
Angel and Shreiner: Interactive Computer Graphics, Sixth

Edition

Chapter 7 OddSolutions

7.1 Suppose that we move across a scanline left to right starting on the
outside of a polygon. Assume that 0 corresponds to the background color
and 1 is the edge and fill color. As we move across the scanline we replace
each point by the exclusive or of its value with the value of the point on
the left (which has already been processed). If we start on the outside of
any polygon, we can assume the first point is a 0. Thus as long as we
remain outside the first polygon we generate 0⊕ 0 = 0. When we
encounter the first edge, a 1, we compute 1⊕ 0 = 1 (that is we have a 0
from the last point XORed with the edge). As we proceed inside the
polygon we compute 1⊕ 0 = 1 because we have a 1 from the last XOR and
a 0 from the unfilled point. When we encounter the second edge, we
compute 1⊕ 1 = 0, thus returning to our initial situation

7.3 The major problem is that the environment map is computed without
the object in the scene. Thus, all global lighting calculations of which it
should be a part are incorrect. These errors can be most noticeable if there
are other reflective objects will now not show the reflection of the removed
object. Other errors can be caused by the removed object no longer
blocking light and by its shadows being missing. Other visual errors can be
due to distortions in the mapping of the environment to a simple shape,
such as a cube, and to errors in a two step mapping. In addition, a new
environment map should be computed for each viewpoint.

7.5 Consider a single sine wave that is sampled at a rate just over the
Nyquist rate with the first sample where the sine is zero. The next sample
will be slightly greater than zero, the following slightly greater (in
magnitude) than the second, and so until we get samples about equal to
the maximum of the sine. Subsequent samples will get smaller and smaller
until we get to the minimum of the sine, and then the values will slowly
increase. This pattern will repeat, each cycle taking multiple periods of the
original sine. Visually, this pattern looks like a modulated sine wave. This
visual appearance is due to us seeing the energy of the original samples
and those of the first replica which appears just over the Nyquist rate. Our
eye is a low pass but imperfect filter that lets both pass through. If we add
the two sinusoids using the trigonometric identity we see the sum and
difference frequencies which explains this modulation. The higher

1



frequency (the sum) gives the inner frequency while the difference
generates the slowly varying envelope. These patterns describe the Moire
patterns we see when we move past two fences, one behind the other, when
driving in a car.

7.7 Once aliasing occurs, it is very difficult to remove because the data
that has been aliased at another frequency is mixed with any unaliased
data at that frequency. Thus, if we remove energy at that frequency, we
remove both aliased and unaliased information. On the other hand, if we
remove data at frequencies above the Nyquist frequency before sampling
occurs, although we loose information, we are left with only unaliased data
after sampling occurs.

7.9 The basic problem is that when we use subtractive colors and filters,
the colors modulate each other and there is a multiplicative rather than
additive relationship. Thus, if we have two CMY colors. (C1,M1, Y1) and
(C2,M2, Y2), the resulting color is (C1C2,M1M2, Y1Y2). OpenGL supports
this kind of blending by allowing us to set a source or destination blending
factor that is itself a color, Thus if the source blending factor is the
destination color and destination blending factor is zero, we can create a
filter.

7.13 Suppose that the histogram of the image is a function f(x) where x is
the luminance. The lookup table formed from the function

∫
x

0
g(x′)dx′ will

create an image with a flat histogram. A simple discrete example is
illustrative. Suppose we have a image which is 1024 x 1024 and has 256
values of luminance. If the image we want to create is to have a flat
histogram, there should be 4096 pixels with each luminance value. If we
have the histogram of the original image, we can use this histogram to find
which original luminance values we must use to obtain the lowest 4096
values to assign to 0, the next lowest 4096 to assign to 1, and so on. The
function that describes this process is the integral of the histogram curve.

7.15 In the perspective projection, each row of squares will have a different
size and thus each will appear as a pattern with a different frequency.
Consequently, there will be different Moire patterns. In a parallel
projection, once the checkerboard is oriented, the patterns are all the same.

Consider the side of the cube determined by the plane y = 1. The
projector through a point (x, 1, z) on this plane is on a line from the origin
that intersects the unit sphere x2

p
+ y2

p
+ z2

p
= 1. Points on this line are of

the form (αx,αy, αz). Using the fact that the line passes though the plane

2



y = 1 yields α = 1

yp
and thus xp = xyp and zp = zyp. We can now use the

equation of the sphere to solve for yp = 1√
1+x2+z2

and then xp and zp.

7.27 Generally back-to-front rendering is nice because faces in front always
paint over surfaces behind them. However, the final color is not
determined until the front most object is processed. Suppose you have a
lot of overlapping opaque objects. Then most of the rendering will have
been wasted since only the final faces will determine the image. In
applications such as ray tracers, a front-to-back rendering can be far more
efficient as we can stop processing objects along a ray as soon as we
encounter the first opaque object.

3


