
Angel: Interactive Computer Graphics, Third Edition

Chapter 8 Solutions

8.1 First, consider the problem in two dimensions. We are looking for an α

and β such that both parametric equations yield the same point, that is

x(α) = (1 − α)x1 + αx2 = (1 − β)x3 + βx4,

y(α) = (1 − α)y1 + αy2 = (1 − β)y3 + βy4.

These are two equations in the two unknowns α and β and, as long as the
line segments are not parallel (a condition that will lead to a division by
zero), we can solve for α β. If both these values are between 0 and 1, the
segments intersect.
If the equations are in 3D, we can solve two of them for the α and β where
x and y meet. If when we use these values of the parameters in the two
equations for z, the segments intersect if we get the same z from both
equations.

8.3 If we clip a convex region against a convex region, we produce the
intersection of the two regions, that is the set of all points in both regions,
which is a convex set and describes a convex region. To see this, consider
any two points in the intersection. The line segment connecting them must
be in both sets and therefore the intersection is convex.

8.5 See Problem 6.22. Nonuniform scaling will not preserve the angle
between the normal and other vectors.

8.7 Note that we could use OpenGL to, produce a hidden line removed
image by using the z buffer and drawing polygons with edges and interiors
the same color as the background. But of course, this method was not
used in pre–raster systems.
Hidden–line removal algorithms work in object space, usually with either
polygons or polyhedra. Back–facing polygons can be eliminated. In
general, edges are intersected with polygons to determine any visible parts.
Good algorithms (see Foley or Rogers) use various coherence strategies to
minimize the number of intersections.

8.9 The O(k) was based upon computing the intersection of rays with the
planes containing the k polygons. We did not consider the cost of filling the
polygons, which can be a large part of the rendering time. If we consider a
scene which is viewed from a given point there will be some percentage of

1

the area of the screen that is filled with polygons. As we move the viewer
closer to the objects, fewer polygons will appear on the screen but each
will occupy a larger area on the screen, thus leaving the area of the screen
that is filled approximately the same. Thus the rendering time will be
about the same even though there are fewer polygons displayed.

8.11 There are a number of ways we can attempt to get O(k log k)
performance. One is to use a better sorting algorithm for the depth sort.
Other strategies are based on divide and conquer such a binary spatial
partitioning.

8.13 If we consider a ray tracer that only casts rays to the first intersection
and does not compute shadow rays, reflected or transmitted rays, then the
image produced using a Phong model at the point of intersection will be
the same image as produced by our pipeline renderer. This approach is
sometimes called ray casting and is used in volume rendering and CSG.
However, the data are processed in a different order from the pipeline
renderer. The ray tracer works ray by ray while the pipeline renderer
works object by object.

8.15 Consider a circle centered at the origin: x2 + y2 = r2. If we know that
a point (x, y) is on the curve than, we also know (−x, y), (x, −y),
(−x, −y), (y, x), (−y, x), (y, −x), and (−y, −x) are also on the curve. This
observation is known as the eight–fold symmetry of the circle.
Consequently, we need only generate 1/8 of the circle, a 45 degree wedge,
and can obtain the rest by copying this part using the symmetries. If we
consider the 45 degree wedge starting at the bottom, the slope of this
curve starts at 0 and goes to 1, precisely the conditions used for
Bresenham’s line algorithm. The tests are a bit more complex and we have
to account for the possibility the slope will be one but the approach is the
same as for line generation.

8.17 Flood fill should work with arbitrary closed areas. In practice, we can
get into trouble at corners if the edges are not clearly defined. Such can be
the case with scanned images.

8.19 Note that if we fill by scan lines vertical edges are not a problem.
Probably the best way to handle the problem is to avoid it completely by
never allowing vertices to be on scan lines. OpenGL does this by having
vertices placed halfway between scan lines. Other systems jitter the y

value of any vertex where it is an integer.

2

8.21 Although each pixel uses five rays, the total number of rays has only
doubled, i.e. consider a second grid that is offset one half pixel in both the
x and y directions.

8.23 A mathematical answer can be investigated using the notion of
reconstruction of a function from its samples (see Chapter 7). However, a
very easy to see by simply drawing bitmap characters that small pixels
lead to very unreadable characters. A readable character should have some
overlap of the pixels.

8.25 We want k levels between Imin and Imax that are distributed
exponentially. Then I0 = Imin, I1 = Iminr,
I2 = Iminr2, ..., Ik−1 = Imax = Iminrk−1. We can solve the last equation for

the desired r = (Imax

Imin
)

1

k−1

8.27 If there are very few levels, we cannot display a gradual change in
brightness. Instead the viewer will see steps of intensity. A simple rule of
thumb is that we need enough gray levels so that a change of one step is
not visible. We can mitigate the problem by adding one bit of random
noise to the least significant bit of a pixel. Thus if we have 3 bits (8 levels),
the third bit will be noise. The effect of the noise will be to break up
regions of almost constant intensity so the user will not be able to see a
step because it will be masked by the noise. In a statistical sense the
jittered image is a noisy (degraded) version of the original but in a visual
sense it appears better.

3

