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Objectives

• Learn to build more sophisticated
interactive programs using

- Picking
• Select objects from the display
• Three methods

- Rubberbanding
• Interactive drawing of lines and rectangles

- Display Lists
• Retained mode graphics
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Picking

• Identify a user-defined object on the display
• In principle, it should be simple because the

mouse gives the position and we should be able
to determine to which object(s) a position
corresponds

• Practical difficulties
- Pipeline architecture is feed forward, hard to go from

screen back to world
- Complicated by screen being 2D, world is 3D
- How close do we have to come to object to say we

selected it?
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Three Approaches

•Hit list
- Most general approach but most difficult to

implement

•Use back or some other buffer to store
object ids as the objects are rendered

•Rectangular maps
- Easy to implement for many applications
- See paint program in text
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Rendering Modes

•OpenGL can render in one of three modes
selected by glRenderMode(mode)
-GL_RENDER: normal rendering to the frame buffer

(default)
-GL_FEEDBACK: provides list of primitives rendered

but no output to the frame buffer
-GL_SELECTION: Each primitive in the view volume

generates a hit record that is placed in a name
stack which can be examined later
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Selection Mode Functions

•glSelectBuffer(): specifies name buffer
•glInitNames(): initializes name buffer
•glPushName(id): push id on name buffer
•glPopName(): pop top of name buffer
•glLoadName(id): replace top name on
buffer

• id is set by application program to identify
objects
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Using Selection Mode

• Initialize name buffer
•Enter selection mode (using mouse)
•Render scene with user-defined identifiers
•Reenter normal render mode

- This operation returns number of hits

•Examine contents of name buffer (hit
records)

- Hit records include id and depth information
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Selection Mode and Picking

•As we just described it, selection mode
won’t work for picking because every
primitive in the view volume will generate
a hit

•Change the viewing parameters so that
only those primitives near the cursor are
in the altered view volume

- Use gluPickMatrix (see text for details)
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Using Regions of the Screen

• Many applications use a simple rectangular
arrangement of the screen

- Example: paint/CAD program

• Easier to look at mouse position and determine
which area of screen it is in than using selection
mode picking

drawing area

tool
s

menus
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Using another buffer and
colors for picking

• For a small number of objects, we can assign a
unique color (often in color index mode) to each
object

• We then render the scene to a color buffer other
than the front buffer so the results of the
rendering are not visible

• We then get the mouse position and use
glReadPixels() to read the color in the buffer
we just wrote at the position of the mouse

• The returned color gives the id of the object
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Writing Modes

frame buffer

application

‘

bitwise logical operation
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XOR write

•Usual (default) mode: source replaces
destination (d’ = s)

- Cannot write temporary lines this way because
we cannot recover what was “under” the line in
a fast simple way

•Exclusive OR mode (XOR) (d’ = d ⊕ s)
- x ⊕ y ⊕ x =y
- Hence, if we use XOR mode to write a line, we

can draw it a second time and line is erased!
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Rubberbanding

•Switch to XOR write mode
•Draw object

- For line can use first mouse click to fix one
endpoint and then use motion callback to
continuously update the second endpoint

- Each time mouse is moved, redraw line which
erases it and then draw line from fixed first
position to to new second position

- At end, switch back to normal drawing mode
and draw line

- Works for other objects: rectangles, circles
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Rubberband Lines

initial display
draw line with mouse 
     in XOR mode

mouse moved to 
  new position

first point

second point

original line redrawn 
        with XOR

new line drawn 
   with XOR
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XOR in OpenGL

•There are 16 possible logical operations
between two bits

•All are supported by OpenGL
- Must first enable logical operations

•glEnable(GL_COLOR_LOGIC_OP)

- Choose logical operation
•glLogicOp(GL_XOR)
•glLogicOp(GL_COPY) (default)
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Immediate and Retained Modes

• Recall that in a standard OpenGL program,
once an object is rendered there is no memory
of it and to redisplay it, we must re-execute the
code for it

- Known as immediate mode graphics
- Can be especially slow if the objects are complex and

must be sent over a network

• Alternative is define objects and keep them in
some form that can be redisplayed easily

- Retained mode graphics
- Accomplished in OpenGL via display lists
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Display Lists

•Conceptually similar to a graphics file
- Must define (name, create)
- Add contents
- Close

• In client-server environment, display list is
placed on server

- Can be redisplayed without sending primitives
over network each time
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Display List Functions

•Creating a display list
GLuint id;

void init()
{
   id = glGenLists( 1 );
   glNewList( id, GL_COMPILE );
   /* other OpenGL routines */
   glEndList();
}

•Call a created list
void display()
{
   glCallList( id );
}
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Display Lists and State

•Most OpenGL functions can be put in
display lists

•State changes made inside a display list
persist after the display list is executed

•Can avoid unexpected results by using
glPushAttrib and glPushMatrix upon
entering a display list and glPopAttrib
and glPopMatrix before exiting
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Hierarchy and Display Lists

•Consider model of a car
- Create display list for chassis
- Create display list for wheel

glNewList( CAR, GL_COMPILE );
glCallList( CHASSIS );
glTranslatef( … );
glCallList( WHEEL );
glTranslatef( … );
glCallList( WHEEL );

…
glEndList();


