
1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Better Interactive Programs

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Objectives

• Learn to build more sophisticated
interactive programs using

- Picking
• Select objects from the display
• Three methods

- Rubberbanding
• Interactive drawing of lines and rectangles

- Display Lists
• Retained mode graphics

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Picking

• Identify a user-defined object on the display
• In principle, it should be simple because the

mouse gives the position and we should be able
to determine to which object(s) a position
corresponds

• Practical difficulties
- Pipeline architecture is feed forward, hard to go from

screen back to world
- Complicated by screen being 2D, world is 3D
- How close do we have to come to object to say we

selected it?

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Three Approaches

•Hit list
- Most general approach but most difficult to

implement

•Use back or some other buffer to store
object ids as the objects are rendered

•Rectangular maps
- Easy to implement for many applications
- See paint program in text

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Rendering Modes

•OpenGL can render in one of three modes
selected by glRenderMode(mode)
-GL_RENDER: normal rendering to the frame buffer

(default)
-GL_FEEDBACK: provides list of primitives rendered

but no output to the frame buffer
-GL_SELECTION: Each primitive in the view volume

generates a hit record that is placed in a name
stack which can be examined later

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Selection Mode Functions

•glSelectBuffer(): specifies name buffer
•glInitNames(): initializes name buffer
•glPushName(id): push id on name buffer
•glPopName(): pop top of name buffer
•glLoadName(id): replace top name on
buffer

• id is set by application program to identify
objects

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Selection Mode

• Initialize name buffer
•Enter selection mode (using mouse)
•Render scene with user-defined identifiers
•Reenter normal render mode

- This operation returns number of hits

•Examine contents of name buffer (hit
records)

- Hit records include id and depth information

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Selection Mode and Picking

•As we just described it, selection mode
won’t work for picking because every
primitive in the view volume will generate
a hit

•Change the viewing parameters so that
only those primitives near the cursor are
in the altered view volume

- Use gluPickMatrix (see text for details)

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Regions of the Screen

• Many applications use a simple rectangular
arrangement of the screen

- Example: paint/CAD program

• Easier to look at mouse position and determine
which area of screen it is in than using selection
mode picking

drawing area

tool
s

menus

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using another buffer and
colors for picking

• For a small number of objects, we can assign a
unique color (often in color index mode) to each
object

• We then render the scene to a color buffer other
than the front buffer so the results of the
rendering are not visible

• We then get the mouse position and use
glReadPixels() to read the color in the buffer
we just wrote at the position of the mouse

• The returned color gives the id of the object

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Writing Modes

frame buffer

application

‘

bitwise logical operation

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

XOR write

•Usual (default) mode: source replaces
destination (d’ = s)

- Cannot write temporary lines this way because
we cannot recover what was “under” the line in
a fast simple way

•Exclusive OR mode (XOR) (d’ = d ⊕ s)
- x ⊕ y ⊕ x =y
- Hence, if we use XOR mode to write a line, we

can draw it a second time and line is erased!

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Rubberbanding

•Switch to XOR write mode
•Draw object

- For line can use first mouse click to fix one
endpoint and then use motion callback to
continuously update the second endpoint

- Each time mouse is moved, redraw line which
erases it and then draw line from fixed first
position to to new second position

- At end, switch back to normal drawing mode
and draw line

- Works for other objects: rectangles, circles

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Rubberband Lines

initial display
draw line with mouse
 in XOR mode

mouse moved to
 new position

first point

second point

original line redrawn
 with XOR

new line drawn
 with XOR

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

XOR in OpenGL

•There are 16 possible logical operations
between two bits

•All are supported by OpenGL
- Must first enable logical operations

•glEnable(GL_COLOR_LOGIC_OP)

- Choose logical operation
•glLogicOp(GL_XOR)
•glLogicOp(GL_COPY) (default)

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Immediate and Retained Modes

• Recall that in a standard OpenGL program,
once an object is rendered there is no memory
of it and to redisplay it, we must re-execute the
code for it

- Known as immediate mode graphics
- Can be especially slow if the objects are complex and

must be sent over a network

• Alternative is define objects and keep them in
some form that can be redisplayed easily

- Retained mode graphics
- Accomplished in OpenGL via display lists

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Display Lists

•Conceptually similar to a graphics file
- Must define (name, create)
- Add contents
- Close

• In client-server environment, display list is
placed on server

- Can be redisplayed without sending primitives
over network each time

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Display List Functions

•Creating a display list
GLuint id;

void init()
{
 id = glGenLists(1);
 glNewList(id, GL_COMPILE);
 /* other OpenGL routines */
 glEndList();
}

•Call a created list
void display()
{
 glCallList(id);
}

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Display Lists and State

•Most OpenGL functions can be put in
display lists

•State changes made inside a display list
persist after the display list is executed

•Can avoid unexpected results by using
glPushAttrib and glPushMatrix upon
entering a display list and glPopAttrib
and glPopMatrix before exiting

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Hierarchy and Display Lists

•Consider model of a car
- Create display list for chassis
- Create display list for wheel

glNewList(CAR, GL_COMPILE);
glCallList(CHASSIS);
glTranslatef(…);
glCallList(WHEEL);
glTranslatef(…);
glCallList(WHEEL);

…
glEndList();

