms attempt to order the surfaces of the objects in the
scene such that drawing surfaces in a particular order provides the correct
image. For example, for our cube, if we were to draw the back-facing surfaces
first, we could “paint” over them with the front surfaces and would produce
the correct image. This class of algorithms does not work well with pipeline
architectures in which objects are passed down the pipeline in an arbitrary
order. In order to decide on a proper order in which to render the objects, the
graphics system must have all the objects available so it can sort them into
the desired order.

Image-space algorithms work as part of the projection process and seek
to determine the relationship among object points on each projector. The
z-buffer algorithm is of the latter type and fits in well with the rendering
pipeline in most graphics systems because we can save partial information as
each object is rendered.

The basic idea of the z-buffer algorithm is shown in Figure 5.30. A projector
from the COP passes through two surfaces. Because the circle is closer to the
viewer than the triangle, it is the circle’s color that determines the color that is
placed in the color buffer at the location corresponding to where the projector
pierces the projection plane. The difficulty is determining how we can make
this idea work regardless of the order in which the triangle and the circle pass
through the pipeline.

Let’s assume that all the objects are polygons. If, as the polygons are ras-
terized, we can keep track of the distance from the COP or the projection
plane to the closest point on each projector, then we can update this infor-
mation as successive polygons are projected and filled. Ultimately, we display
only the closest point on each projector. The algorithm requires a depth or
z buffer to store the necessary depth information as polygons are rasterized.
Because we must keep depth information for each pixel in the color buffer,

268 Chapter 5 Viewing

the z buffer has the same spatial resolution as the color buffers. Its depth cor-
responds to the amount of depth resolution that is supported, usually 16, 24,
or 32 bits. This buffer can come from the standard memory in the system, or
special memory can be added at the end of a hardware pipeline. In OpenGL,
the z buffer is one of the buffers that constitute the frame buffer.

The depth buffer is initialized to a value that corresponds to the farthest
distance from the viewer. When each polygon that is inside the clipping
volume is rasterized, the depth of each pixel—how far the corresponding point
on the polygon is from the viewer—is calculated. If this distance is greater
than the value at that pixel’s location in the depth buffer, then a polygon
that has already been rasterized is closer to the viewer along the projector
corresponding to the pixel. Hence, for this pixel we ignore the color of the
polygon and go on to the next pixel for this polygon, where we make the
same test. If, however, the depth is less than what is already in the z buffer,
then along this projector the polygon being rendered is closer than any one
we have seen so far. Thus, we use the color of the polygon to replace the color
of the pixel in the color buffer and update the depth in the z buffer.

For the example in Figure 5.30, we see that if the triangle passes through
the pipeline first, its colors and depths will be placed in the color and z
buffers. When the circle passes through the pipeline, its colors and depths
will replace the colors and depths of the triangle where they overlap. If the
circle is rendered first, its colors and depths will be placed in the buffers. When
the triangle is rendered, in the areas where there is overlap, the depths of the
triangle are greater than the depth of the circle, and at the corresponding
pixels no changes will be made to the frame or z buffers.

Major advantages of this algorithm are that its worst-case complexity is
proportional to the number of polygons and that it can be implemented with
a small number of additional calculations over what we have to do anyway to
project and display polygons. We shall return to this issue in Chapter 7.

From the application programmer’s perspective, she must initialize the
depth buffer and enable hidden-surface removal by using

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

glEnable(GL_DEPTH_TEST);

Here we use the GLUT library for the initialization and specify a depth buffer
in addition to our usual RGB color and double buffering. The programmer
can clear the buffer as necessary for a new rendering by using

glClear(GL_DEPTH_BUFFER_BIT);

5.6.1 Culling
For a convex object, such as the cube, we could simply remove all the faces
pointing away from the viewer, and we could render only the ones facing the

5.7 Interactive Mesh Displays 269

viewer. We consider this special case further in Chapter 7. We can turn on
culling in OpenGL by simply enabling it

glEnable(GL_CULL);

However, culling works only if we have a convex object. Often we can use
culling in addition to the z-buffer algorithm (which works with any collection
of polygons). For example, suppose that we have a scene composed of a
collection of n cubes. If we use only the z-buffer algorithm, we pass 6n polygons
through the pipeline. If we enable culling, half the polygons can be eliminated
early in the pipeline, and thus only 3n polygons pass through all stages of the
pipeline.

5.7 Interactive Mesh Displays
We can now combine our understanding of projections and modeling three-
dimensional concepts to build an interactive application. We will use a simple
mesh model that has many of the features of complex CAD models.

5.7.1 Meshes
We now have the tools to walk through scene interactively by have the camera
parameters change in response to user input. Before introducing the interface,
let’s consider another example of data display: mesh plots. A mesh is a
set of polygons that share vertices and edges. A general mesh, as shown in
Figure 5.31, may contain polygons with any number of vertices and require
a moderately sophisticated data structure to store and display efficiently.
Rectangular and triangular meshes, such as we introduced in Chapter 2 for
modeling a sphere, are much simpler with which to work and are useful for
a wide variety of applications. Here, we introduce rectangular meshes for the
display of height data.

One way to represent surfaces is though a function of the form

z = f(x, y).

Thus, for each x, y we get exactly one z as in Figure x. Such surfaces are
sometimes called 2 1/2 dimensional surfaces. Although not all surfaces can be
represented this way, these surfaces have many applications. For example, if
we use an x, y coordinate system to give positions on the surface of the earth,
then we can use a function to represent the height or altitude at each location.
In many situations, such as when we discussed contour maps in Chapter 2,
the function f is known only discretely and we have a set of samples or
measurements of experimental data of the form

zij = f(xi, yj).

270 Chapter 5 Viewing

Figure 5 .31 Mesh.

We assume that these data points are equally spaced such that

xi = x0 + i∆x, i = 0, . . . , N ,

yj = y0 + j∆y, j = 0, . . . , M ,

where ∆x and ∆y are the spacing between the samples in the x and y
directions, respectively. If f is known analytically, then we can sample it
to obtain a set of discrete data with which to work.

One simple way to generate a surface is through either a triangular or a
quadrilateral mesh. We can use the four points zij, zi+1, j, zi+1, j+1, and zi, j+1

to generate either a quadrilateral or two triangles. Thus, the data define
a mesh of either NM quadrilaterals or 2NM triangles. The corresponding
OpenGL programs are simple. The display callback need only go through the
array forming quads, triangles, quads, or quad strips from adjacent rows. For
quads, the heart of the display callback is simply

for(i=0;i<N-2;i++) for(j=1;j<M-2;j++)

glBegin(GL_QUADS)

glVertex3i(i,z[i][j],j);

glVertex3i(i+1,z[i+1][j],j);

glVertex3i(i+1,z[i+1][j+1],j+1);

glVertex3i(i,z[i][j+1],j+1);

glEnd();

Figure 5.32 shows a rectangular mesh from height data for a part of Honolulu,
Hawaii. These data are available on the web site for the book.

5.7 Interactive Mesh Displays 271

Figure 5 .32 Mesh plot of Honolulu data.

5.7.2 Walking Through a Scene
The next step is to specify the camera andadd interactivity. In this version,
we use perspective viewing, and we allow the viewer to move the camera by
depressing the x, X, y, Y, z, and Z keys on the keyboard, but we have the
camera always pointing at the center of the cube. The gluLookAt function
provides a simple way to reposition and reorient the camera.

The changes that we have to make to our previous program (Section 4.9)
are minor. We define an array viewer[3] to hold the camera position. Its
contents are altered by the keyboard callback function keys

void keys(unsigned char key, int x, int y)

{

if(key == ’x’) viewer[0]-= 1.0;

if(key == ’X’) viewer[0]+= 1.0;

if(key == ’y’) viewer[1]-= 1.0;

if(key == ’Y’) viewer[1]+= 1.0;

if(key == ’z’) viewer[2]-= 1.0;

if(key == ’Z’) viewer[2]+= 1.0;

glutPostRedisplay();

}

The display function calls LookAt using viewer for the camera position, and
uses the origin for the “at” position. The cube is rotated, as before, based on
the mouse input. Note the order of the function calls in display that alter
the model-view matrix:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

gluLookAt(viewer[0],viewer[1],viewer[2], 0.0, 0.0, 0.0,

0.0, 1.0, 0.0);

272 Chapter 5 Viewing

glRotatef(theta[0], 1.0, 0.0, 0.0);

glRotatef(theta[1], 0.0, 1.0, 0.0);

glRotatef(theta[2], 0.0, 0.0, 1.0);

/* draw mesh or other objects here */

mesh();

glFlush();

glutSwapBuffers();

}

We can invoke glFrustum from the reshape callback to specify the camera lens
through the following code:

glViewport(0, 0, w, h);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

if(w<=h) glFrustum(-2.0, 2.0, -2.0 * (GLfloat) h/ (GLfloat)

w,2.0* (GLfloat) h / (GLfloat) w, 2.0, 20.0);

else glFrustum(-2.0, 2.0, -2.0 * (GLfloat) w/ (GLfloat) h,

2.0* (GLfloat) w / (GLfloat) h, 2.0, 20.0);

glMatrixMode(GL_MODELVIEW);

}

Note that we chose the values of the parameters in glFrustum based on the
aspect ratio of the window. Other than the added specification of a keyboard
callback function in main, the rest of the program is the same as the program
in Section 4.9. The complete program is given in Appendix A. If you run this
program, you should note the effects of moving the camera, the lens, and the
sides of the viewing frustum. Note what happens as you move toward the
mesh. You should also consider the effect of always having the viewer look at
the center of the mesh as she is moving.

Note that we could have used the mouse buttons to move the viewer. We
could use the mouse buttons to move the user forward, or to turn her right
or left (see Exercise 5.14). However, by using the keyboard for moving the
viewer, we can use the mouse to move the object as with the rotating cube in
Chapter 4.

In this example, we are using direct positioning of the camera through
gluLookAt. There are other possibilities. One is to use rotation and translation
matrices to alter the model-view matrix incrementally. If we want to move
the viewer through the scene without having her looking at a fixed point,
this option may be more appealing. We could also keep a position variable in
the program, and change it as the viewer moves. In this case, the model-view
matrix would be computed from scratch, rather than changed incrementally.
Which option we choose depends on the particular application, and often on
other factors, such as the possibility that numerical errors might accumulate
if we were to change the model-view matrix incrementally many times.

5.7 Interactive Mesh Displays 273

5.7.3 Polygon Offset
There are interesting aspects to and modifications we can make to the

OpenGL program. First, if we use all the data, the resulting plot may contain
many small polygons. The resulting density of lines in the display may be
annoying and can contain moiré patterns. Hence, we might prefer to subsample
the data either by using every kth point for some k or by averaging groups of
data points to obtain a new set of samples with smaller N and M .

Second, the data in Figure 5.32 were drawn both as black lines and as white
filled polygons. The lines are necessary to display the mesh. The polygons are
necessary so that data in the front hide the data in the back. Although we
can use OpenGL’s hidden-surface–removal algorithm to display the polygons
correctly, because these data are given in a structured order, we do not need
to carry out a standard hidden-surface–removal process. If we display the data
by first drawing those in back and then proceeding toward the front, the front
polygons automatically hide the polygons farther back. In a system in which
hidden-surface removal is done in software, not using a software z buffer and
displaying the data in this manner may be faster. Data that are structured in
such a manner have been called 2 1

2 dimensional data sets because, although
the data exist in a three-dimensional world, this special organization leads to
efficient rendering algorithms. This structure is not sufficient to represent all
three-dimensional surfaces.

There is one additional trick that we used in the display of Figure 5.32. If
we draw both a polygon and a line loop with the same data, such as in the
code

glColor3f(1.0, 1.0, 1.0);

glBegin(GL_QUADS)

glVertex3i(i,z[i][j],j);

glVertex3i(i+1,z[i+1][j],j);

glVertex3i(i+1,z[i+1][j+1],j+1);

glVertex3i(i,z[i][j+1],j+1);

glEnd();

glColor3f(0.0, 0.0, 0.0);

glBegin(GL_LINE_LOOP)

glVertex3i(i,z[i][j],j);

glVertex3i(i+1,z[i+1][j],j);

glVertex3i(i+1,z[i+1][j+1],j+1);

glVertex3i(i,z[i][j+1],j+1);

glEnd();

then the polygon and line loop are in the same plane. Even though the line
loop is rendered after the polygon, numerical inaccuracies in the renderer
often cause parts of a line loop to be blocked by the polygon with the same
vertices. Although OpenGL lacks a mode to draw a filled polygon with its
edges displayed in a different color, we can enable the polygon offset mode
and set the offset parameters as in

274 Chapter 5 Viewing

glEnable(GL_POLYGON_OFFSET_FILL);

glPolygonOffset(1.0, 0.5);

The first parameter determines the offset; the second is an implementation-
dependent scale factor. These functions move the lines slightly toward the
viewer relative to the polygon, so all the desired lines are now visible.

The basic mesh plot can be extended in many ways. In Chapter 6 we shall
learn to add lights and surface properties to creat a more realistic image and
in Chapter 9 we shall learn to add a texture to the surface. The texture map
might be an image of the terrain from a photograph or other information that
might be obtained by digitization of a map. If we combine these techniques, we
can generate a display in which, by changing the position of the light source,
we can make the image depend on the time of day. It is also possible to obtain
smoother surfaces by using the data to define a smoother surface using one of
the surface types that we shall introduce in Chapter 12.

5.8 Parallel-Projection Matrices
The OpenGL projection matrices are not quite as simple as the projection
matrices that we derived in Section 5.4. In this section and the next, we derive
the OpenGL projection matrices. Because projections are such a key part
of three-dimensional computer graphics, understanding projections is crucial
both for writing user applications and for implementing a graphics system.
Furthermore, although the OpenGL projection functions that we introduced
are sufficient for most viewing situations, views such as parallel oblique are not
provided directly by the OpenGL API. We can obtain such views by setting
up a projection matrix from scratch, or by modifying one of the standard
views. We can apply either of these approaches using the matrices that we
derive.

5.8.1 Projection Normalization
Our approach is based on a technique called projection normalization, which
converts all projections into orthogonal projections by first distorting the
objects such that the orthogonal projection of the distorted objects is the
same as the desired projection of the original objects. This technique is shown
in Figure 5.33. However, because the distortion of the objects is described by
a homogeneous-coordinate matrix, we can, rather than distorting the objects,
concatenate this matrix with a simple orthogonal-projection matrix to form
the desired projection matrix, as shown in Figure 5.34.

5.8 Parallel-Projection Matrices 275

(a) (b)

Figure 5 .33 Predistortion of objects. (a) Perspec-
tive view. (b) Orthographic projection of distorted
object.

5.8.2 Orthogonal-Projection Matrices
Although parallel viewing is a special case of perspective viewing, we start
with orthogonal parallel viewing, and extend the normalization technique
to perspective viewing. We have shown that projection converts points in
three-dimensional space to points on the projection plane, and that the trans-
formation that does this operation is singular. All points along a projector
project into the same point on the projection plane.

Our development breaks projection into two parts. The first converts the
specified viewing volume to standard volume by a nonsingular homogeneous-
coordinate transformation. We apply the transformation that does this con-
version to all our objects by concatenating the transformation matrix with the
model-view matrix. Objects are distorted in a manner that yields the desired
projection through the second step, which is an orthogonal projection on the
transformed objects and volume

xp = x,

yp = y,

zp = 0.

Orthographic

projection

Distort

(normalize)

Figure 5 .34 Normalization transformation.

276 Chapter 5 Viewing

Note that carrying out this orthographic projection requires only setting the
z value to zero, or equivalently just neglecting it, because it is not needed.
The real work in the projection process is in the first transformation. The
reasons for separating the projection process into two parts have to do with
many of the other tasks that we do as part of the viewing pipeline. In
particular, we shall see in Chapter 7 that clipping must be done in three
dimensions, and that the use of the nonsingular transformation matrix allows
us to retain depth information along projectors that is necessary for hidden-
surface removal and shading (Chapter 6). The first part of the process defines
what most systems, including OpenGL, call the projection matrix. OpenGL
also distinguishes between screen coordinates, which are two-dimensional and
lack depth information, and window coordinates, which are three-dimensional
and retain the depth information. In OpenGL, the projection matrix and the
subsequent perspective division convert vertices to window coordinates.

For orthographic projections, the simplest clipping volume to deal with is a
cube whose center is at the origin and whose sides are given by the six planes

x = ±1,

y = ±1,

z = ±1.

This cube is the default OpenGL view volume; equivalently, we can use the
function calls

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

We call this volume the canonical view volume. The final two parameters in
glOrtho are distances to the near and far planes measured from a camera at
the origin pointed in the negative z direction. The near plane is at z = 1.0,
which is behind the camera; the far plane is at z = −1.0, which is in front of the
camera. Although the projectors are parallel and an orthographic projection
is conceptually akin to having a camera with a long telephoto lens located far
from the objects, the importance of the near and far distances in glOrtho is
that they determine which objects are clipped out.

Now suppose that, instead, we set the glOrtho parameters by the function
call

glOrtho(left, right, bottom, top, near, far);

We now have specified a right parallelepiped view volume whose right side
(relative to the camera) is the plane x = left , whose left side is the plane
x = right , whose top is the plane y = top, and whose bottom is the plane
y = bottom. The front is the near clipping plane z = −near , and the back

5.8 Parallel-Projection Matrices 277

is the far clipping plane z = −far . The projection matrix that OpenGL sets
up is the matrix that transforms this volume to the cube centered at the
origin with sides of length 2 shown in Figure 5.35. This matrix converts
the vertices that specify our objects, such as through calls to glVertex, to
vertices within this canonical view volume, by scaling and translating them.
Consequently, vertices are transformed such that vertices within the specified
view volume are transformed to vertices within the canonical view volume,
and vertices outside the specified view volume are transformed to vertices
outside the canonical view volume. Putting everything together, we see that
the projection matrix is determined by the type of view and the view volume
specified in glOrtho, and that these specifications are relative to the camera.
The positioning and orientation of the camera are determined by the model-
view matrix. These two matrices are concatenated together, and objects have
their vertices transformed by this matrix product.

We can use our knowledge of affine transformations to find this projection
matrix. There are two tasks that we need to do. First, we must move the
center of the specified view volume to the center of the canonical view
volume (the origin) by doing a translation. Second, we must scale the sides
of the specified view volume to each have a length of 2 (Figure 5.36). Hence,
the two transformations are T(−(right + left)/2, −(top + bottom)/2, +(far +
near)/2) and S(2/(right − left), 2/(top − bottom), 2/(near − far)), and can be
concatenated together to form the projection matrix

(x
max

,y
max

, z
min

)

(x
min

,y
min

, z
max

)

(1,1, 2 1)

(2 1, 2 1,1)

Figure 5 .35 Mapping a view volume to the
canonical view volume.

Translate Scale

Figure 5 .36 Affine transformations for nor-
malization.

