
Angel: Interactive Computer Graphics, Third Edition

Chapter 4 Solutions

4.1 Consider the homogeneous recurrence

y(k) + an−1y(k − 1) + ... + a0y(k − n) = 0,

We know there are n linearly independent solutions {zi(k)}i = 1, .., n and
any solution can be written as

y(k) =
n

∑

i=0

cizi(k)

where the constants {ci} are determined by the initial conditions. A
virtually identical result holds for linear differential equations. If can
regard the sequences {zi(k)}i = 1, .., n as basis vectors and thus the
solution of the homogeneous equation is a point in the vector space
spanned by this basis.
For the inhomogeneous equation

y(k) + an−1y(k − 1) + ... + a0y(k − n) = x(k),

where {x(k)} is a known sequence, if {u(k)} is any solution of this
recurrence, any other solution can be written as

y(k) = u(k) +
n

∑

i=0

cizi(k).

Thus {u(k)} acts as a point and any solution is another point that is
obtained by adding a vector to it.

4.5 There are 12 degrees of freedom in the three–dimensional affine
transformation. Suppose we consider a point p = [x, y, z, 1]T that is
transformed to p′ = [x′y′, z′1]T by the matrix M. Hence we have the
relationship p′ = Mp where M has 12 unknown coefficients but p and p|′

are known. Thus we have 3 equations in 12 unknowns (the fourth equation
is simply the identity 1=1). If we have 4 such pairs of points we will have
12 equations in 12 unknowns which could be solved for the elements of M.
Thus if we know how a quadrilateral is transformed we can determine the
affine transformation.
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In two dimensions, there are 6 degrees of freedom in M but p and p′ have
only x and y components. Hence if we know 3 points both before and after
transformation, we will have 6 equations in 6 unknowns and thus in two
dimensions if we know how a triangle is transformed we can determine the
affine transformation.

4.7 It is easy to show by simply multiplying the matrices that the
concatenation of two rotations yields a rotation and that the concatenation
of two translations yields a translation. If we look at the product of a
rotation and a translation, we find left three columns of RT are the left
three columns of R and the right column of RT is the right right column
of the translation matrix. If we now consider RTR′ where R′ is a rotation
matrix, the left three columns are exactly the same as the left three
columns of RR′ and the and right column still has 1 as its bottom
element. Thus, the form is the same as RT with an altered rotation (which
is the concatenation of the two rotations) and an altered translation.
Inductively, we can see that any further concatenations with rotations and
translations do no alter this form.

4.9 If we do a translation by -h we convert the problem to reflection about
a line passing through the origin. From m we can find an angle by which
we can rotate so the line is aligned with either the x or y axis. Now reflect
about the x or y axis. Finally we undo the rotation and translation so the
sequence is of the form T−1R−1SRT.

4.11 The most sensible place to put the shear is second so that the instance
transformation becomes I = TRHS. We can see that this order makes
sense if we consider cube centered at the origin whose sides are aligned
with the axes. The scale gives us the desired size and proportions. The
shear then converts the right parallelepiped to a general parallelepiped.
Finally we can orient this parallelepiped with a rotation and place it where
desired with a translation. Note that the order I = TRSH will work too.

4.13
R = Rz(θz)Ry(θy)Rx(θx) =











cos θy cos θz cos θz sin θx sin θy − cos θx sin θz cos θx cos θz sin θy + sin θx sin θz 0
cos θy sin θz cos θx cos θz + sin θx sin θy sin θz − cos θz sin θx + cos θx sin θy sin θz 0

− sin θy cos θy sin θx cos θx cos θy 0
0 0 0 1











4.15 It would seem that the matrix R = Rx(45)Ry(45) would be correct
but it is not. After the first rotation by 45 degrees, the resulting side view
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is not symmetric and the required angle of rotation has a cosine of
√

6

3
.

The angle is approximately 35.36 degrees. We consider this problem in
Section 5.3.

4.17 If they are collinear, one vertex is a linear combination of the other
two and the determinant of the matrix











x1 x2 x3

y1 y2 y3

z1 z2 z3











will be zero.

4.21 The determinant of the matrix is 1 + θ2. Repeated multiplications by
this matrix increase the determinant so the resulting operation becomes
further and further from a rotation matrix causing the point to become
further and further from the origin. One remedy is to use the matrix

R =











1 −θ 0 0
θ 1 − θ2 0 0
0 0 1 0
0 0 0 1











,

which has a determinant of 1.

4.23 Using the notation sin θx = sx, cos θx = cx, and likewise for θy and θz,
we find

Rx(θx)Ry(θy)Rz(θz) =











cycz −cysz sy 0
−czsxsy + cxsz −sxsysz + czcz −sxcy 0
−cxsycz + sxsz cxsysz + sxcz cxcy 0

0 0 0 1











.

Using quaternions, we form the three unit quaternions

rx = cos
θx

2
+ sin

θx

2
(1, 0, 0),

rx = cos
θy

2
+ sin

θy

2
(0, 1, 0),

rx = cos
θz

2
+ sin

θz

2
(0, 0, 1).

We can now compute rxryrz using quaternion multiplication and obtain a
resulting quaternion whose elements correspond to those of the matrix.
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