
Angel: Interactive Computer Graphics, Fifth Edition

Chapter 12 Solutions

12.1 (m + 1)3

12.3 As u varies over (a, b), v = u−a

b−a
varies over (0, 1). Substituting into

the polynomial p(u) =
∑

n
k=0 cku

k, we have
q(v) =

∑

v
i=0 div

i =
∑

n
k=0 ck((b − a)v + a)k. We can expand the products on

the right and match powers of v to obtain {di}.

12.5 Consider the Bernstein polynomial

bkd(u) =

(

d
k

)

uk(1 − u)d−k.

For k = 0 or k = d, the maximum value of 1 is at one end of the interval
(0,1) and the minimum is at the other because all the zeros are at 1 or 0.
For other values of k, the polynomial is 0 at both ends of the interval and
we can differentiate to find that the maximum is at u = k/d. Substituting

into the polynomial, the maximum value is d!
dd

kk

k!
(d−k)d−k

(d−k)! which is always
between 0 and 1.

12.7 Proceeding as in the text, we have the interpolating control point
array q and can form the interpolating polynomial

p(u) = uTMIq,

where MI is the interpolating geometry matrix. This polynomial can also
be written as a Bezier polynomial

p(u) = uTMBp,

for properly chosen control points p. If these representations are to yield
the same polynomial, we must have

p = M−1
B

MIq.

Thus, we find the correct control points to convert the interpolating
polynomial to an equivalent Bezier polynomial and then use our ability to
render Bezier polynomials efficiently.

12.9 If we have two patches that share an edge and subdivide only the
patch on one side of this edge, we can create a crack. The middle shared
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endpoint on the subdivided patch does not have to lie on original edge. We
can either create an extra triangle from the original endpoints and this
middle point to fill the crack or we can triangulate the unsubdivided patch
to meet the new subdivided edge, i.e. we replace the unsubdivided patch
by a set of triangles that use three of the edges of the patch and the
subdivided edge.

12.11 Although the curves are continuous, when we have only G1

continuity, there is a discontinuity in the velocity at which we trace the
curve. In an animation we might see changes in velocity as objects move
along paths described with only G1 continuity.

12.13 One simple test is to use the twist (page 590). Suppose that the four
corners of the patch are given by p00, p01, p10, and p11. These points form
a quadrilateral that will be flat if p00 − p01 + p10 − p11 is zero. A simple
test of flatness is to measure the magnitude of this term.

12.15 For r = 0 we get the line between P0 and P2. For r = 1
2 we get the

parabola u2P0 + 2u(1 − u)P1 + (1 − u)2P2 which passes through P0 and P2.
For r > 1

2 , we obtain hyperbolas, and for r < 1
2 , we obtain ellipses. Thus,

we can use NURBSs to obtain both parametric polynomial curves and
surfaces, and to obtain quadric surfaces.

12.17 We can write the Hermite surface as

p(u, v) = uTMHQMT
Hv = uTAv,

where Q contains the control point data and MH is the Hermite geometry

matrix. If evaluate p, ∂p
∂u

, ∂p
∂v

, and ∂2p
∂u∂v

at the corners we find that the 16
values in the matrix A are the 4 values at the 4 corners of the patch, the
first partial derivatives ∂p

∂v
and ∂p

∂u
at the corners and the first mixed

partial derivative ∂2p
∂u∂v

at the corners

12.19 This process creates a quadric curve which interpolates P0 and P2

and lies in the triangle defined by P0, P1, and P2

12.21 Nothing unusual happens other than the slope at u = 0 must be zero
as long as the control points are still separated in parameter space.

12.25 The required matrix is

M−1
C MB =

1
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6 12 −6 1
−1 3 −3 1
0 0 0 1

−1 3 3 1
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