
Angel ad Shreiner: Interactive Computer Graphics; Seventh

Edition

Chapter 9 Odd Solutions

9.1 If the upper arm is longer than the lower arm then, as a first

approximation, the robot can reach all points within a sphere centered at

the joint on the base. However, this answer is only approximate because

the lower arm cannot move below the level of the base, so a second

approximation is a hemisphere above the base. This approximation has to

have added to it points below the base that can be reached by the lower

arm while the upper arm is parallel to the top of the base, a set of points

that depends on the length of the upper arm and the radius of the base.

If the lower arm is longer than the upper arm, then there will be an

interior sphere radius equal to the difference in the arm lengths that

cannot be reached.

9.3 For this simple example, there are three values of the joint angles and

three coordinates in space, so there are a couple of simple approaches that

can work. One is to use the result of the previous problem to solve for the

joint angles in terms of the given x, y, and z values, using a numerical

method. We could then simply move the joint angles from their initial to

final positions linearly.

A more interesting possibility is to have the tip of the robot arm trace out

a given path, for example, a line segment between the starting and ending

positions. If use the parametric form of this line, we can obtain a set of

positions along it as the parameter varies from 0 to 1. For each of these

intermediate positions, we can numerically solve for the joint angles and

have the joint angles move linearly between successive points. This scheme

would give us an approximately linear trajectory.

In general, the problem is far more difficult because a typical robot will

have many more degrees of freedom and thus there will be many possible

joint angle combinations for a given reachable position. We also have to

worry about factors such as the maximum allowable rate at which joint

angles can change.

9.11 The trick here is to store the average value of the four trees below at

each node. Thus, if we have an 2n
× 2n image, the nodes at level n has the

22n pixel values, the nodes at level n − 1 each store the average of the four

1



pixels below them, and so on. The root node stores the average value of

the image, which is the average of the values stored at its four children.

9.13 Yes. For instance, we can save the state at nodes so that changes in

state cannot propagate.

2


